Benjamin P Kleinstiver

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5014177/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CRISPR-Cas knockout of miR21 reduces glioma growth. Molecular Therapy - Oncolytics, 2022, 25, 121-136.	4.4	14
2	Genome editing in animals with minimal PAM CRISPR-Cas9 enzymes. Nature Communications, 2022, 13, 2601.	12.8	24
3	Lack of Cas13a inhibition by anti-CRISPR proteins from Leptotrichia prophages. Molecular Cell, 2022, 82, 2161-2166.e3.	9.7	4
4	Optimization of AsCas12a for combinatorial genetic screens in human cells. Nature Biotechnology, 2021, 39, 94-104.	17.5	96
5	Scalable characterization of the PAM requirements of CRISPR–Cas enzymes using HT-PAMDA. Nature Protocols, 2021, 16, 1511-1547.	12.0	23
6	Whole-genome sequencing association analysis of quantitative red blood cell phenotypes: The NHLBI TOPMed program. American Journal of Human Genetics, 2021, 108, 874-893.	6.2	28
7	Enhanced homology-directed repair for highly efficient gene editing in hematopoietic stem/progenitor cells. Blood, 2021, 137, 2598-2608.	1.4	51
8	CRISPR-targeted <i>MAGT1</i> insertion restores XMEN patient hematopoietic stem cells and lymphocytes. Blood, 2021, 138, 2768-2780.	1.4	20
9	Astrocytic interleukin-3 programs microglia and limits Alzheimer's disease. Nature, 2021, 595, 701-706.	27.8	157
10	NNT mediates redox-dependent pigmentation via a UVB- and MITF-independent mechanism. Cell, 2021, 184, 4268-4283.e20.	28.9	35
11	Making the cut with PAMless CRISPR-Cas enzymes. Trends in Genetics, 2021, 37, 1053-1055.	6.7	3
12	enAsCas12a Enables CRISPR-Directed Evolution to Screen for Functional Drug Resistance Mutations in Sequences Inaccessible to SpCas9. Molecular Therapy, 2021, 29, 208-224.	8.2	8
13	Plant genome editing branches out. Nature Plants, 2021, 7, 4-5.	9.3	3
14	Cell-based artificial APC resistant to lentiviral transduction for efficient generation of CAR-T cells from various cell sources. , 2020, 8, e000990.		13
15	Mutant Allele-Specific CRISPR Disruption in DYT1 Dystonia Fibroblasts Restores Cell Function. Molecular Therapy - Nucleic Acids, 2020, 21, 1-12.	5.1	8
16	In vivo engineering of lymphocytes after systemic exosome-associated AAV delivery. Scientific Reports, 2020, 10, 4544.	3.3	20
17	Broad-spectrum anti-CRISPR proteins facilitate horizontal gene transfer. Nature Microbiology, 2020, 5, 620-629.	13.3	79
18	Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science, 2020, 368, 290-296.	12.6	714

BENJAMIN P KLEINSTIVER

#	Article	IF	CITATIONS
19	Listeria Phages Induce Cas9 Degradation to Protect Lysogenic Genomes. Cell Host and Microbe, 2020, 28, 31-40.e9.	11.0	54
20	Activities and specificities of <scp>CRISPR</scp> /Cas9 and Cas12a nucleases for targeted mutagenesis in maize. Plant Biotechnology Journal, 2019, 17, 362-372.	8.3	192
21	Allele-specific gene editing prevents deafness in a model of dominant progressive hearing loss. Nature Medicine, 2019, 25, 1123-1130.	30.7	149
22	High levels of AAV vector integration into CRISPR-induced DNA breaks. Nature Communications, 2019, 10, 4439.	12.8	257
23	Engineered CRISPR–Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nature Biotechnology, 2019, 37, 276-282.	17.5	439
24	Voices in methods development. Nature Methods, 2019, 16, 945-951.	19.0	5
25	Allele-Specific CRISPR-Cas9 Genome Editing of the Single-Base P23H Mutation for Rhodopsin-Associated Dominant Retinitis Pigmentosa. CRISPR Journal, 2018, 1, 55-64.	2.9	96
26	Prediction of off-target activities for the end-to-end design of CRISPR guide RNAs. Nature Biomedical Engineering, 2018, 2, 38-47.	22.5	230
27	CRISPR/Cas9 Mediated Disruption of the Swedish APP Allele as a Therapeutic Approach for Early-Onset Alzheimer's Disease. Molecular Therapy - Nucleic Acids, 2018, 11, 429-440.	5.1	116
28	Discovery of widespread type I and type V CRISPR-Cas inhibitors. Science, 2018, 362, 240-242.	12.6	214
29	Temporal and Spatial Post-Transcriptional Regulation of Zebrafishtie1mRNA by Long Noncoding RNA During Brain Vascular Assembly. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 1562-1575.	2.4	19
30	Inducible and multiplex gene regulation using CRISPR–Cpf1-based transcription factors. Nature Methods, 2017, 14, 1163-1166.	19.0	170
31	Enhanced proofreading governs CRISPR–Cas9 targeting accuracy. Nature, 2017, 550, 407-410.	27.8	901
32	Camptothecin resistance is determined by the regulation of topoisomerase I degradation mediated by ubiquitin proteasome pathway. Oncotarget, 2017, 8, 43733-43751.	1.8	20
33	Isocitrate Dehydrogenase Mutations Confer Dasatinib Hypersensitivity and SRC Dependence in Intrahepatic Cholangiocarcinoma. Cancer Discovery, 2016, 6, 727-739.	9.4	126
34	Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nature Biotechnology, 2016, 34, 869-874.	17.5	566
35	High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature, 2016, 529, 490-495.	27.8	2,126
36	Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature, 2015, 523, 481-485.	27.8	1,388

3

BENJAMIN P KLEINSTIVER

#	Article	IF	CITATIONS
37	Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nature Biotechnology, 2015, 33, 1293-1298.	17.5	511
38	Hypoxia drives transient site-specific copy gain and drug-resistant gene expression. Genes and Development, 2015, 29, 1018-1031.	5.9	72
39	The I-TevI Nuclease and Linker Domains Contribute to the Specificity of Monomeric TALENs. G3: Genes, Genomes, Genetics, 2014, 4, 1155-1165.	1.8	23
40	Rapid Screening of Endonuclease Target Site Preference Using a Modified Bacterial Two-Plasmid Selection. Methods in Molecular Biology, 2014, 1123, 97-104.	0.9	1
41	The monomeric GIY-YIG homing endonuclease I-Bmol uses a molecular anchor and a flexible tether to sequentially nick DNA. Nucleic Acids Research, 2013, 41, 5413-5427.	14.5	13
42	Monomeric site-specific nucleases for genome editing. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8061-8066.	7.1	52
43	Divalent Metal Ion Differentially Regulates the Sequential Nicking Reactions of the GIY-YIG Homing Endonuclease I-Bmol. PLoS ONE, 2011, 6, e23804.	2.5	7
44	A unified genetic, computational and experimental framework identifies functionally relevant residues of the homing endonuclease I-BmoI. Nucleic Acids Research, 2010, 38, 2411-2427.	14.5	17
45	Estimating the evidence of selection and the reliability of inference in unigenic evolution. Algorithms for Molecular Biology, 2010, 5, 35.	1.2	1
46	Strand-specific Contacts and Divalent Metal Ion Regulate Double-strand Break Formation by the GIY-YIG Homing Endonuclease I-Bmol. Journal of Molecular Biology, 2007, 374, 306-321.	4.2	15