Philip Carella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5013536/publications.pdf

Version: 2024-02-01

759233 713466 30 611 12 21 citations h-index g-index papers 32 32 32 852 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	ASTREL Projection: Comparative Phylogenomics Uncovers Novel Genes Coeliminated with the EDS1 Immune Pathway. Plant Cell, 2020, 32, 2067-2068.	6.6	O
2	All Together Now: Phylotranscriptomics Reveals Core Responses to Fungal Infection across the Pentapetalae. Plant Cell, 2020, 32, 1773-1774.	6.6	0
3	Good Fats, Bad Fats: Phosphoinositide Species Differentially Localize to Plant-Pathogen Interfaces and Influence Disease Progression. Plant Cell, 2020, 32, 1355-1356.	6.6	1
4	Close Encounters of the ARF Kind: Proximity-Based ARF1 GTPase Activity Regulates Vesicle Trafficking. Plant Cell, 2020, 32, 2453-2454.	6.6	0
5	Know Your Roots: A Transcriptomic Exploration of Key Life History Traits in the Model Lycophyte Selaginella moellendorffii. Plant Cell, 2020, 32, 783-784.	6.6	O
6	Xylem-Mobile Oxylipins Are Critical Regulators of Induced Systemic Resistance in Maize. Plant Cell, 2020, 32, 13-14.	6.6	8
7	Stop the FUSS: BPCs Restrict FUSCA3 Transcription to Promote Ovule and Seed Development. Plant Cell, 2020, 32, 1779-1780.	6.6	3
8	Conserved Biochemical Defenses Underpin Host Responses to Oomycete Infection in an Early-Divergent Land Plant Lineage. Current Biology, 2019, 29, 2282-2294.e5.	3.9	77
9	Some Things Never Change: Conserved MYC-Family bHLH Transcription Factors Mediate Dinor-OPDA Signaling in Liverworts. Plant Cell, 2019, 31, 2295-2296.	6.6	0
10	Resistance on Tap: PDR Transporters Direct Antimicrobial Metabolites Toward Invading Pathogens. Plant Cell, 2019, 31, 1943-1944.	6.6	1
11	Moving on Up: An MCTP-SNARE Complex Mediates Long-Distance Florigen Transport. Plant Cell, 2019, 31, 2293-2294.	6.6	0
12	Die Another Way: An EDS1-SAG101 Complex Mediates TNL Immunity in Solanaceous Plants. Plant Cell, 2019, 31, 2289-2290.	6.6	1
13	Moving on Up: An MCTP-SNARE Complex Mediates Long-distance Florigen Transport. Plant Cell, 2019, , tpc.00664.2019.	6.6	0
14	Mellowed Yellow: WHITE PETAL1 Regulates Carotenoid Accumulation in Medicago Petals. Plant Cell, 2019, 31, tpc.00728.2019.	6.6	0
15	<i>Phytophthora palmivora</i> establishes tissue-specific intracellular infection structures in the earliest divergent land plant lineage. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3846-E3855.	7.1	59
16	Manipulation of Bryophyte Hosts by Pathogenic and Symbiotic Microbes. Plant and Cell Physiology, 2018, 59, 656-665.	3.1	29
17	Sticking to it: phytopathogen effector molecules may converge on evolutionarily conserved host targets in green plants. Current Opinion in Plant Biology, 2018, 44, 175-180.	7.1	26
18	Exploring the role of DIR1, DIR1-like and other lipid transfer proteins during systemic immunity in Arabidopsis. Physiological and Molecular Plant Pathology, 2017, 97, 49-57.	2.5	11

#	Article	IF	CITATIONS
19	Age-Related Resistance in <i>Arabidopsis thaliana</i> Involves the MADS-Domain Transcription Factor SHORT VEGETATIVE PHASE and Direct Action of Salicylic Acid on <i>Pseudomonas syringae</i> Molecular Plant-Microbe Interactions, 2017, 30, 919-929.	2.6	32
20	Orthology Analysis and In Vivo Complementation Studies to Elucidate the Role of DIR1 during Systemic Acquired Resistance in Arabidopsis thaliana and Cucumis sativus. Frontiers in Plant Science, 2016, 7, 566.	3.6	18
21	Vascular Sap Proteomics: Providing Insight into Long-Distance Signaling during Stress. Frontiers in Plant Science, 2016, 7, 651.	3.6	54
22	Comparative Proteomics Analysis of Arabidopsis Phloem Exudates Collected During the Induction of Systemic Acquired Resistance. Plant Physiology, 2016, 171, pp.00269.2016.	4.8	64
23	Using DIR1 to investigate long-distance signal movement during Systemic Acquired Resistance. Canadian Journal of Plant Pathology, 2016, 38, 19-24.	1.4	6
24	Mind the gap: Signal movement through plasmodesmata is critical for the manifestation of SAR. Plant Signaling and Behavior, 2015, 10, e1075683.	2.4	3
25	Development of a <i><scp>P</scp>seudomonas syringae–<scp>E</scp>utrema salsugineum</i> pathosystem to investigate disease resistance in a stress tolerant extremophile model plant. Plant Pathology, 2015, 64, 297-306.	2.4	2
26	Investigation of Intercellular Salicylic Acid Accumulation during Compatible and Incompatible Arabidopsis-Pseudomonas syringae Interactions Using a Fast Neutron-Generated Mutant Allele of EDS5 Identified by Genetic Mapping and Whole-Genome Sequencing. PLoS ONE, 2014, 9, e88608.	2.5	28
27	Intercellular salicylic acid accumulation during compatible and incompatible <i>Arabidopsis</i> - <i>Pseudomonas syringae</i> ibinteractions. Plant Signaling and Behavior, 2014, 9, e29362.	2.4	8
28	Some things get better with age: differences in salicylic acid accumulation and defense signaling in young and mature Arabidopsis. Frontiers in Plant Science, 2014, 5, 775.	3.6	46
29	The floral transition is not the developmental switch that confers competence for the Arabidopsis age-related resistance response to Pseudomonas syringae pv. tomato. Plant Molecular Biology, 2013, 83, 235-246.	3.9	25
30	Long distance movement of DIR1 and investigation of the role of DIR1-like during systemic acquired resistance in Arabidopsis. Frontiers in Plant Science, 2013, 4, 230.	3.6	108