Tricia A. Thornton-Wells

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5013304/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nature Genetics, 2013, 45, 1452-1458.	21.4	3,741
2	Genetics, statistics and human disease: analytical retooling for complexity. Trends in Genetics, 2004, 20, 640-647.	6.7	230
3	Convergent genetic and expression data implicate immunity in Alzheimer's disease. Alzheimer's and Dementia, 2015, 11, 658-671.	0.8	173
4	Effects of Multiple Genetic Loci on Age at Onset in Late-Onset Alzheimer Disease. JAMA Neurology, 2014, 71, 1394.	9.0	166
5	Gene-Wide Analysis Detects Two New Susceptibility Genes for Alzheimer's Disease. PLoS ONE, 2014, 9, e94661.	2.5	155
6	Resting-State Functional Connectivity in Individuals with Down Syndrome and Williams Syndrome Compared with Typically Developing Controls. Brain Connectivity, 2015, 5, 461-475.	1.7	61
7	Regional Brain Differences in Cortical Thickness, Surface Area and Subcortical Volume in Individuals with Williams Syndrome. PLoS ONE, 2012, 7, e31913.	2.5	60
8	Global and local ancestry in Africanâ€Americans: Implications for Alzheimer's disease risk. Alzheimer's and Dementia, 2016, 12, 233-243.	0.8	42
9	Discovery of gene-gene interactions across multiple independent data sets of late onset Alzheimer disease from the Alzheimer Disease Genetics Consortium. Neurobiology of Aging, 2016, 38, 141-150.	3.1	39
10	Genetic interactions associated with 12-month atrophy in hippocampus and entorhinal cortex in Alzheimer's Disease Neuroimaging Initiative. Neurobiology of Aging, 2013, 34, 1518.e9-1518.e18.	3.1	37
11	Auditory Attraction: Activation of Visual Cortex by Music and Sound in Williams Syndrome. American Journal on Intellectual and Developmental Disabilities, 2010, 115, 172-189.	1.6	35
12	Differences in age-related effects on brain volume in Down syndrome as compared to Williams syndrome and typical development. Journal of Neurodevelopmental Disorders, 2014, 6, 8.	3.1	29
13	Genetic interactions found between calcium channel genes modulate amyloid load measured by positron emission tomography. Human Genetics, 2014, 133, 85-93.	3.8	27
14	Confronting complexity in lateâ€onset Alzheimer disease: application of twoâ€stage analysis approach addressing heterogeneity and epistasis. Genetic Epidemiology, 2008, 32, 187-203.	1.3	25
15	Dissecting trait heterogeneity: a comparison of three clustering methods applied to genotypic data. BMC Bioinformatics, 2006, 7, 204.	2.6	24
16	Alterations in diffusion properties of white matter in Williams syndrome. Magnetic Resonance Imaging, 2011, 29, 1165-1174.	1.8	24
17	White matter integrity deficits in prefrontal–amygdala pathways in Williams syndrome. NeuroImage, 2012, 59, 887-894.	4.2	23
18	Using novel control groups to dissect the amygdala's role in Williams syndrome. Developmental Cognitive Neuroscience, 2011, 1, 295-304.	4.0	21

TRICIA A. THORNTON-WELLS

#	Article	IF	CITATIONS
19	Genetic modification of the relationship between phosphorylated tau and neurodegeneration. Alzheimer's and Dementia, 2014, 10, 637.	0.8	21
20	Genetic Interactions within Inositol-Related Pathways are Associated with Longitudinal Changes in Ventricle Size. Journal of Alzheimer's Disease, 2013, 38, 145-154.	2.6	19
21	Genetic variation modifies risk for neurodegeneration based on biomarker status. Frontiers in Aging Neuroscience, 2014, 6, 183.	3.4	18
22	Inverse correspondence between hippocampal perfusion and verbal memory performance in older adults. Hippocampus, 2013, 23, 213-220.	1.9	17
23	Comparative Linkage Meta-Analysis Reveals Regionally-Distinct, Disparate Genetic Architectures: Application to Bipolar Disorder and Schizophrenia. PLoS ONE, 2011, 6, e19073.	2.5	12
24	Impact of family structure and common environment on heritability estimation for neuroimaging genetics studies using Sequential Oligogenic Linkage Analysis Routines. Journal of Medical Imaging, 2014, 1, 014005.	1.5	12
25	Neural Correlates of Amusia in Williams Syndrome. Brain Sciences, 2014, 4, 594-612.	2.3	9
26	Perl Programming for Biologists. Journal of the American Medical Informatics Association: JAMIA, 2004, 11, 173-173.	4.4	7
27	Effect of nonrigid registration algorithms on deformation-based morphometry: a comparative study with control and Williams syndrome subjects. Magnetic Resonance Imaging, 2012, 30, 774-788.	1.8	6
28	lron-regulatory genes are associated with Neuroimaging measures in HIV infection. Brain Imaging and Behavior, 2020, 14, 2037-2049.	2.1	5
29	Association Rule Discovery Has the Ability to Model Complex Genetic Effects. , 2007, 2007, 624-629.		4
30	The effect of intellectual ability on functional activation in a neurodevelopmental disorder: preliminary evidence from multiple fMRI studies in Williams syndrome. Journal of Neurodevelopmental Disorders, 2012, 4, 24.	3.1	4
31	Effect of registration on corpus callosum population differences found with DBM analysis. Proceedings of SPIE, 2011, , .	0.8	0
32	Brain-based Methods in the Study of Developmental Disabilities: Examples from Event-related Potentials and Magnetic Resonance Imaging Research. , 2011, , .		0