## Paul D Cotter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5012677/publications.pdf Version: 2024-02-01



DALLI D COTTED

| #  | Article                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The association between the maternal diet and the maternal and infant gut microbiome: a systematic review. British Journal of Nutrition, 2023, 129, 1491-1499.                                                                                                | 1.2 | 50        |
| 2  | Porcine reproductive and respiratory syndrome virus impacts on gut microbiome in a strain virulenceâ€dependent fashion. Microbial Biotechnology, 2022, 15, 1007-1016.                                                                                         | 2.0 | 9         |
| 3  | Relevance of organ(s)-on-a-chip systems to the investigation of food-gut microbiota-host<br>interactions. Critical Reviews in Microbiology, 2022, 48, 463-488.                                                                                                | 2.7 | 20        |
| 4  | Next-Generation Food Research: Use of Meta-Omic Approaches for Characterizing Microbial<br>Communities Along the Food Chain. Annual Review of Food Science and Technology, 2022, 13, 361-384.                                                                 | 5.1 | 21        |
| 5  | Identification of Gut Bacteria such as Lactobacillus johnsonii that Disseminate to Systemic Tissues of<br>Wild Type and MyD88–/– Mice. Gut Microbes, 2022, 14, 2007743.                                                                                       | 4.3 | 1         |
| 6  | An oxidation resistant pediocin PA-1 derivative and penocin A display effective anti- <i>Listeria</i> activity in a model human gut environment. Gut Microbes, 2022, 14, 2004071.                                                                             | 4.3 | 11        |
| 7  | A Graph-Based Molecular Communications Model Analysis of the Human Gut Bacteriome. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 3567-3577.                                                                                                    | 3.9 | 5         |
| 8  | Collateral Damage in the Human Gut Microbiome - Blastocystis Is Significantly Less Prevalent in an<br>Antibiotic-Treated Adult Population Compared to Non-Antibiotic Treated Controls. Frontiers in<br>Cellular and Infection Microbiology, 2022, 12, 822475. | 1.8 | 3         |
| 9  | African fermented foods: overview, emerging benefits, and novel approaches to microbiome profiling.<br>Npj Science of Food, 2022, 6, 15.                                                                                                                      | 2.5 | 39        |
| 10 | In Vitro and In Silico Based Approaches to Identify Potential Novel Bacteriocins from the Athlete Gut<br>Microbiome of an Elite Athlete Cohort. Microorganisms, 2022, 10, 701.                                                                                | 1.6 | 8         |
| 11 | Global Regulatory Frameworks for Fermented Foods: A Review. Frontiers in Nutrition, 2022, 9, .                                                                                                                                                                | 1.6 | 22        |
| 12 | Gut Steroids and Microbiota: Effect of Gonadectomy and Sex. Biomolecules, 2022, 12, 767.                                                                                                                                                                      | 1.8 | 9         |
| 13 | Metadata harmonization–Standards are the key for a better usage of omics data for integrative<br>microbiome analysis. Environmental Microbiomes, 2022, 17, .                                                                                                  | 2.2 | 13        |
| 14 | Lactobacillus salivarius UCC118â,,¢ Dampens Inflammation and Promotes Microbiota Recovery to<br>Provide Therapeutic Benefit in a DSS-Induced Colitis Model. Microorganisms, 2022, 10, 1383.                                                                   | 1.6 | 8         |
| 15 | Outbreak of acute larval cyathostominosis – A "perfect storm―of inflammation and dysbiosis. Equine<br>Veterinary Journal, 2021, 53, 727-739.                                                                                                                  | 0.9 | 22        |
| 16 | Next Generation Sequencing Methods: Pushing the Boundaries. , 2021, , 19-46.                                                                                                                                                                                  |     | 0         |
| 17 | Kefir microbial composition is a deciding factor in the physiological impact of kefir in a mouse model of obesity. British Journal of Nutrition, 2021, 125, 129-138.                                                                                          | 1.2 | 22        |
| 18 | Environmental microbiome mapping as a strategy to improve quality and safety in the food industry.<br>Current Opinion in Food Science, 2021, 38, 168-176.                                                                                                     | 4.1 | 47        |

| #  | Article                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The effects of sustained fitness improvement on the gut microbiome: A longitudinal, repeated measures caseâ€study approach. Translational Sports Medicine, 2021, 4, 174-192.                                                                                  | 0.5 | 14        |
| 20 | Bacteriocins as a new generation of antimicrobials: toxicity aspects and regulations. FEMS Microbiology Reviews, 2021, 45, .                                                                                                                                  | 3.9 | 248       |
| 21 | Comparison of the carotenoid profiles of commonly consumed smear-ripened cheeses. LWT - Food Science and Technology, 2021, 135, 110241.                                                                                                                       | 2.5 | 3         |
| 22 | The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on fermented foods. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 196-208.                                                                     | 8.2 | 316       |
| 23 | The microbiome of deep-sea fish reveals new microbial species and a sparsity of antibiotic resistance genes. Gut Microbes, 2021, 13, 1-13.                                                                                                                    | 4.3 | 19        |
| 24 | High Throughput Sequencing for the Detection and Characterization of RNA Viruses. Frontiers in Microbiology, 2021, 12, 621719.                                                                                                                                | 1.5 | 28        |
| 25 | The Lung Microbiome in Young Children with Cystic Fibrosis: A Prospective Cohort Study.<br>Microorganisms, 2021, 9, 492.                                                                                                                                      | 1.6 | 12        |
| 26 | Microbiome-based environmental monitoring of a dairy processing facility highlights the challenges associated with low microbial-load samples. Npj Science of Food, 2021, 5, 4.                                                                               | 2.5 | 18        |
| 27 | In vitro–in vivo Validation of Stimulatory Effect of Oat Ingredients on Lactobacilli. Pathogens, 2021,<br>10, 235.                                                                                                                                            | 1.2 | 8         |
| 28 | Bio-Engineered Nisin with Increased Anti-Staphylococcus and Selectively Reduced Anti-Lactococcus<br>Activity for Treatment of Bovine Mastitis. International Journal of Molecular Sciences, 2021, 22, 3480.                                                   | 1.8 | 17        |
| 29 | Assessing the ability of nisin A and derivatives thereof to inhibit gram-negative bacteria from the genus Thermus. Journal of Dairy Science, 2021, 104, 2632-2640.                                                                                            | 1.4 | 7         |
| 30 | Colonic Gene Expression and Fecal Microbiota in Diarrhea-predominant Irritable Bowel Syndrome:<br>Increased Toll-like Receptor 4 but Minimal Inflammation and no Response to Mesalazine. Journal of<br>Neurogastroenterology and Motility, 2021, 27, 279-291. | 0.8 | 11        |
| 31 | Depletion of the gut microbiota differentially affects the impact of whey protein on highâ€fat<br>dietâ€induced obesity and intestinal permeability. Physiological Reports, 2021, 9, e14867.                                                                  | 0.7 | 12        |
| 32 | Drainage class and soil phosphorus availability shape microbial communities in Irish grasslands.<br>European Journal of Soil Biology, 2021, 104, 103297.                                                                                                      | 1.4 | 11        |
| 33 | MAP, Johne's disease and the microbiome; current knowledge and future considerations. Animal<br>Microbiome, 2021, 3, 34.                                                                                                                                      | 1.5 | 7         |
| 34 | Protein quality and quantity influence the effect of dietary fat on weight gain and tissue partitioning via host-microbiota changes. Cell Reports, 2021, 35, 109093.                                                                                          | 2.9 | 8         |
| 35 | Editorial: Bacteriocins and Other Ribosomally Synthesised and Post-translationally Modified Peptides<br>(RiPPs) as Alternatives to Antibiotics. Frontiers in Microbiology, 2021, 12, 695081.                                                                  | 1.5 | 3         |
| 36 | A Multiomic Approach to Investigate the Effects of a Weight Loss Program on the Intestinal Health of<br>Overweight Horses. Frontiers in Veterinary Science, 2021, 8, 668120.                                                                                  | 0.9 | 7         |

| #  | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | C-protein α-antigen modulates the lantibiotic thusin resistance in Streptococcus agalactiae. Antonie<br>Van Leeuwenhoek, 2021, 114, 1595-1607.                                                                        | 0.7  | 1         |
| 38 | Recreating pink defect in cheese with different strains of <i>Thermus</i> bacteria. International<br>Journal of Dairy Technology, 2021, 74, 700-708.                                                                  | 1.3  | 5         |
| 39 | Conservation Strip Tillage Leads to Persistent Alterations in the Rhizosphere Microbiota of Brassica napus Crops. Frontiers in Soil Science, 2021, 1, .                                                               | 0.8  | 0         |
| 40 | Microbiota from young mice counteracts selective age-associated behavioral deficits. Nature Aging, 2021, 1, 666-676.                                                                                                  | 5.3  | 132       |
| 41 | Seasonality and Geography Have a Greater Influence than the Use of Chlorine-Based Cleaning Agents<br>on the Microbiota of Bulk Tank Raw Milk. Applied and Environmental Microbiology, 2021, 87, e0108121.             | 1.4  | 8         |
| 42 | Binding Process Analysis of Bacterial-based AND Logic Gates. , 2021, , .                                                                                                                                              |      | 1         |
| 43 | Kefir ameliorates specific microbiota-gut-brain axis impairments in a mouse model relevant to autism spectrum disorder. Brain, Behavior, and Immunity, 2021, 97, 119-134.                                             | 2.0  | 19        |
| 44 | Microbial colonization and resistome dynamics in food processing environments of a newly opened pork cutting industry during 1.5 years of activity. Microbiome, 2021, 9, 204.                                         | 4.9  | 20        |
| 45 | Generation of Nonpolar Deletion Mutants in Listeria monocytogenes Using the "SOEing―Method.<br>Methods in Molecular Biology, 2021, 2220, 165-175.                                                                     | 0.4  | 0         |
| 46 | Reporting guidelines for human microbiome research: the STORMS checklist. Nature Medicine, 2021, 27, 1885-1892.                                                                                                       | 15.2 | 170       |
| 47 | Potential for enriching next-generation health-promoting gut bacteria through prebiotics and other dietary components. Gut Microbes, 2020, 11, 1-20.                                                                  | 4.3  | 174       |
| 48 | Don't RiPP Into the Sactipeptides!. , 2020, , 65-87.                                                                                                                                                                  |      | 0         |
| 49 | Distinct microbiome composition and metabolome exists across subgroups of elite Irish athletes.<br>Journal of Science and Medicine in Sport, 2020, 23, 63-68.                                                         | 0.6  | 74        |
| 50 | Fermented foods in a global age: East meets West. Comprehensive Reviews in Food Science and Food<br>Safety, 2020, 19, 184-217.                                                                                        | 5.9  | 312       |
| 51 | The impact of probiotic supplementation on metabolic health in healthy women of reproductive age: a systematic review. Food and Function, 2020, 11, 10279-10289.                                                      | 2.1  | 3         |
| 52 | Association of Habitual Dietary Fiber Intake and Fecal Microbiome Gene Abundance with<br>Gastrointestinal Symptoms in an Irritable Bowel Syndrome Cohort. Current Developments in<br>Nutrition, 2020, 4, nzaa062_038. | 0.1  | 0         |
| 53 | 214: Lifestyle, metabolic health and the gut microbiome in early pregnancy. American Journal of<br>Obstetrics and Gynecology, 2020, 222, S148-S149.                                                                   | 0.7  | 0         |
| 54 | Sex-dependent associations between addiction-related behaviors and the microbiome in outbred rats.<br>EBioMedicine, 2020, 55, 102769.                                                                                 | 2.7  | 36        |

