
Richard M Locksley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5014000/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interferon gamma constrains type 2 lymphocyte niche boundaries during mixed inflammation. Immunity, 2022, 55, 254-271.e7.	14.3	30
2	Bile acid–sensitive tuft cells regulate biliary neutrophil influx. Science Immunology, 2022, 7, eabj1080.	11.9	23
3	ILC2s – development, divergence, dispersal. Current Opinion in Immunology, 2022, 75, 102168.	5.5	6
4	IL-13–programmed airway tuft cells produce PGE2, which promotes CFTR-dependent mucociliary function. JCI Insight, 2022, 7, .	5.0	19
5	Skin-resident innate lymphoid cells converge on a pathogenic effector state. Nature, 2021, 592, 128-132.	27.8	119
6	Interrogating the Small Intestine Tuft Cell–ILC2 Circuit Using In Vivo Manipulations. Current Protocols, 2021, 1, e77.	2.9	9
7	A stromal progenitor and ILC2 niche promotes muscle eosinophilia and fibrosis-associated gene expression. Cell Reports, 2021, 35, 108997.	6.4	28
8	A role for IL-33–activated ILC2s in eosinophilic vasculitis. JCI Insight, 2021, 6, .	5.0	12
9	CISH constrains the tuft–ILC2 circuit to set epithelial and immune tone. Mucosal Immunology, 2021, 14, 1295-1305.	6.0	16
10	Alveolar macrophages rely on GM-CSF from alveolar epithelial type 2 cells before and after birth. Journal of Experimental Medicine, 2021, 218, .	8.5	70
11	Lymph node–resident dendritic cells drive T _H 2 cell development involving MARCH1. Science Immunology, 2021, 6, eabh0707.	11.9	10
12	Tissue immunity broadcasts near and far. Nature Reviews Immunology, 2020, 20, 93-94.	22.7	5
13	Tissue-specific pathways extrude activated ILC2s to disseminate type 2 immunity. Journal of Experimental Medicine, 2020, 217, .	8.5	69
14	Differences in the chitinolytic activity of mammalian chitinases on soluble and insoluble substrates. Protein Science, 2020, 29, 952-963.	7.6	15
15	In Situ Maturation and Tissue Adaptation of Type 2 Innate Lymphoid Cell Progenitors. Immunity, 2020, 53, 775-792.e9.	14.3	88
16	Making Asthma Crystal Clear. New England Journal of Medicine, 2019, 381, 882-884.	27.0	4
17	Production of IFNβ by Conventional Dendritic Cells after Stimulation with Viral Compounds and IFNβ-Independent IFNAR1-Signaling Pathways are Associated with Aggravation of Polymicrobial Sepsis. International Journal of Molecular Sciences, 2019, 20, 4410.	4.1	4
18	Regulation of immune responses by tuft cells. Nature Reviews Immunology, 2019, 19, 584-593.	22.7	153

RICHARD M LOCKSLEY

#	Article	IF	CITATIONS
19	Tissue-Resident Group 2 Innate Lymphoid Cells Differentiate by Layered Ontogeny and In Situ Perinatal Priming. Immunity, 2019, 50, 1425-1438.e5.	14.3	179
20	ILC2s chew the fat. Journal of Experimental Medicine, 2019, 216, 1972-1973.	8.5	0
21	Tuft Cells—Systemically Dispersed Sensory Epithelia Integrating Immune and Neural Circuitry. Annual Review of Immunology, 2019, 37, 47-72.	21.8	109
22	Pulmonary neuroendocrine cells amplify allergic asthma responses. Science, 2018, 360, .	12.6	278
23	Tissue signals imprint ILC2 identity with anticipatory function. Nature Immunology, 2018, 19, 1093-1099.	14.5	329
24	Parasitic helminths induce fetal-like reversion in the intestinal stem cell niche. Nature, 2018, 559, 109-113.	27.8	223
25	Chitins and chitinase activity in airway diseases. Journal of Allergy and Clinical Immunology, 2018, 142, 364-369.	2.9	48
26	Detection of Succinate by Intestinal Tuft Cells Triggers a Type 2 Innate Immune Circuit. Immunity, 2018, 49, 33-41.e7.	14.3	380
27	Thymic tuft cells promote an IL-4-enriched medulla and shape thymocyte development. Nature, 2018, 559, 627-631.	27.8	221
28	Innate Lymphoid Cells: 10 Years On. Cell, 2018, 174, 1054-1066.	28.9	1,467
29	A Metabolite-Triggered Tuft Cell-ILC2 Circuit Drives Small Intestinal Remodeling. Cell, 2018, 174, 271-284.e14.	28.9	320
30	Why Innate Lymphoid Cells?. Immunity, 2018, 48, 1081-1090.	14.3	97
31	Spontaneous Chitin Accumulation in Airways and Age-Related Fibrotic Lung Disease. Cell, 2017, 169, 497-509.e13.	28.9	87
32	Recruited Monocytes and Type 2 Immunity Promote Lung Regeneration following Pneumonectomy. Cell Stem Cell, 2017, 21, 120-134.e7.	11.1	187
33	Leukotrienes provide an NFAT-dependent signal that synergizes with IL-33 to activate ILC2s. Journal of Experimental Medicine, 2017, 214, 27-37.	8.5	132
34	The Development of Steady-State Activation Hubs between Adult LTi ILC3s and Primed Macrophages in Small Intestine. Journal of Immunology, 2017, 199, 1912-1922.	0.8	44
35	Turning the light on. Nature Reviews Immunology, 2017, 17, 593-593.	22.7	0
36	MicroRNA regulation of type 2 innate lymphoid cell homeostasis and function in allergic inflammation. Journal of Experimental Medicine, 2017, 214, 3627-3643.	8.5	79

