
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5012181/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dopamine Agonist Withdrawal Syndrome and Suicidality in Parkinson's Disease. Canadian Journal of Neurological Sciences, 2023, 50, 779-780.	0.5	2
2	Co-registration of Imaging Modalities (MRI, CT and PET) to Perform Frameless Stereotaxic Robotic Injections in the Common Marmoset. Neuroscience, 2022, 480, 143-154.	2.3	5
3	Cognition and serotonin in Parkinson's disease. Progress in Brain Research, 2022, 269, 373-403.	1.4	8
4	Autoradiographic labelling of 5-HT3 receptors in the hemi-parkinsonian rat brain. Neuroscience Research, 2022, 177, 135-144.	1.9	1
5	Glutamate modulation for the treatment of levodopa induced dyskinesia: aÂbrief review of the drugs tested in the clinic. Neurodegenerative Disease Management, 2022, 12, 203-214.	2.2	5
6	An overview of the active clinical trials for Parkinson's disease psychosis. Neurodegenerative Disease Management, 2022, , .	2.2	0
7	Quantitative determination of LYâ€404,039, a metabotropic glutamate 2/3 receptor agonist, in rat plasma using chemical derivatization and HPLC–MRM/MS. Biomedical Chromatography, 2022, 36, .	1.7	1
8	Effect of glycine transporter 1 inhibition with bitopertin on parkinsonism and L-DOPA induced dyskinesia in the 6-OHDA-lesioned rat. European Journal of Pharmacology, 2022, 929, 175090.	3.5	5
9	Selective blockade of the 5-HT3 receptor acutely alleviates dyskinesia and psychosis in the parkinsonian marmoset. Neuropharmacology, 2021, 182, 108386.	4.1	9
10	Stereological investigation of 5-HT3 receptors in the substantia nigra and dorsal raphe nucleus in the rat. Journal of Chemical Neuroanatomy, 2021, 111, 101881.	2.1	2
11	Combined 5-HT2A and mGlu2 modulation for the treatment of dyskinesia and psychosis in Parkinson's disease. Neuropharmacology, 2021, 186, 108465.	4.1	10
12	Further characterisation of psychosis-like behaviours induced by L-DOPA in the MPTP-lesioned marmoset. Naunyn-Schmiedeberg's Archives of Pharmacology, 2021, 394, 1685-1692.	3.0	5
13	Additive effects of mGluR2 positive allosteric modulation, mGluR2 orthosteric stimulation and 5-HT2AR antagonism on dyskinesia and psychosis-like behaviours in the MPTP-lesioned marmoset. Naunyn-Schmiedeberg's Archives of Pharmacology, 2021, 394, 2381-2388.	3.0	1
14	Effect of the glycine transporter 1 inhibitor ALX-5407 on dyskinesia, psychosis-like behaviours and parkinsonism in the MPTP-lesioned marmoset. European Journal of Pharmacology, 2021, 910, 174452.	3.5	9
15	Effect of the mGlu2 positive allosteric modulator CBiPES on dyskinesia, psychosis-like behaviours and parkinsonism in the MPTP-lesioned marmoset. Journal of Neural Transmission, 2021, 128, 73-81.	2.8	8
16	Granisetron, a selective 5-HT3 antagonist, reduces L-3,4-dihydroxyphenylalanine-induced abnormal involuntary movements in the 6-hydroxydopamine-lesioned rat. Behavioural Pharmacology, 2021, 32, 43-53.	1.7	4
17	Levodopa-induced dyskinesia: a brief review of the ongoing clinical trials. Neurodegenerative Disease Management, 2021, , .	2.2	3
18	Ondansetron, a highly selective 5-HT3 receptor antagonist, reduces L-DOPA-induced dyskinesia in the 6-OHDA-lesioned rat model of Parkinson's disease. European Journal of Pharmacology, 2020, 871, 172914.	3.5	13

#	Article	IF	CITATIONS
19	The MPTP-lesioned marmoset model of Parkinson's disease: proposed efficacy thresholds that may potentially predict successful clinical trial results. Journal of Neural Transmission, 2020, 127, 1343-1358.	2.8	15
20	Neurological complications of coronavirus infection; a comparative review and lessons learned during the COVID-19 pandemic. Journal of the Neurological Sciences, 2020, 417, 117085.	0.6	159
