Freda D Miller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/50124/publications.pdf

Version: 2024-02-01

110 papers 14,798 citations

59 h-index 103 g-index

116 all docs 116 docs citations

116 times ranked

15455 citing authors

#	Article	IF	CITATIONS
1	Restoration of hippocampal neural precursor function by ablation of senescent cells in the aging stem cell niche. Stem Cell Reports, 2022, 17, 259-275.	4.8	21
2	A Shared Transcriptional Identity for Forebrain and Dentate Gyrus Neural Stem Cells from Embryogenesis to Adulthood. ENeuro, 2022, 9, ENEURO.0271-21.2021.	1.9	15
3	A finger on the pulse of regeneration: insights into the cellular mechanisms of adult digit tip regeneration. Current Opinion in Genetics and Development, 2021, 70, 1-6.	3.3	5
4	The noradrenergic system is necessary for survival of vulnerable midbrain dopaminergic neurons: implications for development and Parkinson's disease. Neurobiology of Aging, 2020, 85, 22-37.	3.1	21
5	The Protein Tyrosine Phosphatase Receptor Delta Regulates Developmental Neurogenesis. Cell Reports, 2020, 30, 215-228.e5.	6.4	50
6	Acquisition of a Unique Mesenchymal Precursor-like Blastema State Underlies Successful Adult Mammalian Digit Tip Regeneration. Developmental Cell, 2020, 52, 509-524.e9.	7.0	74
7	LRIG1-Mediated Inhibition of EGF Receptor Signaling Regulates Neural Precursor Cell Proliferation in the Neocortex. Cell Reports, 2020, 33, 108257.	6.4	13
8	Transplantation of Skin Precursor-Derived Schwann Cells Yields Better Locomotor Outcomes and Reduces Bladder Pathology in Rats with Chronic Spinal Cord Injury. Stem Cell Reports, 2020, 15, 140-155.	4.8	21
9	Assessment of cognitive and neural recovery in survivors of pediatric brain tumors in a pilot clinical trial using metformin. Nature Medicine, 2020, 26, 1285-1294.	30.7	65
10	Single-Cell Profiling Shows Murine Forebrain Neural Stem Cells Reacquire a Developmental State when Activated for Adult Neurogenesis. Cell Reports, 2020, 32, 108022.	6.4	40
11	Cellular and molecular mechanisms that regulate mammalian digit tip regeneration. Open Biology, 2020, 10, 200194.	3.6	17
12	Peripheral Nerve Single-Cell Analysis Identifies Mesenchymal Ligands that Promote Axonal Growth. ENeuro, 2020, 7, ENEURO.0066-20.2020.	1.9	40
13	Translating neural stem cells to neurons in the mammalian brain. Cell Death and Differentiation, 2019, 26, 2495-2512.	11.2	38
14	Mesenchymal Precursor Cells in Adult Nerves Contribute to Mammalian Tissue Repair and Regeneration. Cell Stem Cell, 2019, 24, 240-256.e9.	11.1	159
15	Interleukin-6 Regulates Adult Neural Stem Cell Numbers during Normal andÂAbnormal Post-natal Development. Stem Cell Reports, 2018, 10, 1464-1480.	4.8	61
16	A Translational Repression Complex in Developing Mammalian Neural Stem Cells that Regulates Neuronal Specification. Neuron, 2018, 97, 520-537.e6.	8.1	124
17	QOL-53. METFORMIN RESULTS IN HIPPOCAMPAL REMODELING AND IMPROVED MEMORY ENCODING IN PAEDIATRIC BRAIN TUMOR SURVIVORS TREATED WITH CRANIAL RADIATION: A PILOT RANDOMIZED CONTROLLED CROSSOVER STUDY. Neuro-Oncology, 2018, 20, i168-i168.	1.2	O
18	Deciphering cell-cell communication in the developing mammalian brain. Neurogenesis (Austin, Tex), 2017, 4, e1286425.	1.5	2

