## Mayako Michino

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5014160/publications.pdf

Version: 2024-02-01

567281 713466 1,326 23 15 21 citations g-index h-index papers 23 23 23 1989 docs citations times ranked citing authors all docs

| #  | Article                                                                                                                                                                                                                                                                                 | IF         | CITATIONS       |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------|
| 1  | Community-wide assessment of GPCR structure modelling and ligand docking: GPCR Dock 2008. Nature Reviews Drug Discovery, 2009, 8, 455-463.                                                                                                                                              | 46.4       | 260             |
| 2  | Bridging the NFAT and NF-κB Families. Immunity, 2001, 15, 47-58.                                                                                                                                                                                                                        | 14.3       | 231             |
| 3  | Molecular Determinants of Selectivity and Efficacy at the Dopamine D3 Receptor. Journal of Medicinal Chemistry, 2012, 55, 6689-6699.                                                                                                                                                    | 6.4        | 153             |
| 4  | A new mechanism of allostery in a G protein–coupled receptor dimer. Nature Chemical Biology, 2014, 10, 745-752.                                                                                                                                                                         | 8.0        | 108             |
| 5  | What Can Crystal Structures of Aminergic Receptors Tell Us about Designing Subtype-Selective Ligands?. Pharmacological Reviews, 2015, 67, 198-213.                                                                                                                                      | 16.0       | 99              |
| 6  | Antimalarial proteasome inhibitor reveals collateral sensitivity from intersubunit interactions and fitness cost of resistance. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6863-E6870.                                                | 7.1        | 71              |
| 7  | A Single Glycine in Extracellular Loop 1 Is the Critical Determinant for Pharmacological Specificity of Dopamine D2 and D3 Receptors. Molecular Pharmacology, 2013, 84, 854-864.                                                                                                        | 2.3        | 58              |
| 8  | Toward Understanding the Structural Basis of Partial Agonism at the Dopamine D <sub>3</sub> Receptor. Journal of Medicinal Chemistry, 2017, 60, 580-593.                                                                                                                                | 6.4        | 49              |
| 9  | Discovery of a Novel Class of Negative Allosteric Modulator of the Dopamine D <sub>2</sub> Receptor Through Fragmentation of a Bitopic Ligand. Journal of Medicinal Chemistry, 2015, 58, 6819-6843.                                                                                     | 6.4        | 47              |
| 10 | Inhibition of 3-phosphoglycerate dehydrogenase (PHGDH) by indole amides abrogates de novo serine synthesis in cancer cells. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 2503-2510.                                                                                            | 2.2        | 37              |
| 11 | FoldGPCR: Structure prediction protocol for the transmembrane domain of G proteinâ€eoupled receptors from class A. Proteins: Structure, Function and Bioinformatics, 2010, 78, 2189-2201.                                                                                               | 2.6        | 33              |
| 12 | Novel Analogues of ( <i>R</i> )-5-(Methylamino)-5,6-dihydro-4 <i>H</i> -imidazo[4,5,1- <i>ij</i> )-quinolin-2(1 <i>H</i> )-one (Sumanirole) Provide Clues to Dopamine D <sub>2</sub> /D <sub>3</sub> Receptor Agonist Selectivity. Journal of Medicinal Chemistry, 2016, 59, 2973-2988. | 6.4        | 33              |
| 13 | Improved model building and assessment of the Calciumâ€sensing receptor transmembrane domain. Proteins: Structure, Function and Bioinformatics, 2008, 71, 215-226.                                                                                                                      | 2.6        | 28              |
| 14 | The structural determinants of the bitopic binding mode of a negative allosteric modulator of the dopamine D 2 receptor. Biochemical Pharmacology, 2018, 148, 315-328.                                                                                                                  | 4.4        | 26              |
| 15 | The E2.65A mutation disrupts dynamic binding poses of SB269652 at the dopamine D2 and D3 receptors. PLoS Computational Biology, 2018, 14, e1005948.                                                                                                                                     | 3.2        | 19              |
| 16 | Discovery of TDI-10229: A Potent and Orally Bioavailable Inhibitor of Soluble Adenylyl Cyclase (sAC,) Tj ETQq0 0                                                                                                                                                                        | 0 rgBT /O\ | verlock 10 Tf 5 |
| 17 | Selective Phenylimidazole-Based Inhibitors of the <i>Mycobacterium tuberculosis</i> Proteasome. Journal of Medicinal Chemistry, 2019, 62, 9246-9253.                                                                                                                                    | 6.4        | 14              |
| 18 | Deglycase-activity oriented screening to identify DJ-1 inhibitors. RSC Medicinal Chemistry, 2021, 12, 1232-1238.                                                                                                                                                                        | 3.9        | 13              |

| #  | Article                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Predicting structurally conserved contacts for homologous proteins using sequence conservation filters. Proteins: Structure, Function and Bioinformatics, 2009, 77, 448-453.                  | 2.6 | 11        |
| 20 | A Chemical Strategy toward Novel Brain-Penetrant EZH2 Inhibitors. ACS Medicinal Chemistry Letters, 2022, 13, 377-387.                                                                         | 2.8 | 10        |
| 21 | Macrocyclic Peptides that Selectively Inhibit the <i>Mycobacterium tuberculosis</i> Proteasome. Journal of Medicinal Chemistry, 2021, 64, 6262-6272.                                          | 6.4 | 9         |
| 22 | Whole Cell Active Inhibitors of Mycobacterial Lipoamide Dehydrogenase Afford Selectivity over the Human Enzyme through Tight Binding Interactions. ACS Infectious Diseases, 2021, 7, 435-444. | 3.8 | 1         |
| 23 | Structural Basis for the Allosteric Pharmacology of SB269652 in Dopamine D2 Receptor. Biophysical Journal, 2015, 108, 416a.                                                                   | 0.5 | 0         |