Seth B Darling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5010667/publications.pdf

Version: 2024-02-01

162 papers 13,183 citations

18482 62 h-index 22166 113 g-index

166 all docs

166
docs citations

166 times ranked 14040 citing authors

#	Article	IF	CITATIONS
1	Directing the self-assembly of block copolymers. Progress in Polymer Science, 2007, 32, 1152-1204.	24.7	945
2	Membrane materials for water purification: design, development, and application. Environmental Science: Water Research and Technology, 2016, 2, 17-42.	2.4	494
3	Additives for morphology control in high-efficiency organic solar cells. Materials Today, 2013, 16, 326-336.	14.2	483
4	The case for organic photovoltaics. RSC Advances, 2013, 3, 17633.	3.6	471
5	Perovskite photovoltaics: life-cycle assessment of energy and environmental impacts. Energy and Environmental Science, 2015, 8, 1953-1968.	30.8	449
6	Hierarchical Nanomorphologies Promote Exciton Dissociation in Polymer/Fullerene Bulk Heterojunction Solar Cells. Nano Letters, 2011, 11, 3707-3713.	9.1	415
7	Morphology characterization in organic and hybrid solar cells. Energy and Environmental Science, 2012, 5, 8045.	30.8	379
8	Assumptions and the levelized cost of energy for photovoltaics. Energy and Environmental Science, 2011, 4, 3133.	30.8	317
9	Mussel-Inspired Surface Engineering for Water-Remediation Materials. Matter, 2019, 1, 115-155.	10.0	301
10	Guiding Polymers to Perfection:Â Macroscopic Alignment of Nanoscale Domains. Nano Letters, 2004, 4, 273-276.	9.1	293
11	Vacuum-Deposited Small-Molecule Organic Solar Cells with High Power Conversion Efficiencies by Judicious Molecular Design and Device Optimization. Journal of the American Chemical Society, 2012, 134, 13616-13623.	13.7	260
12	Nanoscopic Patterned Materials with Tunable Dimensions via Atomic Layer Deposition on Block Copolymers. Advanced Materials, 2010, 22, 5129-5133.	21.0	255
13	Photocatalytic Nanofiltration Membranes with Selfâ€Cleaning Property for Wastewater Treatment. Advanced Functional Materials, 2017, 27, 1700251.	14.9	245
14	A Route to Nanoscopic Materials <i>via</i> Sequential Infiltration Synthesis on Block Copolymer Templates. ACS Nano, 2011, 5, 4600-4606.	14.6	244
15	Sharpening Nanofiltration: Strategies for Enhanced Membrane Selectivity. ACS Applied Materials & Samp; Interfaces, 2020, 12, 39948-39966.	8.0	242
16	Block copolymers for photovoltaics. Energy and Environmental Science, 2009, 2, 1266.	30.8	232
17	Dopamine: Just the Right Medicine for Membranes. Advanced Functional Materials, 2018, 28, 1705327.	14.9	222
18	Janus Membranes: Creating Asymmetry for Energy Efficiency. Advanced Materials, 2018, 30, e1801495.	21.0	193