#	Article	IF	CITATIONS
19	Migrating Interneurons Secrete Fractalkine to Promote Oligodendrocyte Formation in the Developing Mammalian Brain. Neuron, 2017, 94, 500-516.e9.	8.1	69
20	A neuroprotective agent that inactivates prodegenerative TrkA and preserves mitochondria. Journal of Cell Biology, 2017, 216, 3655-3675.	5.2	14
21	Developmental Emergence of Adult Neural Stem Cells as Revealed by Single-Cell Transcriptional Profiling. Cell Reports, 2017, 21, 3970-3986.	6.4	171
22	Homozygous ARHGEF2 mutation causes intellectual disability and midbrain-hindbrain malformation. PLoS Genetics, 2017, 13, e1006746.	3.5	27
23	Dedifferentiated Schwann Cell Precursors Secreting Paracrine Factors Are Required for Regeneration of the Mammalian Digit Tip. Cell Stem Cell, 2016, 19, 433-448.	11.1	153
24	In vitro characterization of neurite extension using induced pluripotent stem cells derived from lissencephaly patients with TUBA1A missense mutations. Molecular Brain, 2016, 9, 70.	2.6	22
25	Proneurogenic Ligands Defined by Modeling Developing Cortex Growth Factor Communication Networks. Neuron, 2016, 91, 988-1004.	8.1	39
26	A Glo1-Methylglyoxal Pathway that Is Perturbed in Maternal Diabetes Regulates Embryonic and Adult Neural Stem Cell Pools in Murine Offspring. Cell Reports, 2016, 17, 1022-1036.	6.4	35
27	Identification of Drugs that Regulate Dermal Stem Cells and Enhance Skin Repair. Stem Cell Reports, 2016, 6, 74-84.	4.8	15
28	ISDN2014_0058: p63 and p73 coordinate p53 function to determine the balance between survival, cell death and senescence in adult neural precursor cells. International Journal of Developmental Neuroscience, 2015, 47, 13-13.	1.6	0
29	Schwann Cells Generated from Neonatal Skin-Derived Precursors or Neonatal Peripheral Nerve Improve Functional Recovery after Acute Transplantation into the Partially Injured Cervical Spinal Cord of the Rat. Journal of Neuroscience, 2015, 35, 6714-6730.	3.6	70
30	A Smaug2-Based Translational Repression Complex Determines the Balance between Precursor Maintenance versus Differentiation during Mammalian Neurogenesis. Journal of Neuroscience, 2015, 35, 15666-15681.	3.6	39
31	Activating Endogenous Neural Precursor Cells Using Metformin Leads to Neural Repair and Functional Recovery in a Model of Childhood Brain Injury. Stem Cell Reports, 2015, 5, 166-173.	4.8	91
32	Metformin Acts on Two Different Molecular Pathways to Enhance Adult Neural Precursor Proliferation/Self-Renewal and Differentiation. Stem Cell Reports, 2015, 5, 988-995.	4.8	98
33	Ankrd11 Is a Chromatin Regulator Involved in Autism that Is Essential for Neural Development. Developmental Cell, 2015, 32, 31-42.	7.0	147
34	Conditional ablation of p63 indicates that it is essential for embryonic development of the central nervous system. Cell Cycle, 2015, 14, 3270-3281.	2.6	13
35	Fat1 interacts with Fat4 to regulate neural tube closure, neural progenitor proliferation and apical constriction during mouse brain development. Development (Cambridge), 2015, 142, 2781-91.	2.5	53
36	ISDN2014_0337: REMOVED: Snail coordinately regulates downstream pathways to control multiple aspects of mammalian neural precursor development. International Journal of Developmental Neuroscience, 2015, 47, 103-103.	1.6	0

