Gen Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5012970/publications.pdf

Version: 2024-02-01

567281 330143 1,426 40 15 37 citations h-index g-index papers 40 40 40 1534 docs citations citing authors all docs times ranked

#	Article	IF	Citations
1	Tropical Biases in CMIP5 Multimodel Ensemble: The Excessive Equatorial Pacific Cold Tongue and Double ITCZ Problems*. Journal of Climate, 2014, 27, 1765-1780.	3.2	431
2	Origins of tropicalâ€wide SST biases in CMIP multiâ€model ensembles. Geophysical Research Letters, 2012, 39, .	4.0	146
3	Effects of excessive equatorial cold tongue bias on the projections of tropical Pacific climate change. Part I: the warming pattern in CMIP5 multi-model ensemble. Climate Dynamics, 2016, 47, 3817-3831.	3.8	110
4	Western Pacific emergent constraint lowers projected increase in Indian summer monsoonÂrainfall. Nature Climate Change, 2017, 7, 708-712.	18.8	92
5	Monsoon-Induced Biases of Climate Models over the Tropical Indian Ocean*. Journal of Climate, 2015, 28, 3058-3072.	3.2	86
6	An Intermodel Approach to Identify the Source of Excessive Equatorial Pacific Cold Tongue in CMIP5 Models and Uncertainty in Observational Datasets. Journal of Climate, 2015, 28, 7630-7640.	3.2	61
7	A Robust but Spurious Pattern of Climate Change in Model Projections over the Tropical Indian Ocean. Journal of Climate, 2016, 29, 5589-5608.	3.2	60
8	Indices of El Niñ0 and El Niñ0 Modoki: An improved El Niñ0 Modoki index. Advances in Atmospheric Sciences, 2010, 27, 1210-1220.	4.3	49
9	Climate Model Errors over the South Indian Ocean Thermocline Dome and Their Effect on the Basin Mode of Interannual Variability*. Journal of Climate, 2015, 28, 3093-3098.	3.2	40
10	Effect of excessive equatorial Pacific cold tongue bias on the El Niño-Northwest Pacific summer monsoon relationship in CMIP5 multi-model ensemble. Climate Dynamics, 2019, 52, 6195-6212.	3.8	38
11	Land–atmosphere interaction over the Indo-China Peninsula during spring and its effect on the following summer climate over the Yangtze River basin. Climate Dynamics, 2019, 53, 6181-6198.	3.8	35
12	Origin of Indian summer monsoon rainfall biases in CMIP5 multimodel ensemble. Climate Dynamics, 2018, 51, 755-768.	3.8	32
13	Effect of spring soil moisture over the Indo-China Peninsula on the following summer extreme precipitation events over the Yangtze River basin. Climate Dynamics, 2020, 54, 3845-3861.	3.8	25
14	Inter-annual variability of spring precipitation over the Indo-China Peninsula and its asymmetric relationship with El Niño-Southern Oscillation. Climate Dynamics, 2021, 56, 2651-2665.	3.8	23
15	Do CMIP5 Models Show El Niño Diversity?. Journal of Climate, 2020, 33, 1619-1641.	3.2	20
16	Interdecadal Change in the Effect of Spring Soil Moisture over the Indo-China Peninsula on the Following Summer Precipitation over the Yangtze River Basin. Journal of Climate, 2020, 33, 7063-7082.	3.2	16
17	Interdecadal change in the relationship between El Niñ0 in the decaying stage and the central China summer precipitation. Climate Dynamics, 2022, 59, 1981-1996.	3.8	14
18	The Southwest Indian Ocean thermocline dome in CMIP5 models: Historical simulation and future projection. Advances in Atmospheric Sciences, 2016, 33, 489-503.	4.3	13