21	The mGlu2/3 antagonist LY-341,495 reverses the anti-dyskinetic and anti-psychotic effects of the mGlu2 activators LY-487,379 and LY-354,740 in the MPTP-lesioned marmoset. Journal of Neural Transmission, 2020, 127, 1013-1021.	2.8	7
22	Combined mGlu2 orthosteric stimulation and positive allosteric modulation alleviates l-DOPA-induced psychosis-like behaviours and dyskinesia in the parkinsonian marmoset. Journal of Neural Transmission, 2020, 127, 1023-1029.	2.8	8
23	Monoamine oxidase A inhibition as monotherapy reverses parkinsonism in the MPTP-lesioned marmoset. Naunyn-Schmiedeberg's Archives of Pharmacology, 2020, 393, 2139-2144.	3.0	0
24	Monoamine oxidase A inhibition with moclobemide enhances the anti-parkinsonian effect of L-DOPA in the MPTP-lesioned marmoset. Naunyn-Schmiedeberg's Archives of Pharmacology, 2020, 393, 2157-2164.	3.0	1
25	Pharmacokinetic profile of the selective 5-HT ₃ receptor antagonist ondansetron in the rat: an original study and a minireview of the behavioural pharmacological literature in the rat. Canadian Journal of Physiology and Pharmacology, 2020, 98, 431-440.	1.4	7
26	The highly selective mGlu ₂ receptor positive allosteric modulator LYâ€487,379 alleviates <scp>l</scp> â€DOPAâ€induced dyskinesia in the 6â€OHDAâ€lesioned rat model of Parkinson's disease. Europea Journal of Neuroscience, 2020, 51, 2412-2422.	n2.6	11
27	Selective metabotropic glutamate receptor 2 positive allosteric modulation alleviates L-DOPA-induced psychosis-like behaviours and dyskinesia in the MPTP-lesioned marmoset. European Journal of Pharmacology, 2020, 873, 172957.	3.5	20
28	Monoamine oxidase A inhibition and Parkinson's disease. Neurodegenerative Disease Management, 2020, 10, 335-337.	2.2	2
29	Highly sensitive HPLC-MS/MS assay for the quantitation of ondansetron in rat plasma and rat brain tissue homogenate following administration of a very low subcutaneous dose. Journal of Pharmaceutical and Biomedical Analysis, 2019, 175, 112766.	2.8	9
30	Activation of mGlu2/3 receptors, a novel therapeutic approach to alleviate dyskinesia and psychosis in experimental parkinsonism. Neuropharmacology, 2019, 158, 107725.	4.1	33
31	Classic animal models of Parkinson's disease: a historical perspective. Behavioural Pharmacology, 2019, 30, 291-310.	1.7	23
32	5-HT ₃ receptors in Parkinson's disease psychosis: a forgotten target?. Neurodegenerative Disease Management, 2019, 9, 251-253.	2.2	7
33	5-HT2A blockade for dyskinesia and psychosis in Parkinson's disease: is there a limit to the efficacy of this approach? A study in the MPTP-lesioned marmoset and a literature mini-review. Experimental Brain Research, 2019, 237, 435-442.	1.5	24
34	Effect of the selective 5-HT2A receptor antagonist EMD-281,014 on l-DOPA-induced abnormal involuntary movements in the 6-OHDA-lesioned rat. Experimental Brain Research, 2019, 237, 29-36.	1.5	17
35	Trazodone alleviates both dyskinesia and psychosis in the parkinsonian marmoset model of Parkinson's disease. Journal of Neural Transmission, 2018, 125, 1355-1360.	2.8	21
36	Predictive Value of Parkinsonian Primates in Pharmacologic Studies: A Comparison between the Macaque, Marmoset, and Squirrel Monkey. Journal of Pharmacology and Experimental Therapeutics, 2018, 365, 379-397.	2.5	31

#	Article	IF	CITATIONS
37	The effect of mianserin on the severity of psychosis and dyskinesia in the parkinsonian marmoset. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 81, 367-371.	4.8	26
38	5-HT _{2A} receptors and Parkinson's disease psychosis: a pharmacological discussion. Neurodegenerative Disease Management, 2018, 8, 363-365.	2.2	5
39	Development of a selective and sensitive high-performance liquid chromatography-tandem mass spectrometry assay to support pharmacokinetic studies of LY-487,379 in rat and marmoset. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1093-1094, 1-7.	2.3	15