#	Article	IF	Citations
37	ISDN2014_0064: The translational regulators eIF4E and 4Eâ€T form a repressive protein:mRNA complex that determines neural stem cell selfâ€renewal versus differentiation. International Journal of Developmental Neuroscience, 2015, 47, 15-15.	1.6	0
38	The Snail Transcription Factor Regulates the Numbers of Neural Precursor Cells and Newborn Neurons throughout Mammalian Life. PLoS ONE, 2014, 9, e104767.	2.5	7
39	Snail Coordinately Regulates Downstream Pathways to Control Multiple Aspects of Mammalian Neural Precursor Development. Journal of Neuroscience, 2014, 34, 5164-5175.	3.6	24
40	An elF4E1/4E-T Complex Determines the Genesis of Neurons from Precursors by Translationally Repressing a Proneurogenic Transcription Program. Neuron, 2014, 84, 723-739.	8.1	86
41	CBP regulates the differentiation of interneurons from ventral forebrain neural precursors during murine development. Developmental Biology, 2014, 385, 230-241.	2.0	27
42	Direct Genesis of Functional Rodent and Human Schwann Cells from Skin Mesenchymal Precursors. Stem Cell Reports, 2014, 3, 85-100.	4.8	53
43	p63 Regulates Adult Neural Precursor and Newly Born Neuron Survival to Control Hippocampal-Dependent Behavior. Journal of Neuroscience, 2013, 33, 12569-12585.	3.6	45
44	Transient Maternal IL-6 Mediates Long-Lasting Changes in Neural Stem Cell Pools by Deregulating an Endogenous Self-Renewal Pathway. Cell Stem Cell, 2013, 13, 564-576.	11.1	75
45	Sox2-Mediated Regulation of Adult Neural Crest Precursors and Skin Repair. Stem Cell Reports, 2013, 1, 38-45.	4.8	80
46	FoxP2 Regulates Neurogenesis during Embryonic Cortical Development. Journal of Neuroscience, 2013, 33, 244-258.	3.6	138
47	An Asymmetrically Localized Staufen2-Dependent RNA Complex Regulates Maintenance of Mammalian Neural Stem Cells. Cell Stem Cell, 2012, 11, 517-528.	11.1	96
48	Metformin Activates an Atypical PKC-CBP Pathway to Promote Neurogenesis and Enhance Spatial Memory Formation. Cell Stem Cell, 2012, 11, 23-35.	11.1	396
49	Mobilizing Endogenous Stem Cells for Repair and Regeneration: Are We There Yet?. Cell Stem Cell, 2012, 10, 650-652.	11.1	81
50	Directed Differentiation of Skin-Derived Precursors Into Functional Vascular Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2938-2948.	2.4	43
51	Endogenous microglia regulate development of embryonic cortical precursor cells. Journal of Neuroscience Research, 2011, 89, 286-298.	2.9	123
52	Nervous System Aging, Degeneration, and the p53 Family. Research and Perspectives in Alzheimer's Disease, 2011, , 83-93.	0.1	0
53	White Matter Repair: Skin-Derived Precursors as a Source of Myelinating Cells. Canadian Journal of Neurological Sciences, 2010, 37, S34-S41.	0.5	13
54	TAp73 Acts via the bHLH Hey2 to Promote Long-Term Maintenance of Neural Precursors. Current Biology, 2010, 20, 2058-2065.	3.9	73