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Metabolome-microbiome signatures in the fermented beverage, Kombucha. International Journal of<br>Food Microbiology, 2020, 333, 108778.                                                                                             | 2.1 | 94        |
| 56 | Antimicrobial use and production system shape the fecal, environmental, and slurry resistomes of pig farms. Microbiome, 2020, 8, 164.                                                                                               | 4.9 | 39        |
| 57 | Shotgun sequencing of the vaginal microbiome reveals both a species and functional potential signature of preterm birth. Npj Biofilms and Microbiomes, 2020, 6, 50.                                                                 | 2.9 | 49        |
| 58 | Metagenomics-Based Proficiency Test of Smoked Salmon Spiked with a Mock Community.<br>Microorganisms, 2020, 8, 1861.                                                                                                                | 1.6 | 4         |
| 59 | Investigating the Role of Diet and Exercise in Gut Microbe-Host Cometabolism. MSystems, 2020, 5, .                                                                                                                                  | 1.7 | 11        |
| 60 | Fermented-Food Metagenomics Reveals Substrate-Associated Differences in Taxonomy and Health-Associated and Antibiotic Resistance Determinants. MSystems, 2020, 5, .                                                                 | 1.7 | 78        |
| 61 | Age―and durationâ€dependent effects of whey protein on highâ€fat dietâ€induced changes in body weight,<br>lipid metabolism, and gut microbiota in mice. Physiological Reports, 2020, 8, e14523.                                     | 0.7 | 20        |
| 62 | Gut microbes from the phylogenetically diverse genus <i>Eubacterium</i> and their various contributions to gut health. Gut Microbes, 2020, 12, 1802866.                                                                             | 4.3 | 238       |
| 63 | Prebiotic administration modulates gut microbiota and faecal short-chain fatty acid concentrations but does not prevent chronic intermittent hypoxia-induced apnoea and hypertension in adult rats. EBioMedicine, 2020, 59, 102968. | 2.7 | 16        |
| 64 | Meta-analysis of cheese microbiomes highlights contributions to multiple aspects of quality. Nature<br>Food, 2020, 1, 500-510.                                                                                                      | 6.2 | 60        |
| 65 | Evaluation of methods for the reduction of contaminating host reads when performing shotgun metagenomic sequencing of the milk microbiome. Scientific Reports, 2020, 10, 21665.                                                     | 1.6 | 33        |
| 66 | Proficiency Testing of Metagenomics-Based Detection of Food-Borne Pathogens Using a Complex<br>Artificial Sequencing Dataset. Frontiers in Microbiology, 2020, 11, 575377.                                                          | 1.5 | 7         |
| 67 | Enduring Behavioral Effects Induced by Birth by Caesarean Section in the Mouse. Current Biology, 2020, 30, 3761-3774.e6.                                                                                                            | 1.8 | 65        |
| 68 | Distinct actions of the fermented beverage kefir on host behaviour, immunity and microbiome gut-brain modules in the mouse. Microbiome, 2020, 8, 67.                                                                                | 4.9 | 55        |
| 69 | Genotypic and Phenotypic Characterization of Fecal Staphylococcus epidermidis Isolates Suggests<br>Plasticity to Adapt to Different Human Body Sites. Frontiers in Microbiology, 2020, 11, 688.                                     | 1.5 | 19        |
| 70 | The probiotic <i>L. casei</i> LC-XCALâ,,¢ improves metabolic health in a diet-induced obesity mouse model without altering the microbiome. Gut Microbes, 2020, 12, 1747330.                                                         | 4.3 | 16        |
| 71 | Can a probiotic supplement in pregnancy result in transfer to the neonatal gut: A systematic review.<br>Acta Obstetricia Et Gynecologica Scandinavica, 2020, 99, 1269-1277.                                                         | 1.3 | 11        |
| 72 | Large-scale genome-wide analysis links lactic acid bacteria from food with the gut microbiome. Nature<br>Communications, 2020, 11, 2610.                                                                                            | 5.8 | 190       |

| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Mo1339 RELATIVE ABUNDANCES OF MICROBIAL GENES INVOLVED IN GALACTOSE AND PORPHYRIN<br>METABOLISM ARE ALTERED IN DIARRHEA-PREDOMINANT FUNCTIONAL GASTROINTESTINAL DISORDERS.<br>Gastroenterology, 2020, 158, S-856.        | 0.6 | 0         |
| 74 | Maternal and infant factors that shape neonatal gut colonization by bacteria. Expert Review of<br>Gastroenterology and Hepatology, 2020, 14, 651-664.                                                                    | 1.4 | 16        |
| 75 | Health Benefits of Lactic Acid Bacteria (LAB) Fermentates. Nutrients, 2020, 12, 1679.                                                                                                                                    | 1.7 | 157       |
| 76 | Antifungal Peptides as Therapeutic Agents. Frontiers in Cellular and Infection Microbiology, 2020, 10, 105.                                                                                                              | 1.8 | 141       |
| 77 | Production of multiple bacteriocins, including the novel bacteriocin gassericin M, by Lactobacillus<br>gasseri LM19, a strain isolated from human milk. Applied Microbiology and Biotechnology, 2020, 104,<br>3869-3884. | 1.7 | 31        |
| 78 | The more we learn, the less we know: deciphering the link between human gut fusobacteria and colorectal cancer. Digestive Medicine Research, 2020, 3, 21-21.                                                             | 0.2 | 3         |
| 79 | Potential Use of Biotherapeutic Bacteria to Target Colorectal Cancer-Associated Taxa. International<br>Journal of Molecular Sciences, 2020, 21, 924.                                                                     | 1.8 | 18        |
| 80 | First evidence of production of the lantibiotic nisin P. Scientific Reports, 2020, 10, 3738.                                                                                                                             | 1.6 | 35        |
| 81 | Instances of altered gut microbiomes among Irish cricketers over periods of travel in the lead up to<br>the 2016 World Cup: A sequencing analysis. Travel Medicine and Infectious Disease, 2020, 35, 101553.             | 1.5 | 11        |
| 82 | Antimicrobials for food and feed; a bacteriocin perspective. Current Opinion in Biotechnology, 2020, 61, 160-167.                                                                                                        | 3.3 | 130       |
| 83 | Tracking the Dairy Microbiota from Farm Bulk Tank to Skimmed Milk Powder. MSystems, 2020, 5, .                                                                                                                           | 1.7 | 45        |
| 84 | Dairy Products and Dairy-Processing Environments as a Reservoir of Antibiotic Resistance and<br>Quorum-Quenching Determinants as Revealed through Functional Metagenomics. MSystems, 2020, 5, .                          | 1.7 | 18        |
| 85 | Encapsulated cyclosporine does not change the composition of the human microbiota when assessed ex vivo and in vivo. Journal of Medical Microbiology, 2020, 69, 854-863.                                                 | 0.7 | 12        |
| 86 | Short-term consumption of a high-fat diet increases host susceptibility to Listeria monocytogenes infection. Access Microbiology, 2020, 2, .                                                                             | 0.2 | 0         |
| 87 | Development of a microbially-derived therapy against Fusobacterium nucleatum, a bacterial pathogen<br>linked with colorectal cancer. Access Microbiology, 2020, 2, .                                                     | 0.2 | 0         |
| 88 | In silico prediction and in vitro assessment of microbial substrate utilisation: a focus on newly identified health promoting gut bacteria. Access Microbiology, 2020, 2, .                                              | 0.2 | 0         |
| 89 | Hydrogel-based Bio-nanomachine Transmitters for Bacterial Molecular Communications. , 2020, , .                                                                                                                          |     | 3         |
| 90 | Bioengineering nisin to overcome the nisin resistance protein. Molecular Microbiology, 2019, 111, 717-731.                                                                                                               | 1.2 | 45        |

