
Eran Perlson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/501401/publications.pdf Version: 2024-02-01

FDAN DEDISON

#	Article	IF	CITATIONS
1	Microfluidic Neuromuscular Co-culture System for Tracking Cell-to-Cell Transfer and Axonal Transport of Labeled Proteins. Methods in Molecular Biology, 2022, 2431, 145-161.	0.9	3
2	Co-transport of the nuclear-encoded <i>Cox7c</i> mRNA with mitochondria along axons occurs through a coding-region-dependent mechanism. Journal of Cell Science, 2022, 135, .	2.0	10
3	Neuromuscular junction mitochondrial enrichment: a "double-edged sword―underlying the selective motor neuron vulnerability in amyotrophic lateral sclerosis. Neural Regeneration Research, 2021, 16, 115.	3.0	3
4	COPII collar defines the boundary between ER and ER exit site and does not coat cargo containers. Journal of Cell Biology, 2021, 220, .	5.2	61
5	A CRMP4â€dependent retrograde axonâ€toâ€soma death signal in amyotrophic lateral sclerosis. EMBO Journal, 2021, 40, e107586.	7.8	10
6	Multimodal single-molecule microscopy with continuously controlled spectral resolution. Biophysical Reports, 2021, 1, 100013.	1.2	9
7	Neuronal Activity in the Sciatic Nerve Is Accompanied by Immediate Cytoskeletal Changes. Frontiers in Molecular Neuroscience, 2021, 14, 757264.	2.9	3
8	Axonal TDP-43 condensates drive neuromuscular junction disruption through inhibition of local synthesis of nuclear encoded mitochondrial proteins. Nature Communications, 2021, 12, 6914.	12.8	67
9	Axonal Transport of Organelles in Motor Neuron Cultures using Microfluidic Chambers System. Journal of Visualized Experiments, 2020, , .	0.3	6
10	<scp>CRMP</scp> 2 mediates Sema3Fâ€dependent axon pruning and dendritic spine remodeling. EMBO Reports, 2020, 21, e48512.	4.5	33
11	Flow Arrest in the Plasma Membrane. Biophysical Journal, 2019, 117, 810-816.	0.5	19
12	Single-Particle Diffusion Characterization by Deep Learning. Biophysical Journal, 2019, 117, 185-192.	0.5	121
13	<i>In vitro</i> compartmental system underlines the contribution of mitochondrial immobility to the ATP supply in the NMJ. Journal of Cell Science, 2019, 132, .	2.0	23
14	Efficient gene transfer into primary muscle cells to analyze nerve-independent postsynaptic organization in vitro. Neuromuscular Disorders, 2019, 29, 533-542.	0.6	3
15	Structural Principles in Robo Activation and Auto-inhibition. Cell, 2019, 177, 272-285.e16.	28.9	34
16	Targeting the Sigma-1 Receptor via Pridopidine Ameliorates Central Features of ALS Pathology in a SOD1G93A Model. Cell Death and Disease, 2019, 10, 210.	6.3	71
17	Patient-derived co-cultures for studying ALS. Nature Biomedical Engineering, 2019, 3, 13-14.	22.5	6
18	Muscle secretion of toxic factors, regulated by miR126-5p, facilitates motor neuron degeneration in amyotrophic lateral sclerosis. Neural Regeneration Research, 2019, 14, 969.	3.0	6