#	Article	IF	CITATIONS
55	Selective targeting of neuroblastoma tumourâ€initiating cells by compounds identified in stem cellâ€based small molecule screens. EMBO Molecular Medicine, 2010, 2, 371-384.	6.9	62
56	Convergent Genesis of an Adult Neural Crest-Like Dermal Stem Cell from Distinct Developmental Origins. Stem Cells, 2010, 28, 2027-2040.	3.2	100
57	p75NTR-dependent, myelin-mediated axonal degeneration regulates neural connectivity in the adult brain. Nature Neuroscience, 2010, 13, 559-566.	14.8	104
58	System-Level Analysis of Neuroblastoma Tumor–Initiating Cells Implicates AURKB as a Novel Drug Target for Neuroblastoma. Clinical Cancer Research, 2010, 16, 4572-4582.	7.0	43
59	p75NTR is an obligate signaling receptor required for cues that cause sympathetic neuron growth cone collapse. Molecular and Cellular Neurosciences, 2010, 45, 108-120.	2.2	35
60	CBP Histone Acetyltransferase Activity Regulates Embryonic Neural Differentiation in the Normal and Rubinstein-Taybi Syndrome Brain. Developmental Cell, 2010, 18, 114-125.	7.0	160
61	Coffin–Lowry syndrome: A role for RSK2 in mammalian neurogenesis. Developmental Biology, 2010, 347, 348-359.	2.0	23
62	p63 Antagonizes p53 to Promote the Survival of Embryonic Neural Precursor Cells. Journal of Neuroscience, 2009, 29, 6710-6721.	3.6	49
63	Lfc and Tctex-1 regulate the genesis of neurons from cortical precursor cells. Nature Neuroscience, 2009, 12, 735-744.	14.8	86
64	TAp63 Prevents Premature Aging by Promoting Adult Stem Cell Maintenance. Cell Stem Cell, 2009, 5, 64-75.	11.1	228
65	Home at Last: Neural Stem Cell Niches Defined. Cell Stem Cell, 2009, 4, 507-510.	11.1	126
66	SKPs Derive from Hair Follicle Precursors and Exhibit Properties of Adult Dermal Stem Cells. Cell Stem Cell, 2009, 5, 610-623.	11,1	335
67	Costello syndrome H-Ras alleles regulate cortical development. Developmental Biology, 2009, 330, 440-451.	2.0	35
68	Skin-Derived Precursors Differentiate Into Skeletogenic Cell Types and Contribute to Bone Repair. Stem Cells and Development, 2009, 18, 893-906.	2.1	92
69	Isolation, Expansion, and Differentiation of Mouse Skin-Derived Precursors. Methods in Molecular Biology, 2009, 482, 159-170.	0.9	17
70	Developmental axon pruning mediated by BDNF-p75NTR–dependent axon degeneration. Nature Neuroscience, 2008, 11, 649-658.	14.8	214
71	[PLO4]: Neural stem cells: From development to repair. International Journal of Developmental Neuroscience, 2008, 26, 827-827.	1.6	1
72	Multipotent skin-derived precursors: adult neural crest-related precursors with therapeutic potential. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 185-198.	4.0	121

#	Article	IF	CITATIONS
73	To Die or Not to Die: Neurons and p63. Cell Cycle, 2007, 6, 312-317.	2.6	24
74	Trk signaling regulates neural precursor cell proliferation and differentiation during cortical development. Development (Cambridge), 2007, 134, 4369-4380.	2.5	182
75	Riding the Waves: Neural and Nonneural Origins for Mesenchymal Stem Cells. Cell Stem Cell, 2007, 1, 129-130.	11.1	22
76	Control of CNS Cell-Fate Decisions by SHP-2 and Its Dysregulation in Noonan Syndrome. Neuron, 2007, 54, 245-262.	8.1	128
77	Timing Is Everything: Making Neurons versus Glia in the Developing Cortex. Neuron, 2007, 54, 357-369.	8.1	498
78	Skin-Derived Precursors Generate Myelinating Schwann Cells That Promote Remyelination and Functional Recovery after Contusion Spinal Cord Injury. Journal of Neuroscience, 2007, 27, 9545-9559.	3.6	279
79	Analysis of the neurogenic potential of multipotent skin-derived precursors. Experimental Neurology, 2006, 201, 32-48.	4.1	113
80	The p53 family in nervous system development and disease. Journal of Neurochemistry, 2006, 97, 1571-1584.	3.9	101
81	Isolation of skin-derived precursors (SKPs) and differentiation and enrichment of their Schwann cell progeny. Nature Protocols, 2006, 1, 2803-2812.	12.0	186
82	An Essential Role for the Integrin-Linked Kinase-Glycogen Synthase Kinase-3Â Pathway during Dendrite Initiation and Growth. Journal of Neuroscience, 2006, 26, 13344-13356.	3.6	64
83	Skin-Derived Precursors Generate Myelinating Schwann Cells for the Injured and Dysmyelinated Nervous System. Journal of Neuroscience, 2006, 26, 6651-6660.	3.6	298
84	TrkA Induces Apoptosis of Neuroblastoma Cells and Does So via a p53-dependent Mechanism*[boxs]. Journal of Biological Chemistry, 2005, 280, 29199-29207.	3.4	46
85	CCAAT/Enhancer-Binding Protein Phosphorylation Biases Cortical Precursors to Generate Neurons Rather Than Astrocytes In Vivo. Journal of Neuroscience, 2005, 25, 10747-10758.	3.6	80
86	A transcriptional role for C/EBP \hat{l}^2 in the neuronal response to axonal injury. Molecular and Cellular Neurosciences, 2005, 29, 525-535.	2.2	86
87	Activity Regulates Positive and Negative Neurotrophin-Derived Signals to Determine Axon Competition. Neuron, 2005, 45, 837-845.	8.1	71
88	Evidence that Embryonic Neurons Regulate the Onset of Cortical Gliogenesis via Cardiotrophin-1. Neuron, 2005, 48, 253-265.	8.1	299
89	P63 Is an Essential Proapoptotic Protein during Neural Development. Neuron, 2005, 48, 743-756.	8.1	104
90	Isolation and Characterization of Multipotent Skinâ€Derived Precursors from Human Skin. Stem Cells, 2005, 23, 727-737.	3.2	613