| #   | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Caprine milk fermentation enhances the antithrombotic properties of cheese polar lipids. Journal of<br>Functional Foods, 2019, 61, 103507.                                                                                                      | 1.6 | 16        |
| 92  | Identification and characterisation of capidermicin, a novel bacteriocin produced by Staphylococcus capitis. PLoS ONE, 2019, 14, e0223541.                                                                                                      | 1.1 | 24        |
| 93  | Cholestasis induced by bile duct ligation promotes changes in the intestinal microbiome in mice.<br>Scientific Reports, 2019, 9, 12324.                                                                                                         | 1.6 | 34        |
| 94  | Improvement of Feed Efficiency in Pigs through Microbial Modulation via Fecal Microbiota<br>Transplantation in Sows and Dietary Supplementation of Inulin in Offspring. Applied and<br>Environmental Microbiology, 2019, 85, .                  | 1.4 | 33        |
| 95  | The Potential Impact of Probiotics on the Gut Microbiome of Athletes. Nutrients, 2019, 11, 2270.                                                                                                                                                | 1.7 | 55        |
| 96  | Short-term consumption of a high-fat diet increases host susceptibility to Listeria monocytogenes infection. Microbiome, 2019, 7, 7.                                                                                                            | 4.9 | 60        |
| 97  | The effect of ovine milk fermentation on the antithrombotic properties of polar lipids. Journal of<br>Functional Foods, 2019, 54, 289-300.                                                                                                      | 1.6 | 28        |
| 98  | Porcine Feed Efficiency-Associated Intestinal Microbiota and Physiological Traits: Finding Consistent<br>Cross-Locational Biomarkers for Residual Feed Intake. MSystems, 2019, 4, .                                                             | 1.7 | 45        |
| 99  | Analysis of Health Benefits Conferred by Lactobacillus Species from Kefir. Nutrients, 2019, 11, 1252.                                                                                                                                           | 1.7 | 109       |
| 100 | Brevibacillus laterosporus strains BCSP7, BCSP9 and BCSP11 isolated from silage produce broad spectrum multi-antimicrobials. PLoS ONE, 2019, 14, e0216773.                                                                                      | 1.1 | 30        |
| 101 | Four men in a boat: Ultra-endurance exercise alters the gut microbiome. Journal of Science and Medicine in Sport, 2019, 22, 1059-1064.                                                                                                          | 0.6 | 69        |
| 102 | Influence of the Intestinal Microbiota on Colonization Resistance to <i>Salmonella</i> and the Shedding Pattern of Naturally Exposed Pigs. MSystems, 2019, 4, .                                                                                 | 1.7 | 40        |
| 103 | Removal of adult cyathostomins alters faecal microbiota and promotes an inflammatory phenotype in horses. International Journal for Parasitology, 2019, 49, 489-500.                                                                            | 1.3 | 35        |
| 104 | Diversity and composition of the gut microbiota of Atlantic salmon ( <i>Salmo salar</i> ) farmed in<br>Irish waters. Journal of Applied Microbiology, 2019, 127, 648-657.                                                                       | 1.4 | 36        |
| 105 | Dietary <i>α</i> -lactalbumin alters energy balance, gut microbiota composition and intestinal nutrient transporter expression in high-fat diet-fed mice. British Journal of Nutrition, 2019, 121, 1097-1107.                                   | 1.2 | 21        |
| 106 | Lactobacillus gasseri APC 678 Reduces Shedding of the Pathogen Clostridium difficile in a Murine<br>Model. Frontiers in Microbiology, 2019, 10, 273.                                                                                            | 1.5 | 9         |
| 107 | The dynamics of the antibiotic resistome in the feces of freshly weaned pigs following therapeutic administration of oxytetracycline. Scientific Reports, 2019, 9, 4062.                                                                        | 1.6 | 45        |
| 108 | Moderate-intensity aerobic and resistance exercise is safe and favorably influences body composition<br>in patients with quiescent Inflammatory Bowel Disease: a randomized controlled cross-over trial.<br>BMC Gastroenterology, 2019, 19, 29. | 0.8 | 47        |

| #   | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Starter Cultures. , 2019, , 787-813.                                                                                                                                                                                       |     | 1         |
| 110 | Genomics of Foodborne Microorganisms. , 2019, , 927-937.                                                                                                                                                                   |     | 0         |
| 111 | The Human Mesenteric Lymph Node Microbiome Differentiates Between Crohn's Disease and Ulcerative<br>Colitis. Journal of Crohn's and Colitis, 2019, 13, 58-66.                                                              | 0.6 | 46        |
| 112 | The rumen microbiome: a crucial consideration when optimising milk and meat production and nitrogen utilisation efficiency. Gut Microbes, 2019, 10, 115-132.                                                               | 4.3 | 209       |
| 113 | Biofilms in Food Processing Environments: Challenges and Opportunities. Annual Review of Food<br>Science and Technology, 2019, 10, 173-195.                                                                                | 5.1 | 120       |
| 114 | Gut microbiota as a source of novel antimicrobials. Gut Microbes, 2019, 10, 1-21.                                                                                                                                          | 4.3 | 179       |
| 115 | Metabolic phenotyping of the human microbiome. F1000Research, 2019, 8, 1956.                                                                                                                                               | 0.8 | 12        |
| 116 | The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut, 2018, 67, gutjnl-2016-313627.                                 | 6.1 | 333       |
| 117 | Fighting biofilms with lantibiotics and other groups of bacteriocins. Npj Biofilms and Microbiomes, 2018, 4, 9.                                                                                                            | 2.9 | 154       |
| 118 | The intestinal protist Blastocystis is not a common member of the healthy infant gut microbiota in a<br>Westernized country (Ireland). Parasitology, 2018, 145, 1274-1278.                                                 | 0.7 | 13        |
| 119 | A Prospective Metagenomic and Metabolomic Analysis of the Impact of Exercise and/or Whey Protein Supplementation on the Gut Microbiome of Sedentary Adults. MSystems, 2018, 3, .                                           | 1.7 | 148       |
| 120 | Traditional kefir reduces weight gain and improves plasma and liver lipid profiles more successfully<br>than a commercial equivalent in a mouse model of obesity. Journal of Functional Foods, 2018, 46, 29-37.            | 1.6 | 47        |
| 121 | Loss of MicroRNA-21 Influences the Gut Microbiota, Causing Reduced Susceptibility in a Murine Model of Colitis. Journal of Crohn's and Colitis, 2018, 12, 835-848.                                                         | 0.6 | 48        |
| 122 | Effect of milk centrifugation and incorporation of high heat-treated centrifugate on the microbial composition and levels of volatile organic compounds of Maasdam cheese. Journal of Dairy Science, 2018, 101, 5738-5750. | 1.4 | 13        |
| 123 | Omics-Based Insights into Flavor Development and Microbial Succession within Surface-Ripened Cheese. MSystems, 2018, 3, .                                                                                                  | 1.7 | 58        |
| 124 | Fecal Microbiota Transplantation in Gestating Sows and Neonatal Offspring Alters Lifetime Intestinal<br>Microbiota and Growth in Offspring. MSystems, 2018, 3, .                                                           | 1.7 | 57        |
| 125 | Plantaricyclin A, a Novel Circular Bacteriocin Produced by Lactobacillus plantarum NI326:<br>Purification, Characterization, and Heterologous Production. Applied and Environmental<br>Microbiology, 2018, 84, .           | 1.4 | 64        |
| 126 | Novel insights into the microbiology of fermented dairy foods. Current Opinion in Biotechnology, 2018, 49, 172-178.                                                                                                        | 3.3 | 115       |

| #   | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Post-weaning social isolation of rats leads to long-term disruption of the gut<br>microbiota-immune-brain axis. Brain, Behavior, and Immunity, 2018, 68, 261-273.                                                   | 2.0 | 97        |
| 128 | Functional Characterization of the Lactolisterin BU Gene Cluster of Lactococcus lactis subsp. lactis<br>BGBU1-4. Frontiers in Microbiology, 2018, 9, 2774.                                                          | 1.5 | 9         |
| 129 | Genomic Characterization of Sulphite Reducing Bacteria Isolated From the Dairy Production Chain.<br>Frontiers in Microbiology, 2018, 9, 1507.                                                                       | 1.5 | 9         |
| 130 | Early Salmonella Typhimurium infection in pigs disrupts Microbiome composition and functionality principally at the ileum mucosa. Scientific Reports, 2018, 8, 7788.                                                | 1.6 | 61        |
| 131 | Heterologous Expression of Biopreservative Bacteriocins With a View to Low Cost Production.<br>Frontiers in Microbiology, 2018, 9, 1654.                                                                            | 1.5 | 50        |
| 132 | Mesophilic Sporeformers Identified in Whey Powder by Using Shotgun Metagenomic Sequencing.<br>Applied and Environmental Microbiology, 2018, 84, .                                                                   | 1.4 | 15        |
| 133 | A Diverse Range of Human Gut Bacteria Have the Potential To Metabolize the Dietary Component Gallic<br>Acid. Applied and Environmental Microbiology, 2018, 84, .                                                    | 1.4 | 20        |
| 134 | Sequencing of the Cheese Microbiome and Its Relevance to Industry. Frontiers in Microbiology, 2018, 9, 1020.                                                                                                        | 1.5 | 95        |
| 135 | Oral Delivery of Nisin in Resistant Starch Based Matrices Alters the Gut Microbiota in Mice. Frontiers in Microbiology, 2018, 9, 1186.                                                                              | 1.5 | 36        |
| 136 | Species classifier choice is a key consideration when analysing low-complexity food microbiome data.<br>Microbiome, 2018, 6, 50.                                                                                    | 4.9 | 65        |
| 137 | In silico Prediction and Exploration of Potential Bacteriocin Gene Clusters Within the Bacterial Genus Geobacillus. Frontiers in Microbiology, 2018, 9, 2116.                                                       | 1.5 | 24        |
| 138 | Gut Microbiology – A Relatively Unexplored Domain. , 2018, , 629-648.                                                                                                                                               |     | 0         |
| 139 | The potency of the broadÂspectrum bacteriocin, bactofencin A, against staphylococci is highly<br>dependent on primary structure, N-terminal charge and disulphide formation. Scientific Reports, 2018,<br>8, 11833. | 1.6 | 20        |
| 140 | Tracing mother-infant transmission of bacteriophages by means of a novel analytical tool for shotgun metagenomic datasets: METAnnotatorX. Microbiome, 2018, 6, 145.                                                 | 4.9 | 54        |
| 141 | Translating Omics to Food Microbiology. Annual Review of Food Science and Technology, 2017, 8, 113-134.                                                                                                             | 5.1 | 82        |
| 142 | Drunk bugs: Chronic vapour alcohol exposure induces marked changes in the gut microbiome in mice.<br>Behavioural Brain Research, 2017, 323, 172-176.                                                                | 1.2 | 63        |
| 143 | Gut microbiota: implications for sports and exercise medicine. British Journal of Sports Medicine, 2017, 51, 700-701.                                                                                               | 3.1 | 31        |
| 144 | â€~Microbes in sport' – The potential role of the gut microbiota in athlete health and performance.<br>British Journal of Sports Medicine, 2017, 51, 698-699.                                                       | 3.1 | 21        |