#	Article	IF	CITATIONS
19	Graphene in perovskite solar cells: device design, characterization and implementation. Journal of Materials Chemistry A, 2016, 4, 6185-6235.	10.3	185
20	Synthesis and Photovoltaic Effect in Dithieno[2,3â€ <i>d</i> :2′,3′â€ <i>d</i> ′]Benzo[1,2â€ <i>b</i> :4,5â€ <i>b</i> ′]dithiopheneâ€Based (Advanced Materials, 2013, 25, 838-843.	Conjugateo	d P ioto mers.
21	Enhanced Block Copolymer Lithography Using Sequential Infiltration Synthesis. Journal of Physical Chemistry C, 2011, 115, 17725-17729.	3.1	168
22	Hierarchical Assembly and Compliance of Aligned Nanoscale Polymer Cylinders in Confinement. Langmuir, 2004, 20, 5091-5099.	3.5	167
23	Self-Organization of FePt Nanoparticles on Photochemically Modified Diblock Copolymer Templates. Advanced Materials, 2005, 17, 2446-2450.	21.0	157
24	Detection and role of trace impurities in high-performance organic solar cells. Energy and Environmental Science, 2013, 6, 1513.	30.8	157
25	Tetrathienoanthracene-Based Copolymers for Efficient Solar Cells. Journal of the American Chemical Society, 2011, 133, 3284-3287.	13.7	156
26	Crude-Oil-Repellent Membranes by Atomic Layer Deposition: Oxide Interface Engineering. ACS Nano, 2018, 12, 8678-8685.	14.6	150
27	Optoelectronics using block copolymers. Materials Today, 2010, 13, 42-51.	14.2	140
28	Self-Assembly of Poly(3-hexylthiophene)-block-polylactide Block Copolymer and Subsequent Incorporation of Electron Acceptor Material. Macromolecules, 2009, 42, 8211-8217.	4.8	135
29	Domestic and overseas manufacturing scenarios of silicon-based photovoltaics: Life cycle energy and environmental comparative analysis. Solar Energy, 2014, 105, 669-678.	6.1	131
30	A materials chemistry perspective on nanomagnetism. Journal of Materials Chemistry, 2005, 15, 4189.	6.7	130
31	Block Copolymer Nanostructures for Technology. Polymers, 2010, 2, 470-489.	4.5	129
32	Polythiophene-block-polyfluorene and Polythiophene-block-poly(fluorene-co-benzothiadiazole): Insights into the Self-Assembly of All-Conjugated Block Copolymers. Macromolecules, 2011, 44, 530-539.	4.8	120
33	Advanced oil sorbents using sequential infiltration synthesis. Journal of Materials Chemistry A, 2017, 5, 2929-2935.	10.3	114
34	Porous Janus materials with unique asymmetries and functionality. Materials Today, 2021, 51, 626-647.	14.2	113
35	Perspective: Interfacial materials at the interface of energy and water. Journal of Applied Physics, 2018, 124, .	2.5	106
36	Improved Hybrid Solar Cells via in situ UV Polymerization. Small, 2009, 5, 1776-1783.	10.0	105

#	Article	IF	Citations
37	Importance of Side Chains and Backbone Length in Defect Modeling of Poly(3-alkylthiophenes). Journal of Physical Chemistry B, 2009, 113, 6215-6218.	2.6	105
38	Tailored PEDOT:PSS hole transport layer for higher performance in perovskite solar cells: Enhancement of electrical and optical properties with improved morphology. Journal of Energy Chemistry, 2020, 44, 41-50.	12.9	105
39	New Insight into the Mechanism of Sequential Infiltration Synthesis from Infrared Spectroscopy. Chemistry of Materials, 2014, 26, 6135-6141.	6.7	102
40	Chinese Ink: A Powerful Photothermal Material for Solar Steam Generation. Advanced Materials Interfaces, 2019, 6, 1801252.	3.7	100
41	Characterizing the Three-Dimensional Structure of Block Copolymers <i>via</i> Sequential Infiltration Synthesis and Scanning Transmission Electron Tomography. ACS Nano, 2015, 9, 5333-5347.	14.6	98
42	Deciphering the uncertainties in life cycle energy and environmental analysis of organic photovoltaics. Energy and Environmental Science, 2012, 5, 9163.	30.8	97
43	Versatile coating with multifunctional performance for solar steam generation. Nano Energy, 2020, 74, 104886.	16.0	97
44	Solar-driven evaporators for water treatment: challenges and opportunities. Environmental Science: Water Research and Technology, 2021, 7, 24-39.	2.4	94
45	Mesoscale morphologies in polymer thin films. Progress in Polymer Science, 2011, 36, 793-812.	24.7	89
46	Ultrathin molybdenum oxide anode buffer layer for organic photovoltaic cells formed using atomic layer deposition. Solar Energy Materials and Solar Cells, 2012, 99, 235-239.	6.2	88
47	Drawing on Membrane Photocatalysis for Fouling Mitigation. ACS Applied Materials & Samp; Interfaces, 2021, 13, 14844-14865.	8.0	87
48	Charge generation in organic photovoltaics: a review of theory and computation. Molecular Systems Design and Engineering, 2016, 1, 10-24.	3.4	86
49	Sequential Infiltration Synthesis for the Design of Low Refractive Index Surface Coatings with Controllable Thickness. ACS Nano, 2017, 11, 2521-2530.	14.6	84
50	Electrolyte Effects on Electron Transport and Recombination at ZnO Nanorods for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 17880-17888.	3.1	78
51	Porphyrin Covalent Organic Framework (POF)â€Based Interface Engineering for Solar Steam Generation. Advanced Materials Interfaces, 2019, 6, 1900254.	3.7	76
52	The chemical physics of sequential infiltration synthesisâ€"A thermodynamic and kinetic perspective. Journal of Chemical Physics, 2019, 151, 190901.	3.0	76
53	Atomic layer deposition for membrane interface engineering. Nanoscale, 2018, 10, 20505-20513.	5 . 6	74
54	Visibleâ€Lightâ€Activated Photocatalytic Films toward Selfâ€Cleaning Membranes. Advanced Functional Materials, 2020, 30, 2002847.	14.9	74