#	Article	IF	CITATIONS
19	Asymmetric Effect of El Niñoâ€"Southern Oscillation on the Spring Precipitation over South China. Atmosphere, 2021, 12, 391.	2.3	13
20	Interdecadal change in the influence of El Ni $\tilde{A}\pm 0$ in the developing stage on the central China summer precipitation. Climate Dynamics, 2022, 59, 1265-1282.	3.8	12
21	Characterizing CMIP5 model spread in simulated rainfall in the Pacific Intertropical Convergence and South Pacific Convergence Zones. Journal of Geophysical Research D: Atmospheres, 2016, 121, 11590-11607.	3.3	11
22	Weakening Influence of Spring Soil Moisture over the Indo-China Peninsula on the Following Summer Mei-Yu Front and Precipitation Extremes over the Yangtze River Basin. Journal of Climate, 2020, 33, 10055-10072.	3.2	11
23	Two Approaches of the Spring North Atlantic Sea Surface Temperature Affecting the Following July Precipitation over Central China: The Tropical and Extratropical Pathways. Journal of Climate, 2022, 35, 2969-2986.	3.2	11
24	Origins of the IOD-like Biases in CMIP Multimodel Ensembles: The Atmospheric Component and Ocean–Atmosphere Coupling. Journal of Climate, 2020, 33, 10437-10453.	3.2	9
25	Maintenance Mechanism for the Teleconnection Pattern over the High Latitudes of the Eurasian Continent in Summer. Journal of Climate, 2020, 33, 1017-1030.	3.2	8
26	Emergent Constraint on the Frequency of Central Pacific El Ni $\tilde{A}\pm$ o Under Global Warming by the Equatorial Pacific Cold Tongue Bias in CMIP5/6 Models. Geophysical Research Letters, 2020, 47, e2020GL089519.	4.0	7
27	Model Uncertainty in the Projected Indian Summer Monsoon Precipitation Change under Low-Emission Scenarios. Atmosphere, 2021, 12, 248.	2.3	6
28	Effect of the El Niño Decaying Pace on the East Asian Summer Monsoon Circulation Pattern during Post-El Niño Summers. Atmosphere, 2021, 12, 140.	2.3	6
29	Change of the wintertime SSTA variability over the West Pacific after the midâ€1980s: Effect of the increasing El Niño Modoki. Journal of Geophysical Research D: Atmospheres, 2014, 119, 5204-5225.	3.3	5
30	Strengthening influence of El Ni $\tilde{A}\pm o$ on the following spring precipitation over the Indo-China Peninsula. Journal of Climate, 2021, , 1-58.	3.2	5
31	The Trend and Interannual Variability of Marine Heatwaves over the Bay of Bengal. Atmosphere, 2022, 13, 469.	2.3	5
32	Summer Precipitation Forecast Using an Optimized Artificial Neural Network with a Genetic Algorithm for Yangtze-Huaihe River Basin, China. Atmosphere, 2022, 13, 929.	2.3	5
33	Double intertropical convergence zones over the eastern Pacific Ocean: Contrasting impacts of the eastern Pacific―and central Pacificâ€type El Niños. Atmospheric Science Letters, 2018, 19, e852.	1.9	4
34	Remotely-Observed Early Spring Warming in the Southwestern Yellow Sea Due to Weakened Winter Monsoon. Remote Sensing, 2019, 11, 2478.	4.0	4
35	Possible Thermal Effect of Tibetan Plateau on the Atlantic Meridional Overturning Circulation. Geophysical Research Letters, 2022, 49, .	4.0	4
36	Climatic Variation of Maximum Intensification Rate for Major Tropical Cyclones over the Western North Pacific. Atmosphere, 2021, 12, 494.	2.3	3

#	Article	IF	CITATION
37	Contrasting Impacts of Three Extreme El Niños on Double ITCZs over the Eastern Pacific Ocean. Atmosphere, 2021, 12, 424.	2.3	2
38	Effects of Excessive Equatorial Cold Tongue Bias on the Projections of Tropical Pacific Climate Change. Part II: The Extreme El Ni \tilde{A} ±0 Frequency in CMIP5 Multi-Model Ensemble. Atmosphere, 2021, 12, 851.	2.3	2
39	Uncertainty in the projected changes of Sahel summer rainfall under global warming in CMIP5 and CMIP6 multi-model ensembles. Climate Dynamics, 2022, 59, 3579-3597.	3.8	2
40	Time-Spatial Features of Mix El Niño. Atmosphere, 2021, 12, 476.	2.3	O