ERAN PERLSON

#	Article	IF	CITATIONS
19	High content image analysis reveals function of miR-124 upstream of Vimentin in regulating motor neuron mitochondria. Scientific Reports, 2018, 8, 59.	3.3	30
20	Localization of RNAi Machinery to Axonal Branch Points and Growth Cones Is Facilitated by Mitochondria and Is Disrupted in ALS. Frontiers in Molecular Neuroscience, 2018, 11, 311.	2.9	35
21	miR126-5p Downregulation Facilitates Axon Degeneration and NMJ Disruption via a Non–Cell-Autonomous Mechanism in ALS. Journal of Neuroscience, 2018, 38, 5478-5494.	3.6	42
22	Retrograde Degenerative Signaling Mediated by the p75 Neurotrophin Receptor Requires p150Glued Deacetylation by Axonal HDAC1. Developmental Cell, 2018, 46, 376-387.e7.	7.0	23
23	The receptor tyrosine kinase TrkB signals without dimerization at the plasma membrane. Science Signaling, 2018, 11, .	3.6	37
24	Communication Languages and Agents in Biological Systems. , 2017, , 411-448.		0
25	Spatialâ€specific functions in retrograde neuronal signalling. Traffic, 2017, 18, 415-424.	2.7	19
26	ALS Along the Axons – Expression of Coding and Noncoding RNA Differs in Axons of ALS models. Scientific Reports, 2017, 7, 44500.	3.3	92
27	Phosphatidylserine improves axonal transport by inhibition of HDAC and has potential in treatment of neurodegenerative diseases. Neural Regeneration Research, 2017, 12, 534.	3.0	6
28	Tracking Quantum-Dot labeled neurotropic factors transport along primary neuronal axons in compartmental microfluidic chambers. Methods in Cell Biology, 2016, 131, 365-387.	1.1	21
29	Neurodegeneration and Alzheimer's disease (AD). What Can Proteomics Tell Us About the Alzheimer's Brain?. Molecular and Cellular Proteomics, 2016, 15, 409-425.	3.8	79
30	Proteomic Analysis of Dynein-Interacting Proteins in Amyotrophic Lateral Sclerosis Synaptosomes Reveals Alterations in the RNA-Binding Protein Staufen1. Molecular and Cellular Proteomics, 2016, 15, 506-522.	3.8	27
31	Compartmental microfluidic system for studying muscle–neuron communication and neuromuscular junction maintenance. European Journal of Cell Biology, 2016, 95, 69-88.	3.6	86
32	Phosphatidylserine Ameliorates Neurodegenerative Symptoms and Enhances Axonal Transport in a Mouse Model of Familial Dysautonomia. PLoS Genetics, 2016, 12, e1006486.	3.5	31
33	A Dynein Light Chain 1 Binding Motif in Rabies Virus Polymerase L Protein Plays a Role in Microtubule Reorganization and Viral Primary Transcription. Journal of Virology, 2015, 89, 9591-9600.	3.4	27
34	Amyotrophic Lateral Sclerosis as a Spatiotemporal Mislocalization Disease: Location, International Review of Cell and Molecular Biology, 2015, 315, 23-71.	3.2	18
35	Spatial aspects of GDNF functions revealed in a compartmentalized microfluidic neuromuscular co-culture system. Journal of Cell Science, 2015, 128, 1241-52.	2.0	137
36	Developmental Axon Pruning Requires Destabilization of Cell Adhesion by JNK Signaling. Neuron, 2015, 88, 926-940.	8.1	37

ERAN PERLSON

#	Article	IF	CITATIONS
37	Receptor-mediated increase in rabies virus axonal transport. Neural Regeneration Research, 2015, 10, 883.	3.0	5
38	Rabies Virus Hijacks and Accelerates the p75NTR Retrograde Axonal Transport Machinery. PLoS Pathogens, 2014, 10, e1004348.	4.7	96
39	Long-distance Axonal Transport of AAV9 Is Driven by Dynein and Kinesin-2 and Is Trafficked in a Highly Motile Rab7-positive Compartment. Molecular Therapy, 2014, 22, 554-566.	8.2	74
40	Anterograde Glycoprotein-Dependent Transport of Newly Generated Rabies Virus in Dorsal Root Ganglion Neurons. Journal of Virology, 2014, 88, 14172-14183.	3.4	43
41	Dynein Interacts with the Neural Cell Adhesion Molecule (NCAM180) to Tether Dynamic Microtubules and Maintain Synaptic Density in Cortical Neurons. Journal of Biological Chemistry, 2013, 288, 27812-27824.	3.4	39
42	Dynein Tethers and Stabilizes Dynamic Microtubule Plus Ends. Current Biology, 2012, 22, 632-637.	3.9	102
43	Retrograde axonal transport: pathways to cell death?. Trends in Neurosciences, 2010, 33, 335-344.	8.6	302
44	A Switch in Retrograde Signaling from Survival to Stress in Rapid-Onset Neurodegeneration. Journal of Neuroscience, 2009, 29, 9903-9917.	3.6	168
45	Myosin Learns to Recruit AMPA Receptors. Cell, 2008, 135, 414-415.	28.9	3
46	Vimentin Binding to Phosphorylated Erk Sterically Hinders Enzymatic Dephosphorylation of the Kinase. Journal of Molecular Biology, 2006, 364, 938-944.	4.2	141
47	Vimentin-Dependent Spatial Translocation of an Activated MAP Kinase in Injured Nerve. Neuron, 2005, 45, 715-726.	8.1	483
48	Differential Proteomics Reveals Multiple Components in Retrogradely Transported Axoplasm After Nerve Injury. Molecular and Cellular Proteomics, 2004, 3, 510-520.	3.8	54
49	From snails to sciatic nerve: Retrograde injury signaling from axon to soma in lesioned neurons. Journal of Neurobiology, 2004, 58, 287-294.	3.6	53
50	Axoplasmic Importins Enable Retrograde Injury Signaling in Lesioned Nerve. Neuron, 2003, 40, 1095-1104.	8.1	459