#	Article	IF	Citations
55	Enhanced polymeric lithography resists via sequential infiltration synthesis. Journal of Materials Chemistry, 2011, 21, 11722.	6.7	73
56	Emerging trends in metal-containing block copolymers: synthesis, self-assembly, and nanomanufacturing applications. Journal of Materials Chemistry C, 2013, 1, 2080.	5. 5	73
57	Isolating the Effect of Torsional Defects on Mobility and Band Gap in Conjugated Polymers. Journal of Physical Chemistry B, 2008, 112, 8891-8895.	2.6	70
58	Polyphenolâ€Sensitized Atomic Layer Deposition for Membrane Interface Hydrophilization. Advanced Functional Materials, 2020, 30, 1910062.	14.9	70
59	Covalent Organic Frameworks for Water Treatment. Advanced Materials Interfaces, 2021, 8, .	3.7	70
60	Kinetics for the Sequential Infiltration Synthesis of Alumina in Poly(methyl methacrylate): An Infrared Spectroscopic Study. Journal of Physical Chemistry C, 2015, 119, 14585-14592.	3.1	68
61	Enhanced Lithographic Imaging Layer Meets Semiconductor Manufacturing Specification a Decade Early. Advanced Materials, 2012, 24, 2608-2613.	21.0	67
62	Water treatment based on atomically engineered materials: Atomic layer deposition and beyond. Matter, 2021, 4, 3515-3548.	10.0	66
63	Optoelectronic Properties and Charge Transfer in Donor–Acceptor All-Conjugated Diblock Copolymers. Journal of Physical Chemistry C, 2011, 115, 9260-9266.	3.1	64
64	Conformal Nitrogenâ€Doped TiO ₂ Photocatalytic Coatings for Sunlightâ€Activated Membranes. Advanced Sustainable Systems, 2017, 1, 1600041.	5.3	63
65	Optimizing luminescent solar concentrator design. Energy and Environmental Science, 2012, 5, 5798-5802.	30.8	61
66	Room temperature, air crystallized perovskite film for high performance solar cells. Journal of Materials Chemistry A, 2016, 4, 10231-10240.	10.3	60
67	Janus Membranes via Diffusionâ€Controlled Atomic Layer Deposition. Advanced Materials Interfaces, 2018, 5, 1800658.	3.7	59
68	Crossover behavior in the hydrogen sensing mechanism for palladium ultrathin films. Nanotechnology, 2010, 21, 125501.	2.6	58
69	Efficient Perovskite Solar Cells by Temperature Control in Single and Mixed Halide Precursor Solutions and Films. Journal of Physical Chemistry C, 2015, 119, 25747-25753.	3.1	55
70	Recent progress in molecular engineering to tailor organic–inorganic interfaces in composite membranes. Molecular Systems Design and Engineering, 2020, 5, 433-444.	3.4	54
71	Suspended Membrane Evaporators Integrating Environmental and Solar Evaporation for Oily Wastewater Purification. ACS Applied Materials & Samp; Interfaces, 2021, 13, 39513-39522.	8.0	54
72	Isoindigo-based copolymers for polymer solar cells with efficiency over 7%. Journal of Materials Chemistry A, 2014, 2, 8026-8032.	10.3	51