| #   | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Unravelling the metabolic impact of SBS-associated microbial dysbiosis: Insights from the piglet short bowel syndrome model. Scientific Reports, 2017, 7, 43326.                                                                                 | 1.6 | 17        |
| 146 | The altered gut microbiota in adults with cystic fibrosis. BMC Microbiology, 2017, 17, 58.                                                                                                                                                       | 1.3 | 104       |
| 147 | Use of enhanced nisin derivatives in combination with food-grade oils or citric acid to control<br>Cronobacter sakazakii and Escherichia coli O157:H7. Food Microbiology, 2017, 65, 254-263.                                                     | 2.1 | 59        |
| 148 | Application of bacteriocin-producing Enterococcus faecium isolated from donkey milk, in the bio-control of Listeria monocytogenes in fresh whey cheese. International Dairy Journal, 2017, 73, 1-9.                                              | 1.5 | 69        |
| 149 | Forgotten fungi—the gut mycobiome in human health and disease. FEMS Microbiology Reviews, 2017,<br>41, 479-511.                                                                                                                                  | 3.9 | 216       |
| 150 | Strain-Level Metagenomic Analysis of the Fermented Dairy Beverage Nunu Highlights Potential Food<br>Safety Risks. Applied and Environmental Microbiology, 2017, 83, .                                                                            | 1.4 | 78        |
| 151 | Exploring a Possible Link between the Intestinal Microbiota and Feed Efficiency in Pigs. Applied and Environmental Microbiology, 2017, 83, .                                                                                                     | 1.4 | 258       |
| 152 | High-throughput metataxonomic characterization of the raw milk microbiota identifies changes<br>reflecting lactation stage and storage conditions. International Journal of Food Microbiology, 2017,<br>255, 1-6.                                | 2.1 | 36        |
| 153 | The influence of rosuvastatin on the gastrointestinal microbiota and host gene expression profiles.<br>American Journal of Physiology - Renal Physiology, 2017, 312, G488-G497.                                                                  | 1.6 | 43        |
| 154 | Whey protein effects on energy balance link the intestinal mechanisms of energy absorption with<br>adiposity and hypothalamic neuropeptide gene expression. American Journal of Physiology -<br>Endocrinology and Metabolism, 2017, 313, E1-E11. | 1.8 | 23        |
| 155 | Health benefits of fermented foods: microbiota and beyond. Current Opinion in Biotechnology, 2017, 44, 94-102.                                                                                                                                   | 3.3 | 855       |
| 156 | Genome Sequence of Geobacillus stearothermophilus DSM 458, an Antimicrobial-Producing<br>Thermophilic Bacterium, Isolated from a Sugar Beet Factory. Genome Announcements, 2017, 5, .                                                            | 0.8 | 8         |
| 157 | Lack of Heterogeneity in Bacteriocin Production Across a Selection of Commercial Probiotic<br>Products. Probiotics and Antimicrobial Proteins, 2017, 9, 459-465.                                                                                 | 1.9 | 9         |
| 158 | Lactolisterin BU, a Novel Class II Broad-Spectrum Bacteriocin from Lactococcus lactis subsp.<br><i>lactis</i> bv. diacetylactis BGBU1-4. Applied and Environmental Microbiology, 2017, 83, .                                                     | 1.4 | 28        |
| 159 | Controlled functional expression of the bacteriocins pediocin PA-1 and bactofencin A in Escherichia coli. Scientific Reports, 2017, 7, 3069.                                                                                                     | 1.6 | 47        |
| 160 | Metagenomeâ€based surveillance and diagnostic approaches to studying the microbial ecology of food production and processing environments. Environmental Microbiology, 2017, 19, 4382-4391.                                                      | 1.8 | 40        |
| 161 | Impacts of Seasonal Housing and Teat Preparation on Raw Milk Microbiota: a High-Throughput<br>Sequencing Study. Applied and Environmental Microbiology, 2017, 83, .                                                                              | 1.4 | 104       |
|     |                                                                                                                                                                                                                                                  |     |           |

162 Microbiota of Raw Milk and Raw Milk Cheeses. , 2017, , 301-316.

| #   | Article                                                                                                                                                                                                                                           | IF              | CITATIONS     |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|
| 163 | Build the Read: A Hands-On Activity for Introducing Microbiology Students to Next-Generation DNA<br>Sequencing and Bioinformatics. Journal of Microbiology and Biology Education, 2017, 18, .                                                     | 0.5             | 2             |
| 164 | Microbiome Changes During Ripening. , 2017, , 389-409.                                                                                                                                                                                            |                 | 10            |
| 165 | Detection and Enumeration of Spore-Forming Bacteria in Powdered Dairy Products. Frontiers in<br>Microbiology, 2017, 8, 109.                                                                                                                       | 1.5             | 54            |
| 166 | Insights into the Mode of Action of the Sactibiotic Thuricin CD. Frontiers in Microbiology, 2017, 8, 696.                                                                                                                                         | 1.5             | 40            |
| 167 | Bacteriocin-Antimicrobial Synergy: A Medical and Food Perspective. Frontiers in Microbiology, 2017, 8, 1205.                                                                                                                                      | 1.5             | 140           |
| 168 | The Fungal Frontier: A Comparative Analysis of Methods Used in the Study of the Human Gut<br>Mycobiome. Frontiers in Microbiology, 2017, 8, 1432.                                                                                                 | 1.5             | 86            |
| 169 | Crop Establishment Practices Are a Driver of the Plant Microbiota in Winter Oilseed Rape (Brassica) Tj ETQq1 1 0.                                                                                                                                 | 784314 r<br>1.5 | gBT_/Overloci |
| 170 | A Profile Hidden Markov Model to investigate the distribution and frequency of LanB-encoding lantibiotic modification genes in the human oral and gut microbiome. PeerJ, 2017, 5, e3254.                                                          | 0.9             | 24            |
| 171 | Bacteriocin production: a relatively unharnessed probiotic trait?. F1000Research, 2016, 5, 2587.                                                                                                                                                  | 0.8             | 109           |
| 172 | Comparative Genomic Analysis Reveals a Diverse Repertoire of Genes Involved in Prokaryote-Eukaryote<br>Interactions within the Pseudovibrio Genus. Frontiers in Microbiology, 2016, 7, 387.                                                       | 1.5             | 36            |
| 173 | Bacteriocins: Novel Solutions to Age Old Spore-Related Problems?. Frontiers in Microbiology, 2016, 7, 461.                                                                                                                                        | 1.5             | 105           |
| 174 | In Vitro Activities of Nisin and Nisin Derivatives Alone and In Combination with Antibiotics against<br>Staphylococcus Biofilms. Frontiers in Microbiology, 2016, 7, 508.                                                                         | 1.5             | 86            |
| 175 | The Microbiota and Health Promoting Characteristics of the Fermented Beverage Kefir. Frontiers in Microbiology, 2016, 7, 647.                                                                                                                     | 1.5             | 244           |
| 176 | New Weapons to Fight Old Enemies: Novel Strategies for the (Bio)control of Bacterial Biofilms in the<br>Food Industry. Frontiers in Microbiology, 2016, 7, 1641.                                                                                  | 1.5             | 210           |
| 177 | Synergistic Nisin-Polymyxin Combinations for the Control of Pseudomonas Biofilm Formation.<br>Frontiers in Microbiology, 2016, 7, 1713.                                                                                                           | 1.5             | 66            |
| 178 | A Bioengineered Nisin Derivative, M21A, in Combination with Food Grade Additives Eradicates Biofilms of Listeria monocytogenes. Frontiers in Microbiology, 2016, 7, 1939.                                                                         | 1.5             | 37            |
| 179 | Short bowel syndrome (SBS)â€associated alterations within the gutâ€liver axis evolve early and persist<br>longâ€term in the piglet model of short bowel syndrome. Journal of Gastroenterology and Hepatology<br>(Australia), 2016, 31, 1946-1955. | 1.4             | 21            |
| 180 | <i>Thermus</i> and the Pink Discoloration Defect in Cheese. MSystems, 2016, 1, .                                                                                                                                                                  | 1.7             | 70            |