40	The highly selective 5-HT2A antagonist EMD-281,014 reduces dyskinesia and psychosis in the I-DOPA-treated parkinsonian marmoset. Neuropharmacology, 2018, 139, 61-67.	4.1	37
41	Nefazodone reduces dyskinesia, but not psychosis-like behaviours, in the parkinsonian marmoset. Naunyn-Schmiedeberg's Archives of Pharmacology, 2018, 391, 1339-1345.	3.0	19
42	The effect of mirtazapine on dopaminergic psychosis and dyskinesia in the parkinsonian marmoset. Psychopharmacology, 2017, 234, 905-911.	3.1	38
43	Development and validation of a high-performance liquid chromatography-tandem mass spectrometry method to quantify LYâ€354,740 in rat and marmoset plasma. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1061-1062, 392-398.	2.3	12
44	Task-specific oro-lingual tremor following gingival grafting surgery. Journal of the Neurological Sciences, 2016, 367, 24-25.	0.6	3
45	The pons and human affective processing — Implications for Parkinson's disease. EBioMedicine, 2015, 2, 1592-1593.	6.1	3
46	Pioglitazone may impair <scp>Lâ€DOPA</scp> antiâ€parkinsonian efficacy in the <scp>MPTP</scp> â€lesioned macaque: Results of a pilot study. Synapse, 2015, 69, 99-102.	1.2	9
47	L-DOPA-induced dyskinesia, is striatal dopamine depletion a requisite?. Journal of the Neurological Sciences, 2015, 351, 9-12.	0.6	7
48	The highly-selective 5-HT1A agonist F15599 reduces l-DOPA-induced dyskinesia without compromising anti-parkinsonian benefits in the MPTP-lesioned macaque. Neuropharmacology, 2015, 97, 306-311.	4.1	39
49	Monoamine Reuptake Inhibitors in Parkinson's Disease. Parkinson's Disease, 2015, 2015, 1-71.	1.1	35
50	L-745,870 reduces the expression of abnormal involuntary movements in the 6-OHDA-lesioned rat. Behavioural Pharmacology, 2015, 26, 101-108.	1.7	24
51	Serotonin/dopamine transporter ratio as a predictor of <scp>l</scp> -dopa–induced dyskinesia. Neurology, 2015, 85, 840-841.	1.1	2
52	A generalised sensation of coldness following introduction of rosuvastatin therapy. BMJ Case Reports, 2014, 2014, bcr2014205987-bcr2014205987.	0.5	3
53	UWA-121, a mixed dopamine and serotonin re-uptake inhibitor, enhances I-DOPA anti-parkinsonian action without worsening dyskinesia or psychosis-like behaviours in the MPTP-lesioned common marmoset. Neuropharmacology, 2014, 82, 76-87.	4.1	40
54	A woman with functional tremor treated with L-DOPA for 14years. Journal of the Neurological Sciences, 2014, 346, 358-359.	0.6	1

#	Article	IF	CITATIONS
55	The serotonergic system in motor and non-motor manifestations of Parkinson's disease. Experimental Brain Research, 2013, 230, 463-476.	1.5	60
56	RGFP109, a histone deacetylase inhibitor attenuates l-DOPA-induced dyskinesia in the MPTP-lesioned marmoset: A proof-of-concept study. Parkinsonism and Related Disorders, 2013, 19, 260-264.	2.2	21
57	The Pharmacology of l-DOPA-Induced Dyskinesia in Parkinson's Disease. Pharmacological Reviews, 2013, 65, 171-222.	16.0	279
58	TC-8831, a nicotinic acetylcholine receptor agonist, reduces l-DOPA-induced dyskinesia in the MPTP macaque. Neuropharmacology, 2013, 73, 337-347.	4.1	38
59	The effects of fast-off-D2 receptor antagonism on L-DOPA-induced dyskinesia and psychosis in parkinsonian macaques. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2013, 43, 151-156.	4.8	11
60	Use of catecholâ€ <i>O</i> â€methyltransferase inhibition to minimize Lâ€3,4â€dihydroxyphenylalanineâ€induced dyskinesia in the 1â€methylâ€4â€phenylâ€1,2,3,6â€tetrahydropyridineâ€lesioned macaque. European Journal of Neuroscience, 2013, 37, 831-838.	2.6	5
61	Journal Watch: Our panel of experts highlight the most important research articles across the spectrum of topics relevant to the field of neurodegenerative disease management. Neurodegenerative Disease Management, 2013, 3, 105-107.	2.2	0