#	Article	IF	Citations
73	Etch properties of resists modified by sequential infiltration synthesis. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, 06FG01.	1.2	49
74	Sequential Infiltration Synthesis of Electronic Materials: Group 13 Oxides via Metal Alkyl Precursors. Chemistry of Materials, 2019, 31, 5274-5285.	6.7	48
75	Ï€-Conjugated gradient copolymers suppress phase separation and improve stability in bulk heterojunction solar cells. Journal of Materials Chemistry C, 2014, 2, 3401.	5 . 5	47
76	Minimizing Lateral Domain Collapse in Etched Poly(3-hexylthiophene)- <i>block</i> -Polylactide Thin Films for Improved Optoelectronic Performance. Langmuir, 2010, 26, 8756-8761.	3.5	43
77	Advanced Materials for Energy-Water Systems: The Central Role of Water/Solid Interfaces in Adsorption, Reactivity, and Transport. Chemical Reviews, 2021, 121, 9450-9501.	47.7	43
78	Effect of Nanostructured Domains in Self-Assembled Block Copolymer Films on Sequential Infiltration Synthesis. Langmuir, 2017, 33, 13214-13223.	3.5	42
79	Coexistence of the (23 $ ilde{A}$ — \hat{a} ^ \hat{s} 3) Au(111) Reconstruction and a Striped Phase Self-Assembled Monolayer. Langmuir, 2002, 18, 7462-7468.	3.5	40
80	Simple orientational control over cylindrical organic–inorganic block copolymer domains for etch mask applications. Thin Solid Films, 2009, 517, 4474-4478.	1.8	40
81	Delineation of the effects of water and oxygen on the degradation of organic photovoltaic devices. Solar Energy Materials and Solar Cells, 2013, 110, 36-42.	6.2	40
82	Synthesis and Crystallinity of Conjugated Block Copolymers Prepared by Click Chemistry. Macromolecules, 2013, 46, 2636-2645.	4.8	40
83	Selectivity of Per- and Polyfluoroalkyl Substance Sensors and Sorbents in Water. ACS Applied Materials & Company (1988) Materials	8.0	39
84	Linking Group Influences Charge Separation and Recombination in Allâ€Conjugated Block Copolymer Photovoltaics. Advanced Functional Materials, 2015, 25, 5578-5585.	14.9	38
85	Mechanism for hierarchical self-assembly of nanoparticles on scaffolds derived from block copolymers. Surface Science, 2007, 601, 2555-2561.	1.9	37
86	Supramolecular Conjugated Block Copolymers. Macromolecules, 2012, 45, 6571-6579.	4.8	36
87	Mitigating oil spills in the water column. Environmental Science: Water Research and Technology, 2018, 4, 40-47.	2.4	36
88	Selfâ€Cleaning Membranes: Visibleâ€Lightâ€Activated Photocatalytic Films toward Selfâ€Cleaning Membranes (Adv. Funct. Mater. 34/2020). Advanced Functional Materials, 2020, 30, 2070230.	14.9	36
89	New Insights into Sequential Infiltration Synthesis. ECS Transactions, 2015, 69, 147-157.	0.5	35
90	Nanofilms directly formed on macro-porous substrates for molecular and ionic sieving. Journal of Materials Chemistry A, 2018, 6, 2908-2913.	10.3	33