| #   | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | The bacteriocin bactofencin A subtly modulates gut microbial populations. Anaerobe, 2016, 40, 41-49.                                                                                                                                                | 1.0 | 34        |
| 182 | Microbial Succession and Flavor Production in the Fermented Dairy Beverage Kefir. MSystems, 2016, 1, .                                                                                                                                              | 1.7 | 202       |
| 183 | Prevalence and genetic diversity of Blastocystis in family units living in the United States. Infection,<br>Genetics and Evolution, 2016, 45, 95-97.                                                                                                | 1.0 | 40        |
| 184 | Influence of GABA and GABA-producing Lactobacillus brevis DPC 6108 on the development of diabetes in a streptozotocin rat model. Beneficial Microbes, 2016, 7, 409-420.                                                                             | 1.0 | 46        |
| 185 | The efficacy of thuricin CD, tigecycline, vancomycin, teicoplanin, rifampicin and nitazoxanide,<br>independently and in paired combinations against Clostridium difficile biofilms and planktonic cells.<br>Gut Pathogens, 2016, 8, 20.             | 1.6 | 43        |
| 186 | Draft Genome Sequence of Lactobacillus casei DPC6800, an Isolate with the Potential to Diversify Flavor in Cheese. Genome Announcements, 2016, 4, .                                                                                                 | 0.8 | 4         |
| 187 | 16S rRNA gene sequencing of mock microbial populations- impact of DNA extraction method, primer choice and sequencing platform. BMC Microbiology, 2016, 16, 123.                                                                                    | 1.3 | 241       |
| 188 | FoodMicrobionet: A database for the visualisation and exploration of food bacterial communities based on network analysis. International Journal of Food Microbiology, 2016, 219, 28-37.                                                            | 2.1 | 65        |
| 189 | A novel method of microsatellite genotyping-by-sequencing using individual combinatorial barcoding.<br>Royal Society Open Science, 2016, 3, 150565.                                                                                                 | 1.1 | 57        |
| 190 | Compromised Lactobacillus helveticus starter activity in the presence of facultative<br>heterofermentative Lactobacillus casei DPC6987 results in atypical eye formation in Swiss-type cheese.<br>Journal of Dairy Science, 2016, 99, 2625-2640.    | 1.4 | 24        |
| 191 | Comparing Apples and Oranges?: Next Generation Sequencing and Its Impact on Microbiome Analysis.<br>PLoS ONE, 2016, 11, e0148028.                                                                                                                   | 1.1 | 234       |
| 192 | Bovine serum albumin as the dominant form of dietary protein reduces subcutaneous fat mass, plasma<br>leptin and plasma corticosterone in high fat-fed C57/BL6J mice. British Journal of Nutrition, 2015, 114,<br>654-662.                          | 1.2 | 14        |
| 193 | High-throughput DNA sequencing to survey bacterial histidine and tyrosine decarboxylases in raw milk cheeses. BMC Microbiology, 2015, 15, 266.                                                                                                      | 1.3 | 39        |
| 194 | Compared to casein, bovine lactoferrin reduces plasma leptin and corticosterone and affects<br>hypothalamic gene expression without altering weight gain or fat mass in high fat diet fed C57/BL6J<br>mice. Nutrition and Metabolism, 2015, 12, 53. | 1.3 | 15        |
| 195 | Biotechnological applications of functional metagenomics in the food and pharmaceutical industries.<br>Frontiers in Microbiology, 2015, 6, 672.                                                                                                     | 1.5 | 83        |
| 196 | Bioengineering Lantibiotics for Therapeutic Success. Frontiers in Microbiology, 2015, 6, 1363.                                                                                                                                                      | 1.5 | 120       |
| 197 | The Prevalence and Control of Bacillus and Related Spore-Forming Bacteria in the Dairy Industry.<br>Frontiers in Microbiology, 2015, 6, 1418.                                                                                                       | 1.5 | 210       |
| 198 | N-3 Polyunsaturated Fatty Acids (PUFAs) Reverse the Impact of Early-Life Stress on the Gut Microbiota.<br>PLoS ONE, 2015, 10, e0139721.                                                                                                             | 1.1 | 143       |

| #   | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Development and Application of a Blastocystis Subtype-Specific PCR Assay Reveals that Mixed-Subtype<br>Infections Are Common in a Healthy Human Population. Applied and Environmental Microbiology, 2015,<br>81, 4071-4076.                                 | 1.4 | 50        |
| 200 | Bioengineering of the model lantibiotic nisin. Bioengineered, 2015, 6, 187-192.                                                                                                                                                                             | 1.4 | 94        |
| 201 | Dietary <i>trans</i> -10, <i>cis</i> -12-conjugated linoleic acid alters fatty acid metabolism and microbiota composition in mice. British Journal of Nutrition, 2015, 113, 728-738.                                                                        | 1.2 | 89        |
| 202 | Author response: linking lifestyle and microbes. Gut, 2015, 64, 520.1-520.                                                                                                                                                                                  | 6.1 | 2         |
| 203 | In silico identification of bacteriocin gene clusters in the gastrointestinal tract, based on the Human<br>Microbiome Project's reference genome database. BMC Microbiology, 2015, 15, 183.                                                                 | 1.3 | 112       |
| 204 | Efficacies of Nisin A and Nisin V Semipurified Preparations Alone and in Combination with Plant<br>Essential Oils for Controlling Listeria monocytogenes. Applied and Environmental Microbiology, 2015,<br>81, 2762-2769.                                   | 1.4 | 42        |
| 205 | Antimicrobial antagonists against food pathogens: a bacteriocin perspective. Current Opinion in Food<br>Science, 2015, 2, 51-57.                                                                                                                            | 4.1 | 71        |
| 206 | Anaerobic sporeformers and their significance with respect to milk and dairy products. International<br>Journal of Food Microbiology, 2015, 197, 77-87.                                                                                                     | 2.1 | 105       |
| 207 | Spatial variation of the colonic microbiota in patients with ulcerative colitis and control volunteers. Gut, 2015, 64, 1553-1561.                                                                                                                           | 6.1 | 226       |
| 208 | A Bioengineered Nisin Derivative to Control Biofilms of Staphylococcus pseudintermedius. PLoS ONE, 2015, 10, e0119684.                                                                                                                                      | 1.1 | 69        |
| 209 | Proteomics as the final step in the functional metagenomics study of antimicrobial resistance.<br>Frontiers in Microbiology, 2015, 6, 172.                                                                                                                  | 1.5 | 20        |
| 210 | Generation of the antimicrobial peptide caseicin A from casein byÂhydrolysis with thermolysin enzymes.<br>International Dairy Journal, 2015, 49, 1-7.                                                                                                       | 1.5 | 17        |
| 211 | Prenatal stress-induced alterations in major physiological systems correlate with gut microbiota composition in adulthood. Psychoneuroendocrinology, 2015, 60, 58-74.                                                                                       | 1.3 | 224       |
| 212 | Temporal and Spatial Differences in Microbial Composition during the Manufacture of a Continental-Type Cheese. Applied and Environmental Microbiology, 2015, 81, 2525-2533.                                                                                 | 1.4 | 62        |
| 213 | Evaluation of Lactococcus lactis Isolates from Nondairy Sources with Potential Dairy Applications<br>Reveals Extensive Phenotype-Genotype Disparity and Implications for a Revised Species. Applied and<br>Environmental Microbiology, 2015, 81, 3961-3972. | 1.4 | 40        |
| 214 | Lantibiotic Resistance. Microbiology and Molecular Biology Reviews, 2015, 79, 171-191.                                                                                                                                                                      | 2.9 | 143       |
| 215 | Exercise and the microbiota. Gut Microbes, 2015, 6, 131-136.                                                                                                                                                                                                | 4.3 | 127       |
| 216 | Nisin H Is a New Nisin Variant Produced by the Gut-Derived Strain Streptococcus hyointestinalis DPC6484. Applied and Environmental Microbiology, 2015, 81, 3953-3960.                                                                                       | 1.4 | 74        |

| #   | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Gut microbiota depletion from early adolescence in mice: Implications for brain and behaviour. Brain,<br>Behavior, and Immunity, 2015, 48, 165-173.                                                                     | 2.0 | 572       |
| 218 | Re: Gut microbiota depletion from early adolescence in mice: Implications for brain and behaviour.<br>Brain, Behavior, and Immunity, 2015, 50, 335-336.                                                                 | 2.0 | 24        |
| 219 | The metabolic role of the microbiota. Clinical Liver Disease, 2015, 5, 91-93.                                                                                                                                           | 1.0 | 2         |
| 220 | Impact of Environmental Factors on Bacteriocin Promoter Activity in Gut-Derived Lactobacillus salivarius. Applied and Environmental Microbiology, 2015, 81, 7851-7859.                                                  | 1.4 | 24        |
| 221 | Streptozotocin-induced type-1-diabetes disease onset in Sprague–Dawley rats is associated with an altered intestinal microbiota composition and decreased diversity. Microbiology (United Kingdom), 2015, 161, 182-193. | 0.7 | 70        |
| 222 | The Sactibiotic Subclass of Bacteriocins: An Update. Current Protein and Peptide Science, 2015, 16, 549-558.                                                                                                            | 0.7 | 51        |
| 223 | Changes in the colon microbiota and intestinal cytokine gene expression following minimal intestinal surgery. World Journal of Gastroenterology, 2015, 21, 4150.                                                        | 1.4 | 31        |
| 224 | Identification of Aminoglycoside and β-Lactam Resistance Genes from within an Infant Gut Functional<br>Metagenomic Library. PLoS ONE, 2014, 9, e108016.                                                                 | 1.1 | 48        |
| 225 | Marine Pseudovibrio sp. as a Novel Source of Antimicrobials. Marine Drugs, 2014, 12, 5916-5929.                                                                                                                         | 2.2 | 36        |
| 226 | The potential for emerging therapeutic options for <i>Clostridium difficile</i> infection. Gut<br>Microbes, 2014, 5, 696-710.                                                                                           | 4.3 | 33        |
| 227 | Heterologous Expression of Thuricin CD Immunity Genes in Listeria monocytogenes. Antimicrobial<br>Agents and Chemotherapy, 2014, 58, 3421-3428.                                                                         | 1.4 | 4         |
| 228 | Draft Genome Sequence of Campylobacter ureolyticus Strain CIT007, the First Whole-Genome<br>Sequence of a Clinical Isolate. Genome Announcements, 2014, 2, .                                                            | 0.8 | 3         |
| 229 | Protein Quality and the Protein to Carbohydrate Ratio within a High Fat Diet Influences Energy<br>Balance and the Gut Microbiota In C57BL/6J Mice. PLoS ONE, 2014, 9, e88904.                                           | 1.1 | 77        |
| 230 | Impact of dietary fatty acids on metabolic activity and host intestinal microbiota composition in C57BL/6J mice. British Journal of Nutrition, 2014, 111, 1905-1917.                                                    | 1.2 | 152       |
| 231 | Beneficial modulation of the gut microbiota. FEBS Letters, 2014, 588, 4120-4130.                                                                                                                                        | 1.3 | 204       |
| 232 | A degenerate PCR-based strategy as a means of identifying homologues of aminoglycoside and β-lactam resistance genes in the gut microbiota. BMC Microbiology, 2014, 14, 25.                                             | 1.3 | 18        |
| 233 | Sequence-based analysis of the bacterial and fungal compositions of multiple kombucha (tea fungus)<br>samples. Food Microbiology, 2014, 38, 171-178.                                                                    | 2.1 | 303       |
| 234 | Exopolysaccharide-Producing Probiotic Lactobacilli Reduce Serum Cholesterol and Modify Enteric<br>Microbiota in ApoE-Deficient Mice. Journal of Nutrition, 2014, 144, 1956-1962.                                        | 1.3 | 80        |