RICHARD M LOCKSLEY

#	Article	IF	CITATIONS
37	Determinants of Divergent Adaptive Immune Responses after Airway Sensitization with Ligands of Toll-Like Receptor 5 or Toll-Like Receptor 9. PLoS ONE, 2016, 11, e0167693.	2.5	11
38	Perinatal Licensing of Thermogenesis by IL-33 and ST2. Cell, 2016, 166, 841-854.	28.9	99
39	A tissue checkpoint regulates type 2 immunity. Nature Immunology, 2016, 17, 1381-1387.	14.5	184
40	Tuft-cell-derived IL-25 regulates an intestinal ILC2–epithelial response circuit. Nature, 2016, 529, 221-225.	27.8	921
41	Dual epithelial and immune cell function of Dvl1 regulates gut microbiota composition and intestinal homeostasis. JCI Insight, 2016, 1, .	5.0	11
42	lgE-activated basophils regulate eosinophil tissue entry by modulating endothelial function. Journal of Experimental Medicine, 2015, 212, 513-524.	8.5	74
43	New blood: Creative funding of disease-specific research. Science Translational Medicine, 2015, 7, 288ed5.	12.4	0
44	Activated Type 2 Innate Lymphoid Cells Regulate Beige Fat Biogenesis. Cell, 2015, 160, 74-87.	28.9	565
45	A Novel Model for IFN-γ–Mediated Autoinflammatory Syndromes. Journal of Immunology, 2015, 194, 2358-2368.	0.8	64
46	Eosinophil-specific deletion of lκBα in mice reveals a critical role of NF-κB–induced Bcl-xL for inhibition of apoptosis. Blood, 2015, 125, 3896-3904.	1.4	47
47	Interleukin-33 in Tissue Homeostasis, Injury, and Inflammation. Immunity, 2015, 42, 1005-1019.	14.3	492
48	Interleukin-33 and Interferon-Î ³ Counter-Regulate Group 2 Innate Lymphoid Cell Activation during Immune Perturbation. Immunity, 2015, 43, 161-174.	14.3	368
49	Identification and distribution of developing innate lymphoid cells in the fetal mouse intestine. Nature Immunology, 2015, 16, 153-160.	14.5	139
50	Allergic Inflammation—Innately Homeostatic. Cold Spring Harbor Perspectives in Biology, 2015, 7, a016352.	5.5	21
51	Asthma and the flu: a tricky twoâ€step. Immunology and Cell Biology, 2014, 92, 389-391.	2.3	3
52	Chitin Activates Parallel Immune Modules that Direct Distinct Inflammatory Responses via Innate Lymphoid Type 2 and Î ³ δT Cells. Immunity, 2014, 40, 414-424.	14.3	221
53	Eosinophils Are Recruited in Response to Chitin Exposure and Enhance Th2-Mediated Immune Pathology in Aspergillus fumigatus Infection. Infection and Immunity, 2014, 82, 3199-3205.	2.2	68
54	I-L-C-2 it: type 2 immunity and group 2 innate lymphoid cells in homeostasis. Current Opinion in Immunology, 2014, 31, 58-65.	5.5	48