#	Article	IF	CITATIONS
91	Evidence That ÂNp73 Promotes Neuronal Survival by p53-Dependent and p53-Independent Mechanisms. Journal of Neuroscience, 2004, 24, 9174-9184.	3.6	61
92	The Invulnerability of Adult Neurons: A Critical Role for p73. Journal of Neuroscience, 2004, 24, 9638-9647.	3.6	59
93	A dermal niche for multipotent adult skin-derived precursor cells. Nature Cell Biology, 2004, 6, 1082-1093.	10.3	692
94	Signaling mechanisms underlying dendrite formation. Current Opinion in Neurobiology, 2003, 13, 391-398.	4.2	145
95	Endogenously Produced Neurotrophins Regulate Survival and Differentiation of Cortical Progenitors via Distinct Signaling Pathways. Journal of Neuroscience, 2003, 23, 5149-5160.	3.6	305
96	Signaling Mechanisms Underlying Reversible, Activity-Dependent Dendrite Formation. Neuron, 2002, 34, 985-998.	8.1	224
97	An Essential Role for a MEK-C/EBP Pathway during Growth Factor-Regulated Cortical Neurogenesis. Neuron, 2002, 36, 597-610.	8.1	188
98	p73 Is Required for Survival and Maintenance of CNS Neurons. Journal of Neuroscience, 2002, 22, 9800-9809.	3.6	141
99	On Trk for Retrograde Signaling. Neuron, 2001, 32, 767-770.	8.1	144
100	Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nature Cell Biology, 2001, 3, 778-784.	10.3	1,503
101	TrkA mediates developmental sympathetic neuron survival in vivo by silencing an ongoing p75NTR-mediated death signal. Journal of Cell Biology, 2001, 155, 1275-1286.	5.2	107
102	Neurotrophin signal transduction in the nervous system. Current Opinion in Neurobiology, 2000, 10, 381-391.	4.2	1,730
103	Evidence That Helix-Loop-Helix Proteins Collaborate with Retinoblastoma Tumor Suppressor Protein to Regulate Cortical Neurogenesis. Journal of Neuroscience, 2000, 20, 7648-7656.	3.6	87
104	The TrkB-Shc Site Signals Neuronal Survival and Local Axon Growth via MEK and PI3-Kinase. Neuron, 2000, 27, 265-277.	8.1	385
105	An Anti-Apoptotic Role for the p53 Family Member, p73, During Developmental Neuron Death. Science, 2000, 289, 304-306.	12.6	444
106	Characterization of dopaminergic midbrain neurons in a DBH:BDNF transgenic mouse., 1999, 413, 449-462.		30
107	P53 Is Essential for Developmental Neuron Death as Regulated by the TrkA and p75 Neurotrophin Receptors. Journal of Cell Biology, 1998, 143, 1691-1703.	5.2	269
108	Transcriptional repression of the growth-associated T?1 ?-tubulin gene by target contact. Journal of Neuroscience Research, 1997, 48, 477-487.	2.9	20

#	Article	IF	CITATIONS
109	Comparison of the expression of a T?1:nlacZ transgene and T?1 ?-tubulin mRNA in the mature central nervous system. Journal of Comparative Neurology, 1996, 374, 52-69.	1.6	31
110	Retinoblastoma gene in mouse neural development. , 1996, 18, 81-91.		25