#	Article	IF	CITATIONS
91	Thickness dependent hierarchical meso/nano scale morphologies of a metal-containing block copolymer thin film induced by hybrid annealing and their pattern transfer abilities. Soft Matter, 2009, 5, 4665.	2.7	31
92	The role of metal nanoparticles and nanonetworks in alloy degradation. Nature Materials, 2008, 7, 641-646.	27.5	30
93	Rational Design of Thermally Stable, Bicontinuous Donor/Acceptor Morphologies with Conjugated Block Copolymer Additives. ACS Macro Letters, 2015, 4, 867-871.	4.8	30
94	Ferric tannate photothermal material for efficient water distillation. Environmental Science: Water Research and Technology, 2020, 6, 911-915.	2.4	30
95	Maximizing selectivity: An analysis of isoporous membranes. Journal of Membrane Science, 2021, 633, 119389.	8.2	29
96	Substitutional Growth of Methylammonium Lead Iodide Perovskites in Alcohols. Advanced Energy Materials, 2018, 8, 1701726.	19.5	28
97	Surface vibrations in alkanethiol self-assembled monolayers of varying chain length. Journal of Chemical Physics, 2004, 120, 3880-3886.	3.0	27
98	Nanofabrication with metallopolymers ―recent developments and future perspectives. Polymer International, 2013, 62, 1123-1134.	3.1	26
99	Sequential Infiltration Synthesis of Al2O3 in Polyethersulfone Membranes. Jom, 2019, 71, 212-223.	1.9	25
100	Resolving the Atomic Structure of Sequential Infiltration Synthesis Derived Inorganic Clusters. ACS Nano, 2020, 14, 14846-14860.	14.6	25
101	Surface vibrations of a highly ordered low-density alkanethiol monolayer measured using inelastic helium atom scattering. Surface Science, 2001, 478, L313-L319.	1.9	23
102	Coexistence of Two Electronic Nano-Phases on a CH ₃ NH ₃ Pbl _{3ê€"<i>x</i>} Cl _{<i>x</i>} Surface Observed in STM Measurements. ACS Applied Materials & State of the State of	8.0	21
103	Influence of steps on the interaction between adsorbed hydrogen atoms and a nickel surface. Journal of Chemical Physics, 1999, 111, 9053-9057.	3.0	19
104	Tuning metal surface diffusion on diblock copolymer films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2007, 25, 1048-1051.	2.1	18
105	Sandwich-Structured Photothermal Wood for Durable Moisture Harvesting and Pumping. ACS Applied Materials & Samp; Interfaces, 2021, 13, 33713-33721.	8.0	18
106	Model compounds based on poly(p-phenylenevinyleneborane) and terthiophene: Investigating the p–n junction in diblock copolymers. Polymer, 2013, 54, 3510-3520.	3.8	16
107	Improved conductive atomic force microscopy measurements on organic photovoltaic materials via mitigation of contact area uncertainty. Progress in Photovoltaics: Research and Applications, 2013, 21, 1433-1443.	8.1	15

Solar Steam: Chinese Ink: A Powerful Photothermal Material for Solar Steam Generation (Adv. Mater.) Tj ETQq0 0 0 ggBT /Overlock 10 Tf