| #   | Article                                                                                                                                                                                             | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 235 | An â€~ <scp>U</scp> pp'â€ŧurn in bacteriocin receptor identification. Molecular Microbiology, 2014, 92,<br>1159-1163.                                                                               | 1.2  | 51        |
| 236 | Altered FXR signalling is associated with bile acid dysmetabolism in short bowel syndrome-associated liver disease. Journal of Hepatology, 2014, 61, 1115-1125.                                     | 1.8  | 76        |
| 237 | The microbial eukaryote <i>Blastocystis</i> is a prevalent and diverse member of the healthy human gut microbiota. FEMS Microbiology Ecology, 2014, 90, 326-330.                                    | 1.3  | 208       |
| 238 | Atypical Listeria innocua strains possess an intact LIPI-3. BMC Microbiology, 2014, 14, 58.                                                                                                         | 1.3  | 39        |
| 239 | Exercise and associated dietary extremes impact on gut microbial diversity. Gut, 2014, 63, 1913-1920.                                                                                               | 6.1  | 987       |
| 240 | Fermented beverages with health-promoting potential: Past and future perspectives. Trends in Food<br>Science and Technology, 2014, 38, 113-124.                                                     | 7.8  | 285       |
| 241 | Generation of Nonpolar Deletion Mutants in Listeria monocytogenes Using the "SOEing―Method.<br>Methods in Molecular Biology, 2014, 1157, 187-200.                                                   | 0.4  | 14        |
| 242 | In vivo activity of Nisin A and Nisin V against Listeria monocytogenesin mice. BMC Microbiology, 2013,<br>13, 23.                                                                                   | 1.3  | 57        |
| 243 | Sequence-based analysis of the microbial composition of water kefir from multiple sources. FEMS<br>Microbiology Letters, 2013, 348, 79-85.                                                          | 0.7  | 70        |
| 244 | Antipsychotics and the gut microbiome: olanzapine-induced metabolic dysfunction is attenuated by antibiotic administration in the rat. Translational Psychiatry, 2013, 3, e309-e309.                | 2.4  | 201       |
| 245 | Interactions between gut microbiota, food and the obese host. Trends in Food Science and Technology, 2013, 34, 44-53.                                                                               | 7.8  | 21        |
| 246 | The two peptide lantibiotic lacticin 3147 acts synergistically with polymyxin to inhibit Gram negative bacteria. BMC Microbiology, 2013, 13, 212.                                                   | 1.3  | 58        |
| 247 | Subtilomycin: A New Lantibiotic from Bacillus subtilis Strain MMA7 Isolated from the Marine Sponge<br>Haliclona simulans. Marine Drugs, 2013, 11, 1878-1898.                                        | 2.2  | 83        |
| 248 | Saturation mutagenesis of selected residues of the αâ€peptide of the lantibiotic lacticin 3147 yields a derivative with enhanced antimicrobial activity. Microbial Biotechnology, 2013, 6, 564-575. | 2.0  | 22        |
| 249 | Impact of leucine on energy balance. Journal of Physiology and Biochemistry, 2013, 69, 155-163.                                                                                                     | 1.3  | 30        |
| 250 | Bacteriocins — a viable alternative to antibiotics?. Nature Reviews Microbiology, 2013, 11, 95-105.                                                                                                 | 13.6 | 1,312     |
| 251 | Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Natural Product Reports, 2013, 30, 108-160.          | 5.2  | 1,692     |
| 252 | Divergent metabolic outcomes arising from targeted manipulation of the gut microbiota in diet-induced obesity. Gut, 2013, 62, 220-226.                                                              | 6.1  | 235       |

| #   | Article                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | The microbial content of raw and pasteurized cow milk as determined by molecular approaches.<br>Journal of Dairy Science, 2013, 96, 4928-4937.                                                                                                                      | 1.4 | 122       |
| 254 | Bacteriocin production by Bifidobacterium spp. A review. Biotechnology Advances, 2013, 31, 482-488.                                                                                                                                                                 | 6.0 | 163       |
| 255 | Strategies to improve the bacteriocin protection provided by lactic acid bacteria. Current Opinion in Biotechnology, 2013, 24, 130-134.                                                                                                                             | 3.3 | 52        |
| 256 | Bacterial Communities Established in Bauxite Residues with Different Restoration Histories.<br>Environmental Science & Technology, 2013, 47, 7110-7119.                                                                                                             | 4.6 | 69        |
| 257 | The complex microbiota of raw milk. FEMS Microbiology Reviews, 2013, 37, 664-698.                                                                                                                                                                                   | 3.9 | 591       |
| 258 | Bactofencin A, a New Type of Cationic Bacteriocin with Unusual Immunity. MBio, 2013, 4, e00498-13.                                                                                                                                                                  | 1.8 | 46        |
| 259 | The individual-specific and diverse nature of the preterm infant microbiota. Archives of Disease in<br>Childhood: Fetal and Neonatal Edition, 2013, 98, F334-F340.                                                                                                  | 1.4 | 105       |
| 260 | Antimicrobials. Gut Microbes, 2013, 4, 48-53.                                                                                                                                                                                                                       | 4.3 | 24        |
| 261 | Intensive Mutagenesis of the Nisin Hinge Leads to the Rational Design of Enhanced Derivatives. PLoS ONE, 2013, 8, e79563.                                                                                                                                           | 1.1 | 62        |
| 262 | Saturation Mutagenesis of Lysine 12 Leads to the Identification of Derivatives of Nisin A with Enhanced Antimicrobial Activity. PLoS ONE, 2013, 8, e58530.                                                                                                          | 1.1 | 54        |
| 263 | Microbial Composition of Human Appendices from Patients following Appendectomy. MBio, 2013, 4, .                                                                                                                                                                    | 1.8 | 114       |
| 264 | Analysis of Anti-Clostridium difficile Activity of Thuricin CD, Vancomycin, Metronidazole, Ramoplanin,<br>and Actagardine, both Singly and in Paired Combinations. Antimicrobial Agents and Chemotherapy,<br>2013, 57, 2882-2886.                                   | 1.4 | 40        |
| 265 | Microbiota diversity and stability of the preterm neonatal ileum and colon of two infants.<br>MicrobiologyOpen, 2013, 2, 215-225.                                                                                                                                   | 1.2 | 40        |
| 266 | Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ. Therapeutic Advances in Gastroenterology, 2013, 6, 295-308.                                                                                      | 1.4 | 642       |
| 267 | Gut microbial diversity is reduced and is associated with colonic inflammation in a piglet model of short bowel syndrome. Gut Microbes, 2013, 4, 212-221.                                                                                                           | 4.3 | 82        |
| 268 | Sequence-Based Analysis of the Intestinal Microbiota of Sows and Their Offspring Fed Genetically<br>Modified Maize Expressing a Truncated Form of Bacillus thuringiensis Cry1Ab Protein (Bt Maize).<br>Applied and Environmental Microbiology, 2013, 79, 7735-7744. | 1.4 | 15        |
| 269 | Targeting the Microbiota to Address Diet-Induced Obesity: A Time Dependent Challenge. PLoS ONE, 2013,<br>8, e65790.                                                                                                                                                 | 1.1 | 132       |
| 270 | In Silico Assigned Resistance Genes Confer Bifidobacterium with Partial Resistance to Aminoglycosides but Not to Î'-Lactams. PLoS ONE, 2013, 8, e82653.                                                                                                             | 1.1 | 17        |

| #   | Article                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 271 | Nucleic acid-based approaches to investigate microbial-related cheese quality defects. Frontiers in<br>Microbiology, 2013, 4, 1.                                                                                                                                | 1.5 | 625       |
| 272 | Sequencing-Based Analysis of the Bacterial and Fungal Composition of Kefir Grains and Milks from Multiple Sources. PLoS ONE, 2013, 8, e69371.                                                                                                                   | 1.1 | 169       |
| 273 | Cronobacter spp. in Powdered Infant Formula. Journal of Food Protection, 2012, 75, 607-620.                                                                                                                                                                     | 0.8 | 71        |
| 274 | Assessing the Contributions of the LiaS Histidine Kinase to the Innate Resistance of Listeria<br>monocytogenes to Nisin, Cephalosporins, and Disinfectants. Applied and Environmental Microbiology,<br>2012, 78, 2923-2929.                                     | 1.4 | 74        |
| 275 | Extensive Manipulation of Caseicins A and B Highlights the Tolerance of These Antimicrobial Peptides to Change. Applied and Environmental Microbiology, 2012, 78, 2353-2358.                                                                                    | 1.4 | 4         |
| 276 | The <i>spiFEG</i> Locus in Streptococcus infantarius subsp. infantarius BAA-102 Confers Protection against Nisin U. Antimicrobial Agents and Chemotherapy, 2012, 56, 573-578.                                                                                   | 1.4 | 9         |
| 277 | Insights into Lantibiotic Immunity Provided by Bioengineering of Ltnl. Antimicrobial Agents and Chemotherapy, 2012, 56, 5122-5133.                                                                                                                              | 1.4 | 6         |
| 278 | Homologues and Bioengineered Derivatives of LtnJ Vary in Ability to Form <scp>d</scp> -Alanine in the<br>Lantibiotic Lacticin 3147. Journal of Bacteriology, 2012, 194, 708-714.                                                                                | 1.0 | 22        |
| 279 | High-Throughput Sequence-Based Analysis of the Intestinal Microbiota of Weanling Pigs Fed<br>Genetically Modified MON810 Maize Expressing Bacillus thuringiensis Cry1Ab (Bt Maize) for 31 Days.<br>Applied and Environmental Microbiology, 2012, 78, 4217-4224. | 1.4 | 52        |
| 280 | Composition of the early intestinal microbiota. Gut Microbes, 2012, 3, 203-220.                                                                                                                                                                                 | 4.3 | 195       |
| 281 | Bioengineering. Bioengineered, 2012, 3, 313-319.                                                                                                                                                                                                                | 1.4 | 11        |
| 282 | Lacticin 3147 - Biosynthesis, Molecular Analysis, Immunity, Bioengineering and Applications. Current<br>Protein and Peptide Science, 2012, 13, 193-204.                                                                                                         | 0.7 | 43        |
| 283 | Subspecies diversity in bacteriocin production by intestinal <i>Lactobacillus salivarius</i> strains. Gut<br>Microbes, 2012, 3, 468-473.                                                                                                                        | 4.3 | 29        |
| 284 | The gut microbiota and its relationship to diet and obesity. Gut Microbes, 2012, 3, 186-202.                                                                                                                                                                    | 4.3 | 382       |
| 285 | High-Throughput Sequencing for Detection of Subpopulations of Bacteria Not Previously Associated with Artisanal Cheeses. Applied and Environmental Microbiology, 2012, 78, 5717-5723.                                                                           | 1.4 | 236       |
| 286 | Antimicrobial Peptides as Therapeutic Agents. International Journal of Microbiology, 2012, 2012, 1-2.                                                                                                                                                           | 0.9 | 16        |
| 287 | The Lantibiotic Lacticin 3147 Prevents Systemic Spread of <i>Staphylococcus aureus</i> in a Murine<br>Infection Model. International Journal of Microbiology, 2012, 2012, 1-6.                                                                                  | 0.9 | 42        |
| 288 | Lantibiotic Production by Pathogenic Microorganisms. Current Protein and Peptide Science, 2012, 13, 509-523.                                                                                                                                                    | 0.7 | 8         |