62	L-745,870 Reduces l-DOPA-Induced Dyskinesia in the 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Lesioned Macaque Model of Parkinson's Disease. Journal of Pharmacology and Experimental Therapeutics, 2012, 342, 576-585.	2.5	39
63	A novel MDMA analogue, UWAâ€101, that lacks psychoactivity and cytotoxicity, enhances I â€DOPA benefit in parkinsonian primates. FASEB Journal, 2012, 26, 2154-2163.	0.5	22
64	The Monoamine Re-Uptake Inhibitor UWA-101 Improves Motor Fluctuations in the MPTP-Lesioned Common Marmoset. PLoS ONE, 2012, 7, e45587.	2.5	27
65	Journal Watch: Our experts highlight the most important research articles across the spectrum of topics relevant to the field of neurodegenerative disease management. Neurodegenerative Disease Management, 2012, 2, 351-354.	2.2	1
66	l-DOPA pharmacokinetics in the MPTP-lesioned macaque model of Parkinson's disease. Neuropharmacology, 2012, 63, 829-836.	4.1	37
67	5-HT2A receptor levels increase in MPTP-lesioned macaques treated chronically with L-DOPA. Neurobiology of Aging, 2012, 33, 194.e5-194.e15.	3.1	36
68	Regulation of cortical and striatal 5-HT1A receptors in the MPTP-lesioned macaque. Neurobiology of Aging, 2012, 33, 207.e9-207.e19.	3.1	34
69	Increased levels of 5â€HT _{1A} receptor binding in ventral visual pathways in Parkinson's disease. Movement Disorders, 2012, 27, 735-742.	3.9	23
70	The serotonergic system in Parkinson's disease. Progress in Neurobiology, 2011, 95, 163-212.	5.7	156
71	Anatomically Selective Serotonergic Type 1A and Serotonergic Type 2A Therapies for Parkinson's Disease: An Approach to Reducing Dyskinesia without Exacerbating Parkinsonism?. Journal of Pharmacology and Experimental Therapeutics, 2011, 339, 2-8.	2.5	46
72	Characterization of 3,4-Methylenedioxymethamphetamine (MDMA) Enantiomers <i>In Vitro</i> and in the MPTP-Lesioned Primate: <i>R</i> -MDMA Reduces Severity of Dyskinesia, Whereas <i>S</i> -MDMA Extends Duration of ON-Time. Journal of Neuroscience, 2011, 31, 7190-7198.	3.6	71

Рнігірре Ниот

#	Article	IF	CITATIONS
73	Fatty Acid Amide Hydrolase (FAAH) Inhibition Reduces l-3,4-Dihydroxyphenylalanine-Induced Hyperactivity in the 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-Lesioned Non-Human Primate Model of Parkinson's Disease. Journal of Pharmacology and Experimental Therapeutics, 2011, 336, 423-430.	2.5	35
74	Neuropsychiatric Behaviors in the MPTP Marmoset Model of Parkinson's Disease. Canadian Journal of Neurological Sciences, 2010, 37, 86-95.	0.5	63
75	Increased 5â€HT _{2A} receptors in the temporal cortex of parkinsonian patients with visual hallucinations. Movement Disorders, 2010, 25, 1399-1408.	3.9	128
76	Redesigning the designer drug ecstasy: non-psychoactive MDMA analogues exhibiting Burkitt's lymphoma cytotoxicity. MedChemComm, 2010, 1, 287.	3.4	11
77	l-Dopa treatment abolishes the numerical increase in striatal dopaminergic neurons in parkinsonian monkeys. Journal of Chemical Neuroanatomy, 2008, 35, 77-84.	2.1	25
78	The neuro-toxin MPTP does not prevent reproduction in marmosets. MNI Open Research, 0, 3, 2.	1.0	0
79	The neuro-toxin MPTP does not prevent reproduction in marmosets. MNI Open Research, 0, 3, 2.	1.0	0
80	Development and validation of a sensitive HPLC-HESI-MS/MS method for quantitative determination of bitopertin in rat and marmoset plasma. MNI Open Research, 0, 4, 2.	1.0	2
81	Pemphigoid-like skin lesions following the introduction of safinamide. Canadian Journal of Neurological Sciences, 0, , 1-6.	0.5	0
82	Evaluation of the effects of the mGlu2/3 antagonist LY341495 on dyskinesia and psychosis-like behaviours in the MPTP-lesioned marmoset. Pharmacological Reports, 0, , .	3.3	2