#	Article	IF	Citations
109	Step-modified phase diagram of chemisorbed oxygen on nickel. Surface Science, 2001, 491, 140-148.	1.9	14
110	Performance modeling and valuation of snow-covered PV systems: examination of a simplified approach to decrease forecasting error. Environmental Science and Pollution Research, 2018, 25, 15484-15491.	5.3	14
111	Modifying metal–polymer nanostructures using UV exposure. Soft Matter, 2009, 5, 1683.	2.7	13
112	Molecular dynamics and charge transport in organic semiconductors: a classical approach to modeling electron transfer. Chemical Science, 2017, 8, 2597-2609.	7.4	13
113	Polycaprolactone: A Promising Addition to the Sequential Infiltration Synthesis Polymer Family Identified through <i>In Situ</i> Infrared Spectroscopy. ACS Applied Polymer Materials, 2020, 2, 5501-5510.	4.4	13
114	Surface Zeta Potential of ALD-Grown Metal-Oxide Films. Langmuir, 2021, 37, 11618-11624.	3.5	12
115	When SLIPS meets TIPS: An endogenous lubricant-infused surface by taking the diluent as the lubricant. Chemical Engineering Journal, 2021, 425, 130600.	12.7	12
116	Asymmetric morphology from an organic/organometallic block copolymer. Polymer, 2010, 51, 4663-4666.	3.8	11
117	Lanthanides: new metallic cathode materials for organic photovoltaic cells. Physical Chemistry Chemical Physics, 2013, 15, 13052.	2.8	11
118	Visualization of Hierarchical Nanodomains in Polymer/Fullerene Bulk Heterojunction Solar Cells. Microscopy and Microanalysis, 2014, 20, 1507-1513.	0.4	11
119	L-Tryptophan on Cu(111): engineering a molecular labyrinth driven by indole groups. Nanotechnology, 2015, 26, 235604.	2.6	9
120	Electronic Conductivity of Nanoporous Indium Oxide Derived from Sequential Infiltration Synthesis. Journal of Physical Chemistry C, 2021, 125, 21191-21198.	3.1	9
121	lonic Transport in Electrostatic Janus Membranes. An Explicit Solvent Molecular Dynamic Simulation. ACS Nano, 2022, 16, 3768-3775.	14.6	9
122	Nanopatterning of ultrananocrystalline diamond thin films via block copolymer lithography. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2010, 28, 979-983.	2.1	8
123	Tailoring uniform gold nanoparticle arrays and nanoporous films for next-generation optoelectronic devices. Superlattices and Microstructures, 2018, 118, 1-6.	3.1	8
124	Kinetically Enhanced Approach for Rapid and Tunable Self-Assembly of Rod-Coil Block Copolymers. Macromolecular Rapid Communications, 2015, 36, 1329-1335.	3.9	7
125	Difficulties and recommendations for more accurately predicting the performance of solar energy systems during the snow season. , 2016 , , .		7
126	Janus Membrane: Janus Membranes: Creating Asymmetry for Energy Efficiency (Adv. Mater. 43/2018). Advanced Materials, 2018, 30, 1870328.	21.0	7

#	Article	IF	CITATIONS
127	Amino Acid Immobilization of Copper Surface Diffusion on Cu(111). Advanced Materials Interfaces, 2019, 6, 1900021.	3.7	7
128	Dewetting in immiscible polymer bilayer films. Physical Review Materials, 2017, 1, .	2.4	7
129	Density functional theory as a guide for the design of pyran dyes for dye-sensitized solar cells. Monatshefte Fýr Chemie, 2011, 142, 45-52.	1.8	6
130	Polaron Structure and Transport in Fullerene Materials: Insights from First-Principles Calculations. Journal of Physical Chemistry C, 2014, 118, 21785-21797.	3.1	6
131	Membranes: Dopamine: Just the Right Medicine for Membranes (Adv. Funct. Mater. 8/2018). Advanced Functional Materials, 2018, 28, 1870052.	14.9	6
132	Crises and opportunities at the energy-water interface. MRS Bulletin, 2018, 43, 404-405.	3.5	6
133	Enrichment and Distribution of Pb ²⁺ lons in Zwitterionic Poly(cysteine methacrylate) Brushes at the Solid–Liquid Interface. Langmuir, 2019, 35, 17082-17089.	3.5	6
134	Block Copolymer Lithography as a Facile Route for Developing Nanowire-Like Arrays. Advanced Science Letters, 2011, 4, 437-441.	0.2	6
135	Influence of oxygen dissolution history on reconstruction behavior of a stepped metal surface. Chemical Physics Letters, 2002, 364, 284-289.	2.6	5
136	Exciton size and quantum transport in nanoplatelets. Journal of Chemical Physics, 2015, 143, 224106.	3.0	5
137	Water Treatment: Porphyrin Covalent Organic Framework (POF)-Based Interface Engineering for Solar Steam Generation (Adv. Mater. Interfaces 11/2019). Advanced Materials Interfaces, 2019, 6, 1970072.	3.7	5
138	Universal dynamics of coarsening during polymer-polymer thin-film spinodal dewetting kinetics. Physical Review E, 2020, 102, 032802.	2.1	5
139	Rational Design of Interfacial Structure:  Adsorbate-Mediated Templating. Journal of Physical Chemistry B, 1999, 103, 9805-9808.	2.6	4
140	Self-assembled monolayer-modified block copolymers for chemical surface nanopatterning. Materials Chemistry and Physics, 2011, 125, 382-385.	4.0	4
141	Planar mixed halide perovskite-PCBM solar cells on flexible glass substrates processed at low temperature without ITO. , 2016 , , .		4
142	Novel colloidal materials from functionalized polyoxometalates. Inorganic Chemistry Communication, 2017, 84, 20-23.	3.9	4
143	Hall of Fame Article: Covalent Organic Frameworks for Water Treatment (Adv. Mater. Interfaces) Tj ETQq1 1 0.78	34314 rgBT 3.7	- /gverlock 1
144	Rational Design of Nanostructured Hybrid Materials for Photovoltaics. Materials Research Society Symposia Proceedings, 2009, 1190, 81.	0.1	2