| #   | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 289 | Contrasting effects of Bifidobacterium breve NCIMB 702258 and Bifidobacterium breve DPC 6330 on the composition of murine brain fatty acids and gut microbiota. American Journal of Clinical Nutrition, 2012, 95, 1278-1287.                | 2.2  | 109       |
| 290 | High-Throughput Sequencing Reveals the Incomplete, Short-Term Recovery of Infant Gut Microbiota<br>following Parenteral Antibiotic Treatment with Ampicillin and Gentamicin. Antimicrobial Agents and<br>Chemotherapy, 2012, 56, 5811-5820. | 1.4  | 404       |
| 291 | Bioengineered Nisin A Derivatives with Enhanced Activity against Both Gram Positive and Gram<br>Negative Pathogens. PLoS ONE, 2012, 7, e46884.                                                                                              | 1.1  | 167       |
| 292 | Bioactivity in Whey Proteins Influencing Energy Balance. Journal of Metabolic Syndrome, 2012, 01, .                                                                                                                                         | 0.1  | 3         |
| 293 | Assessment of the Bacteriocinogenic Potential of Marine Bacteria Reveals Lichenicidin Production by<br>Seaweed-Derived Bacillus spp Marine Drugs, 2012, 10, 2280-2299.                                                                      | 2.2  | 39        |
| 294 | Bacteriocin Production: a Probiotic Trait?. Applied and Environmental Microbiology, 2012, 78, 1-6.                                                                                                                                          | 1.4  | 505       |
| 295 | Comparison of the Potency of the Lipid II Targeting Antimicrobials Nisin, Lacticin 3147 and Vancomycin<br>Against Gram-Positive Bacteria. Probiotics and Antimicrobial Proteins, 2012, 4, 108-115.                                          | 1.9  | 25        |
| 296 | Gender-dependent consequences of chronic olanzapine in the rat: effects on body weight,<br>inflammatory, metabolic and microbiota parameters. Psychopharmacology, 2012, 221, 155-169.                                                       | 1.5  | 231       |
| 297 | Production of bioactive substances by intestinal bacteria as a basis for explaining probiotic<br>mechanisms: Bacteriocins and conjugated linoleic acid. International Journal of Food Microbiology,<br>2012, 152, 189-205.                  | 2.1  | 252       |
| 298 | Technological characterization of bacteriocin producing Lactococcus lactis strains employed to control Listeria monocytogenes in Cottage cheese. International Journal of Food Microbiology, 2012, 153, 58-65.                              | 2.1  | 113       |
| 299 | A comparison of methods used to extract bacterial DNA from raw milk and raw milk cheese. Journal of Applied Microbiology, 2012, 113, 96-105.                                                                                                | 1.4  | 98        |
| 300 | Bioengineered nisin derivatives with enhanced activity in complex matrices. Microbial Biotechnology, 2012, 5, 501-508.                                                                                                                      | 2.0  | 50        |
| 301 | The Effect of Feeding Bt MON810 Maize to Pigs for 110 Days on Intestinal Microbiota. PLoS ONE, 2012, 7, e33668.                                                                                                                             | 1.1  | 35        |
| 302 | The impact of antibiotics on the gut microbiota as revealed by high throughput DNA sequencing.<br>Discovery Medicine, 2012, 13, 193-9.                                                                                                      | 0.5  | 68        |
| 303 | Classification of Bacteriocins from Gram-Positive Bacteria. , 2011, , 29-53.                                                                                                                                                                |      | 70        |
| 304 | Streptolysin S-like virulence factors: the continuing sagA. Nature Reviews Microbiology, 2011, 9, 670-681.                                                                                                                                  | 13.6 | 140       |
| 305 | Genome Mining for Radical SAM Protein Determinants Reveals Multiple Sactibiotic-Like Gene Clusters.<br>PLoS ONE, 2011, 6, e20852.                                                                                                           | 1.1  | 68        |
| 306 | Small intestine and microbiota. Current Opinion in Gastroenterology, 2011, 27, 99-105.                                                                                                                                                      | 1.0  | 40        |

| #   | Article                                                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 307 | The impact of nisin on sensitive and resistant mutants of Listeria monocytogenes in cottage cheese.<br>Journal of Applied Microbiology, 2011, 110, 1509-1514.                                                                                      | 1.4  | 14        |
| 308 | Impact of the broad-spectrum antimicrobial peptide, lacticin 3147, on Streptococcus mutans growing in a biofilm and in human saliva. Journal of Applied Microbiology, 2011, 111, 1515-1523.                                                        | 1.4  | 24        |
| 309 | High-throughput sequence-based analysis of the bacterial composition of kefir and an associated kefir grain. FEMS Microbiology Letters, 2011, 320, 56-62.                                                                                          | 0.7  | 120       |
| 310 | Fate and efficacy of lacticin 3147-producing Lactococcus lactis in the mammalian gastrointestinal tract. FEMS Microbiology Ecology, 2011, 76, 602-614.                                                                                             | 1.3  | 50        |
| 311 | Bioengineering of a Nisin Aâ€producing <i>Lactococcus lactis</i> to create isogenic strains producing the natural variants Nisin F, Q and Z. Microbial Biotechnology, 2011, 4, 375-382.                                                            | 2.0  | 82        |
| 312 | Molecular approaches to analysing the microbial composition of raw milk and raw milk cheese.<br>International Journal of Food Microbiology, 2011, 150, 81-94.                                                                                      | 2.1  | 205       |
| 313 | Further Identification of Novel Lantibiotic Operons Using LanM-Based Genome Mining. Probiotics and Antimicrobial Proteins, 2011, 3, 27-40.                                                                                                         | 1.9  | 7         |
| 314 | An International Network for Improving Health Properties of Food by Sharing our Knowledge on the Digestive Process. Food Digestion, 2011, 2, 23-25.                                                                                                | 0.9  | 24        |
| 315 | Production of Multiple Bacteriocins from a Single Locus by Gastrointestinal Strains of Lactobacillus salivarius. Journal of Bacteriology, 2011, 193, 6973-6982.                                                                                    | 1.0  | 58        |
| 316 | Real-Time PCR Assay To Differentiate Listeriolysin S-Positive and -Negative Strains of <i>Listeria monocytogenes</i> . Applied and Environmental Microbiology, 2011, 77, 163-171.                                                                  | 1.4  | 66        |
| 317 | Altering the Composition of Caseicins A and B as a Means of Determining the Contribution of Specific<br>Residues to Antimicrobial Activity. Applied and Environmental Microbiology, 2011, 77, 2496-2501.                                           | 1.4  | 18        |
| 318 | Effect of broad- and narrow-spectrum antimicrobials on <i>Clostridium difficile</i> and microbial diversity in a model of the distal colon. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4639-4644. | 3.3  | 313       |
| 319 | Flagging flora: help from bacteriocins?. Nature, 2011, 477, 162-162.                                                                                                                                                                               | 13.7 | 6         |
| 320 | In silico analysis highlights the frequency and diversity of type 1 lantibiotic gene clusters in genome sequenced bacteria. BMC Genomics, 2010, 11, 679.                                                                                           | 1.2  | 74        |
| 321 | Manipulation of charged residues within the twoâ€peptide lantibiotic lacticin 3147. Microbial<br>Biotechnology, 2010, 3, 222-234.                                                                                                                  | 2.0  | 19        |
| 322 | Studies with bioengineered Nisin peptides highlight the broadâ€spectrum potency of Nisin V. Microbial<br>Biotechnology, 2010, 3, 473-486.                                                                                                          | 2.0  | 84        |
| 323 | Effect of Bioengineering Lacticin 3147 Lanthionine Bridges on Specific Activity and Resistance to Heat and Proteases. Chemistry and Biology, 2010, 17, 1151-1160.                                                                                  | 6.2  | 31        |
| 324 | The dawning of a â€~Golden era' in lantibiotic bioengineering. Molecular Microbiology, 2010, 78,<br>1077-1087.                                                                                                                                     | 1.2  | 70        |

