Hironori Okumura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5012220/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vertical GaN Junction Barrier Schottky Rectifiers by Selective Ion Implantation. IEEE Electron Device Letters, 2017, 38, 1097-1100.	3.9	136
2	Systematic investigation of the growth rate of β-Ga ₂ O ₃ (010) by plasma-assisted molecular beam epitaxy. Applied Physics Express, 2014, 7, 095501.	2.4	122
3	AlN metal–semiconductor field-effect transistors using Si-ion implantation. Japanese Journal of Applied Physics, 2018, 57, 04FR11.	1.5	42
4	Dry and wet etching for β-Ga ₂ O ₃ Schottky barrier diodes with mesa termination. Japanese Journal of Applied Physics, 2019, 58, 120902.	1.5	33
5	Nitrogen-Polar Polarization-Doped Field-Effect Transistor Based on Al _{0.8} Ga _{0.2} N/AlN on SiC With Drain Current Over 100 mA/mm. IEEE Electron Device Letters, 2019, 40, 1245-1248.	3.9	32
6	Reduction of Threading Dislocation Density in 2H-AlN Grown on 6H-SiC(0001) by Minimizing Unintentional Active-Nitrogen Exposure before Growth. Applied Physics Express, 2011, 4, 025502.	2.4	29
7	Demonstration of lateral field-effect transistors using Sn-doped <i>l²</i> -(AlGa) ₂ O ₃ (010). Japanese Journal of Applied Physics, 2019, 58, SBBD12.	1.5	29
8	Impact of surface step heights of 6H–SiC (0001) vicinal substrates in heteroepitaxial growth of 2H–AlN. Applied Surface Science, 2008, 254, 7858-7860.	6.1	26
9	Over-700-nm Critical Thickness of AlN Grown on 6H-SiC(0001) by Molecular Beam Epitaxy. Applied Physics Express, 2012, 5, 105502.	2.4	26
10	N-polar AlN buffer growth by metal–organic vapor phase epitaxy for transistor applications. Applied Physics Express, 2018, 11, 101002.	2.4	16
11	Enhancement of initial layer-by-layer growth and reduction of threading dislocation density by optimized Ga pre-irradiation in molecular-beam epitaxy of 2H-AlN on 6H-SiC(0001). Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 2094-2096.	0.8	14
12	Formation mechanism of threading-dislocation array in AlN layers grown on 6H-SiC (0001) substrates with 3-bilayer-high surface steps. Applied Physics Letters, 2014, 105, .	3.3	14
13	Optical Properties of Highly Strained AlN Coherently Grown on 6H-SiC(0001). Applied Physics Express, 2013, 6, 062604.	2.4	12
14	Low <i>p</i> -type contact resistance by field-emission tunneling in highly Mg-doped GaN. Applied Physics Letters, 2016, 109, .	3.3	11
15	Vacancy-type defects in Mg-doped GaN grown by ammonia-based molecular beam epitaxy probed using a monoenergetic positron beam. Journal of Applied Physics, 2016, 119, 245702.	2.5	9
16	Fabrication of an AlN ridge structure using inductively coupled Cl ₂ /BCl ₃ plasma and a TMAH solution. Japanese Journal of Applied Physics, 2019, 58, 026502.	1.5	9
17	Impurity diffusion in ion implanted AlN layers on sapphire substrates by thermal annealing. Japanese Journal of Applied Physics, 2022, 61, 026501.	1.5	8
18	<i>In situ</i> Gravimetric Monitoring of Thermal Decomposition and Hydrogen Etching Rates of 6H-SiC(0001) Si Face. Japanese Journal of Applied Physics, 2009, 48, 095505.	1.5	5

Hironori Okumura

#	Article	IF	CITATIONS
19	Observation of novel defect structure in 2H-AlN grown on 6H-SiC(0001) substrates with 3-bilayer-height step-and-terrace structures. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 1187-1189.	1.8	5
20	Coherent Growth of AlN/GaN Short-Period Superlattice with Average GaN Mole Fraction of up to 20% on 6H-SiC(0001) Substrates by Plasma-Assisted Molecular-Beam Epitaxy. Japanese Journal of Applied Physics, 2013, 52, 08JE21.	1.5	4
21	AlN/GaN Short-Period Superlattice Coherently Grown on 6H-SiC(0001) Substrates by Molecular Beam Epitaxy. Applied Physics Express, 2012, 5, 051002.	2.4	3
22	Growth of Nitrogen-Polar 2H-AlN on Step-Height-Controlled 6H-SiC(0001Ì,,) Substrate by Molecular-Beam Epitaxy. Japanese Journal of Applied Physics, 2012, 51, 02BH02.	1.5	3
23	Photo-induced conductivity transient in n-type β-(Al0.16Ga0.84)2O3 and β-Ga2O3. Japanese Journal of Applied Physics, 2021, 60, SBBD15.	1.5	2
24	Electrical properties of heavily Sn-doped (AlGa)2O3 layers on β-Ga2O3 (010) substrates. Japanese Journal of Applied Physics, 2021, 60, 065504.	1.5	2
25	Optical and electrical properties of silicon-implanted α-Al ₂ O ₃ . Japanese Journal of Applied Physics, 2021, 60, 106502.	1.5	2
26	Growth of double-barrier <i>β</i> -(AlGa) ₂ O ₃ /Ga ₂ O ₃ /Ga ₂ O ₃ /Ga ₂ O ₃ /Ga ₂ /Ga ₂ /Ga ₂ /Ga ₃ /Ga ₂ /Ga _{/Ga₂/Ga_{/Ga₂/Ga_{/Ga₂/Ga_{/Ga₂/Ga_{/Ga₂/Ga_{/Ga₂/Ga_{/Ga₂/Ga_{/Ga₂/Ga_{/Ga₂/Ga_{/Ga₂/Ga_{/Ga₂/Ga_{/Ga₂/Ga_{/Ga₂/Ga_{/Ga₂/Ga_{/Ga₂/Ga_{/Ga₂/Ga}/Ga}/Ga}/Ga}/Ga}/Ga}/Ga}/Ga}/Ga}/Ga}/Ga}/Ga}/Ga}/Ga}/Ga}/Ga} /Ga	1.5	2
27	Growth of Nitrogen-Polar 2H-AlN on Step-Height-Controlled 6H-SiC(0001Ì,,) Substrate by Molecular-Beam Epitaxy. Japanese Journal of Applied Physics, 2012, 51, 02BH02.	1.5	1
28	Photoconductivity buildup and decay kinetics in unintentionally doped β-Ga ₂ O ₃ . Japanese Journal of Applied Physics, 0, , .	1.5	1