#	Article	IF	CITATIONS
145	2010 Visualization Challenge. Science, 2011, 331, 847-847.	12.6	2
146	Concurrent Quantitative Conductivity and Mechanical Properties Measurements of Organic Photovoltaic Materials using AFM. Journal of Visualized Experiments, 2013, , .	0.3	2
147	Structure-property relationships in NOx sensor materials composed of arrays of vanadium oxide nanoclusters. Solid State Sciences, 2017, 74, 1-7.	3.2	2
148	Procedure for the Transfer of Polymer Films Onto Porous Substrates with Minimized Defects. Journal of Visualized Experiments, 2019 , , .	0.3	2
149	Probing Diffuse Polymer Brush Interfaces Using Resonant Soft X-ray Scattering. Synchrotron Radiation News, 2020, 33, 24-30.	0.8	2
150	Introduction to molecular engineering for water technologies. Molecular Systems Design and Engineering, 2020, 5, 900-901.	3.4	2
151	In search of nanoperfection: Experiment and Monte Carlo simulation of nucleation-controlled step doubling. Journal of Applied Physics, 2002, 91, 10081.	2.5	1
152	A Materials Chemistry Perspective on Nanomagnetism. ChemInform, 2006, 37, no.	0.0	1
153	Understanding the Role of Additives in Improving the Performance of Bulk Heterojunction Organic Solar Cells. Microscopy and Microanalysis, 2015, 21, 2439-2440.	0.4	1
154	Photocatalysis: Conformal Nitrogenâ€Doped TiO ₂ Photocatalytic Coatings for Sunlightâ€Activated Membranes (Adv. Sustainable Syst. 1â€2/2017). Advanced Sustainable Systems, 2017, 1, .	5.3	1
155	Advanced photon source 2004 users meeting and Workshops. Synchrotron Radiation News, 2004, 17, 2-12.	0.8	0
156	Self-Assembly of Magnetic and Semiconductiong Nanoparticles on Modified Diblock Copolymer Templates. Materials Research Society Symposia Proceedings, 2005, 901, 1.	0.1	0
157	Self-Assembly of Cylinder-Forming Block Copolymers on Ultrananocrystalline Diamond (UNCD) Thin Films for Lithographic Applications. Materials Research Society Symposia Proceedings, 2009, 1203, 1.	0.1	0
158	A simple and inexpensive encapsulation route for high-throughput characterization of organic photovoltaic devices. , 2012 , , .		0
159	Process-Controlled Multiscale Morphologies in Metal-Containing Block Copolymer Thin Films. Journal of Nanoscience and Nanotechnology, 2014, 14, 2653-2657.	0.9	0
160	Macromol. Rapid Commun. 14/2015. Macromolecular Rapid Communications, 2015, 36, 1376-1376.	3.9	0
161	Outstanding Reviewers for Energy & Environmental Science in 2016. Energy and Environmental Science, 2017, 10, 845-845.	30.8	0

Immobilized Cu Adatoms: Amino Acid Immobilization of Copper Surface Diffusion on Cu(111) (Adv.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 cm | 10 T

10

162