| #   | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 325 | Production of the Bsa Lantibiotic by Community-Acquired <i>Staphylococcus aureus</i> Strains.<br>Journal of Bacteriology, 2010, 192, 1131-1142.                                                                           | 1.0 | 60        |
| 326 | Synthesis of Trypsin-Resistant Variants of the Listeria-Active Bacteriocin Salivaricin P. Applied and Environmental Microbiology, 2010, 76, 5356-5362.                                                                    | 1.4 | 30        |
| 327 | TelA Contributes to the Innate Resistance of <i>Listeria monocytogenes</i> to Nisin and Other Cell Wall-Acting Antibiotics. Antimicrobial Agents and Chemotherapy, 2010, 54, 4658-4663.                                   | 1.4 | 58        |
| 328 | The ABC Transporter AnrAB Contributes to the Innate Resistance of <i>Listeria monocytogenes</i> to<br>Nisin, Bacitracin, and Various β-Lactam Antibiotics. Antimicrobial Agents and Chemotherapy, 2010, 54,<br>4416-4423. | 1.4 | 139       |
| 329 | Glutamate Decarboxylase-Mediated Nisin Resistance in <i>Listeria monocytogenes</i> . Applied and Environmental Microbiology, 2010, 76, 6541-6546.                                                                         | 1.4 | 48        |
| 330 | The gene encoded antimicrobial peptides, a template for the design of novel anti-mycobacterial drugs.<br>Bioengineered Bugs, 2010, 1, 408-412.                                                                            | 2.0 | 49        |
| 331 | Investigating the importance of charged residues in lantibiotics. Bioengineered Bugs, 2010, 1, 345-351.                                                                                                                   | 2.0 | 8         |
| 332 | Comparison of the activities of the lantibiotics nisin and lacticin 3147 against clinically significant mycobacteria. International Journal of Antimicrobial Agents, 2010, 36, 132-136.                                   | 1.1 | 79        |
| 333 | Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models. Gut, 2010, 59, 1635-1642.                                                                       | 6.1 | 808       |
| 334 | Identification of a Novel Two-Peptide Lantibiotic, Lichenicidin, following Rational Genome Mining for<br>LanM Proteins. Applied and Environmental Microbiology, 2009, 75, 5451-5460.                                      | 1.4 | 224       |
| 335 | Isolation and Analysis of Bacteria with Antimicrobial Activities from the Marine Sponge Haliclona simulans Collected from Irish Waters. Marine Biotechnology, 2009, 11, 384-396.                                          | 1.1 | 168       |
| 336 | Crossâ€immunity and immune mimicry as mechanisms of resistance to the lantibiotic lacticin 3147.<br>Molecular Microbiology, 2009, 71, 1043-1054.                                                                          | 1.2 | 58        |
| 337 | A comparison of the activities of lacticin 3147 and nisin against drug-resistant Staphylococcus aureus and Enterococcus species. Journal of Antimicrobial Chemotherapy, 2009, 64, 546-551.                                | 1.3 | 147       |
| 338 | Discovery of Medically Significant Lantibiotics. Current Drug Discovery Technologies, 2009, 6, 1-18.                                                                                                                      | 0.6 | 115       |
| 339 | Controlling Listeria monocytogenes in Cottage cheese through heterologous production of enterocin A by Lactococcus lactis. Journal of Applied Microbiology, 2008, 104, 1059-1066.                                         | 1.4 | 55        |
| 340 | The generation of nisin variants with enhanced activity against specific Gramâ€positive pathogens.<br>Molecular Microbiology, 2008, 69, 218-230.                                                                          | 1.2 | 206       |
| 341 | Listeriolysin S, a Novel Peptide Haemolysin Associated with a Subset of Lineage I Listeria monocytogenes. PLoS Pathogens, 2008, 4, e1000144.                                                                              | 2.1 | 201       |
| 342 | Lantibiotic Immunity. Current Protein and Peptide Science, 2008, 9, 39-49.                                                                                                                                                | 0.7 | 78        |

| #   | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 343 | Insertional Mutagenesis To Generate Lantibiotic Resistance in Lactococcus lactis. Applied and Environmental Microbiology, 2007, 73, 4677-4680.                                                                                                  | 1.4  | 4         |
| 344 | Two-Peptide Lantibiotics: A Medical Perspective. Mini-Reviews in Medicinal Chemistry, 2007, 7, 1236-1247.                                                                                                                                       | 1.1  | 84        |
| 345 | The glutamate decarboxylase acid resistance mechanism affects survival of Listeria monocytogenes<br>LO28 in modified atmosphere-packaged foods. Journal of Applied Microbiology, 2007, 103, 2316-2324.                                          | 1.4  | 20        |
| 346 | Identification of a novel two-peptide lantibiotic, Haloduracin, produced by the alkaliphileBacillus haloduransC-125. FEMS Microbiology Letters, 2007, 267, 64-71.                                                                               | 0.7  | 99        |
| 347 | Relatedness between the two-component lantibiotics lacticin 3147 and staphylococcin C55 based on structure, genetics and biological activity. BMC Microbiology, 2007, 7, 24.                                                                    | 1.3  | 23        |
| 348 | A System for the Random Mutagenesis of the Two-Peptide Lantibiotic Lacticin 3147: Analysis of Mutants<br>Producing Reduced Antibacterial Activities. Journal of Molecular Microbiology and Biotechnology,<br>2007, 13, 226-234.                 | 1.0  | 30        |
| 349 | Bacteriocins: Biological tools for bio-preservation and shelf-life extension. International Dairy<br>Journal, 2006, 16, 1058-1071.                                                                                                              | 1.5  | 539       |
| 350 | Spontaneous resistance inLactococcus lactisIL1403 to the lantibiotic lacticin 3147. FEMS Microbiology Letters, 2006, 260, 77-83.                                                                                                                | 0.7  | 38        |
| 351 | Complete alanine scanning of the twoâ€component lantibiotic lacticin 3147: generating a blueprint for<br>rational drug design. Molecular Microbiology, 2006, 62, 735-747.                                                                       | 1.2  | 135       |
| 352 | Overproduction of Wild-Type and Bioengineered Derivatives of the Lantibiotic Lacticin 3147. Applied and Environmental Microbiology, 2006, 72, 4492-4496.                                                                                        | 1.4  | 37        |
| 353 | Contribution of Penicillin-Binding Protein Homologs to Antibiotic Resistance, Cell Morphology, and<br>Virulence of Listeria monocytogenes EGDe. Antimicrobial Agents and Chemotherapy, 2006, 50,<br>2824-2828.                                  | 1.4  | 80        |
| 354 | What's in a name? Class distinction for bacteriocins. Nature Reviews Microbiology, 2006, 4, 160-160.                                                                                                                                            | 13.6 | 14        |
| 355 | Microbial solutions to microbial problems; lactococcal bacteriocins for the control of undesirable biota in food. Journal of Applied Microbiology, 2005, 98, 1316-1325.                                                                         | 1.4  | 107       |
| 356 | Bacteriocins: developing innate immunity for food. Nature Reviews Microbiology, 2005, 3, 777-788.                                                                                                                                               | 13.6 | 1,884     |
| 357 | Presence of GadD1 Glutamate Decarboxylase in Selected Listeria monocytogenes Strains Is Associated with an Ability To Grow at Low pH. Applied and Environmental Microbiology, 2005, 71, 2832-2839.                                              | 1.4  | 134       |
| 358 | Bacterial Lantibiotics: Strategies to Improve Therapeutic Potential. Current Protein and Peptide Science, 2005, 6, 61-75.                                                                                                                       | 0.7  | 237       |
| 359 | Posttranslational conversion of L-serines to D-alanines is vital for optimal production and activity of the lantibiotic lacticin 3147. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18584-18589. | 3.3  | 116       |
| 360 | Sequential Actions of the Two Component Peptides of the Lantibiotic Lacticin 3147 Explain Its<br>Antimicrobial Activity at Nanomolar Concentrations. Antimicrobial Agents and Chemotherapy, 2005,<br>49, 2606-2611.                             | 1.4  | 106       |

| #   | Article                                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 361 | Lacticin 3147. Nutraceutical Science and Technology, 2005, , 619-637.                                                                                                                                                                                  | 0.0 | Ο         |
| 362 | Structural Characterization of Lacticin 3147, a Two-Peptide Lantibiotic with Synergistic Activityâ€.<br>Biochemistry, 2004, 43, 3049-3056.                                                                                                             | 1.2 | 150       |
| 363 | Surviving the Acid Test: Responses of Gram-Positive Bacteria to Low pH. Microbiology and Molecular<br>Biology Reviews, 2003, 67, 429-453.                                                                                                              | 2.9 | 953       |
| 364 | A Food-Grade Approach for Functional Analysis and Modification of Native Plasmids in Lactococcus<br>lactis. Applied and Environmental Microbiology, 2003, 69, 702-706.                                                                                 | 1.4 | 41        |
| 365 | The LisRK Signal Transduction System Determines the Sensitivity of Listeria monocytogenes to Nisin and Cephalosporins. Antimicrobial Agents and Chemotherapy, 2002, 46, 2784-2790.                                                                     | 1.4 | 117       |
| 366 | Bacterial stress response in Listeria monocytogenes: jumping the hurdles imposed by minimal processing. International Dairy Journal, 2002, 12, 273-283.                                                                                                | 1.5 | 154       |
| 367 | Role of the Glutamate Decarboxylase Acid Resistance System in the Survival of Listeria monocytogenes<br>LO28 in Low pH Foods. Journal of Food Protection, 2001, 64, 1362-1368.                                                                         | 0.8 | 83        |
| 368 | A glutamate decarboxylase system protects Listeria monocytogenes in gastric fluid. Molecular<br>Microbiology, 2001, 40, 465-475.                                                                                                                       | 1.2 | 334       |
| 369 | Analysis of the role of the Listeria monocytogenes F0F1-ATPase operon in the acid tolerance response.<br>International Journal of Food Microbiology, 2000, 60, 137-146.                                                                                | 2.1 | 111       |
| 370 | Identification and Disruption of <i>lisRK</i> , a Genetic Locus Encoding a Two-Component Signal<br>Transduction System Involved in Stress Tolerance and Virulence in <i>Listeria monocytogenes</i> .<br>Journal of Bacteriology, 1999, 181, 6840-6843. | 1.0 | 148       |
| 371 | Applications of Lactic Acid Bacteria-Produced Bacteriocins. , 0, , 89-109.                                                                                                                                                                             |     | 6         |
| 372 | Microbiome Research as an Effective Driver of Success Stories in Agrifood Systems – A Selection of<br>Case Studies. Frontiers in Microbiology, 0, 13, .                                                                                                | 1.5 | 10        |