RICHARD M LOCKSLEY

#	Article	IF	CITATIONS
55	Leukotriene B4 amplifies eosinophil accumulation in response to nematodes. Journal of Experimental Medicine, 2014, 211, 1281-1288.	8.5	56
56	Eosinophils and Type 2 Cytokine Signaling in Macrophages Orchestrate Development of Functional Beige Fat. Cell, 2014, 157, 1292-1308.	28.9	715
57	Interleukin-5–producing group 2 innate lymphoid cells control eosinophilia induced by interleukin-2 therapy. Blood, 2014, 124, 3572-3576.	1.4	100
58	Type 2 innate lymphoid cells constitutively express arginase-I in the naÃ ⁻ ve and inflamed lung. Journal of Leukocyte Biology, 2013, 94, 877-884.	3.3	92
59	Type 2 innate lymphoid cells control eosinophil homeostasis. Nature, 2013, 502, 245-248.	27.8	861
60	Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. Journal of Experimental Medicine, 2013, 210, 535-549.	8.5	741
61	Raggin' on T-bet. Cell Metabolism, 2013, 17, 473-474.	16.2	1
62	Marking and Quantifying IL-17A-Producing Cells In Vivo. PLoS ONE, 2012, 7, e39750.	2.5	74
63	Divergent expression patterns of IL-4 and IL-13 define unique functions in allergic immunity. Nature Immunology, 2012, 13, 58-66.	14.5	367
64	Genetic analysis of basophil function in vivo. Nature Immunology, 2011, 12, 527-535.	14.5	231
65	Systemically dispersed innate IL-13–expressing cells in type 2 immunity. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11489-11494.	7.1	990
66	Asthma and Allergic Inflammation. Cell, 2010, 140, 777-783.	28.9	351
67	Differential Enzymatic Activity of Common Haplotypic Versions of the Human Acidic Mammalian Chitinase Protein. Journal of Biological Chemistry, 2009, 284, 19650-19658.	3.4	54
68	Nine lives: plasticity among T helper cell subsets. Journal of Experimental Medicine, 2009, 206, 1643-1646.	8.5	91
69	The Roaring Twenties. Immunity, 2008, 28, 437-439.	14.3	12
70	Chitin induces accumulation in tissue of innate immune cells associated with allergy. Nature, 2007, 447, 92-96.	27.8	692
71	A Failure to Launch: Fuelling Cytokine Secretion in iNKT Cells. Immunity, 2006, 25, 393-395.	14.3	0
72	Deletion of a coordinate regulator of type 2 cytokine expression in mice. Nature Immunology, 2001, 2, 842-847.	14.5	181

#	ARTICLE	IF	CITATIONS
73	Functional plasticity of the LACK-reactive Vβ4-Vα8 CD4+ T cells normally producing the early IL-4 instructing Th2 cell development and susceptibility toLeishmania major in BALB / c mice. European Journal of Immunology, 2001, 31, 1288-1296.	2.9	19
74	Flying doctors. Nature Immunology, 2000, 1, 457-458.	14.5	2
75	Functional screening of an asthma QTL in YAC transgenic mice. Nature Genetics, 1999, 23, 241-244.	21.4	64
76	Leishmania major infection of inbred mice: unmasking genetic determinants of infectious diseases. BioEssays, 1999, 21, 510-518.	2.5	28
77	Independent and Epigenetic Regulation of the Interleukin-4 Alleles in CD4+ T Cells. , 1998, 281, 1352-1354.		219
78	The Development of Effector T Cell Subsets in Murine <i>Leishmania Major</i> Infection. Novartis Foundation Symposium, 1995, 195, 110-122.	1.1	7
79	Cytokines in the differentiation of Th1/Th2 CD4+ subsets in leishmaniasis. Journal of Cellular Biochemistry, 1993, 53, 323-328.	2.6	37
80	Tumour necrosis factor \hat{I}_{\pm} restores granulomas and induces parasite egg-laying in schistosome-infected SCID mice. Nature, 1992, 356, 604-607.	27.8	442
81	Interleukin 1: The patterns of translation and intracellular distribution support alternative secretory mechanisms. Journal of Cellular Physiology, 1992, 152, 223-231.	4.1	82