

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5006577/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	OUP accepted manuscript. Journal of Nutrition, 2022, , .	2.9	Ο
2	Increasing Vegetable Intake Decreases Urinary Acidity and Bone Resorption Marker in Overweight and Obese Adults: An 8-Week Randomized Controlled Trial. Journal of Nutrition, 2021, 151, 3413-3420.	2.9	0
3	Salivary Al ² Secretion and Altered Oral Microbiome in Mouse Models of AD. Current Alzheimer Research, 2021, 17, 1133-1144.	1.4	4
4	Voluntary running of defined distances alters bone microstructure in C57BL/6 mice fed a high-fat diet. Applied Physiology, Nutrition and Metabolism, 2021, 46, 1337-1344.	1.9	1
5	Deficiency of PPARÎ ³ in Bone Marrow Stromal Cells Does not Prevent High-Fat Diet-Induced Bone Deterioration in Mice. Journal of Nutrition, 2021, 151, 2697-2704.	2.9	4
6	Beneficial effect of dietary geranylgeraniol on glucose homeostasis and bone microstructure in obese mice is associated with suppression of proinflammation and modification of gut microbiome. Nutrition Research, 2021, 93, 27-37.	2.9	8
7	Dietary Selenium Supplementation Does Not Attenuate Mammary Tumorigenesis-Mediated Bone Loss in Male MMTV-PyMT Mice. Biological Trace Element Research, 2020, 194, 221-227.	3.5	2
8	Increasing Dietary Fish Oil Reduces Adiposity and Mitigates Bone Deterioration in Growing C57BL/6 Mice Fed a High-Fat Diet. Journal of Nutrition, 2020, 150, 99-107.	2.9	17
9	Osteoprotective effect of green tea polyphenols and annatto-extracted tocotrienol in obese mice is associated with enhanced microbiome vitamin K2 biosynthetic pathways. Journal of Nutritional Biochemistry, 2020, 86, 108492.	4.2	16
10	Decreasing the Ratio of Dietary Linoleic to α-Linolenic Acid from 10 to 4 by Changing Only the Former Does Not Prevent Adiposity or Bone Deterioration in Obese Mice. Journal of Nutrition, 2020, 150, 1370-1378.	2.9	4
11	Deletion of PPARÎ ³ in Mesenchymal Lineage Cells Protects Against Aging-Induced Cortical Bone Loss in Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 826-834.	3.6	10
12	Effect of Long-Term Green Tea Polyphenol Supplementation on Bone Architecture, Turnover, and Mechanical Properties in Middle-Aged Ovariectomized Rats. Calcified Tissue International, 2019, 104, 285-300.	3.1	16
13	Depletion and repletion of fruit and vegetable intake alters serum bone turnover markers: a 28-week single-arm experimental feeding intervention. British Journal of Nutrition, 2018, 120, 500-507.	2.3	3
14	Caloric restriction combined with exercise is effective in reducing adiposity and mitigating bone structural deterioration in obese rats. Annals of the New York Academy of Sciences, 2018, 1433, 41-52.	3.8	11
15	High Dietary Protein Intake and Protein-Related Acid Load on Bone Health. Current Osteoporosis Reports, 2017, 15, 571-576.	3.6	25
16	A High-Fat Diet Decreases Bone Mass in Growing Mice with Systemic Chronic Inflammation Induced by Low-Dose, Slow-Release Lipopolysaccharide Pellets. Journal of Nutrition, 2017, 147, 1909-1916.	2.9	32
17	Opposing impacts on healthspan and longevity by limiting dietary selenium in telomere dysfunctional mice. Aging Cell, 2017, 16, 125-135.	6.7	30
18	Monocyte chemotactic protein-1 deficiency attenuates and high-fat diet exacerbates bone loss in mice with Lewis lung carcinoma. Oncotarget, 2017, 8, 23303-23311.	1.8	7

Jay J Cao

#	Article	IF	CITATIONS
19	Alpha-1 Antitrypsin Gene Therapy Ameliorates Bone Loss in Ovariectomy-Induced Osteoporosis Mouse Model. Human Gene Therapy, 2016, 27, 679-686.	2.7	24
20	A high-fat diet increases body weight and circulating estradiol concentrations but does not improve bone structural properties in ovariectomized mice. Nutrition Research, 2016, 36, 320-327.	2.9	39
21	Impact of targeted PPARÎ ³ disruption on bone remodeling. Molecular and Cellular Endocrinology, 2015, 410, 27-34.	3.2	35
22	Soy protein is beneficial but high-fat diet and voluntary running are detrimental to bone structure in mice. Nutrition Research, 2015, 35, 523-531.	2.9	12
23	Involuntary Wheel Running Improves but Does Not Fully Reverse the Deterioration of Bone Structure of Obese Rats Despite Decreasing Adiposity. Calcified Tissue International, 2015, 97, 145-155.	3.1	19
24	Green tea supplementation benefits body composition and improves bone properties in obese female rats fed with high-fat diet and caloric restricted diet. Nutrition Research, 2015, 35, 1095-1105.	2.9	25
25	Transient decrements in mood during energy deficit are independent of dietary protein-to-carbohydrate ratio. Physiology and Behavior, 2015, 139, 524-531.	2.1	16
26	Increased Circulating Estradiol in Mice Fed a Highâ€Fat Diet does not Attenuate Ovariectomyâ€Induced Bone Structural Deterioration. FASEB Journal, 2015, 29, 755.13.	0.5	0
27	High-fat Diet Enhances and Plasminogen Activator Inhibitor-1 Deficiency Attenuates Bone Loss in Mice with Lewis Lung Carcinoma. Anticancer Research, 2015, 35, 3839-47.	1.1	2
28	Role of Glucocorticoid-induced Leucine Zipper (GILZ) in Bone Acquisition. Journal of Biological Chemistry, 2014, 289, 19373-19382.	3.4	28
29	Dietary Protein Level and Source Differentially Affect Bone Metabolism, Strength, and Intestinal Calcium Transporter Expression during Ad Libitum and Food-Restricted Conditions in Male Rats. Journal of Nutrition, 2014, 144, 821-829.	2.9	22
30	N-Acetylcysteine Supplementation Decreases Osteoclast Differentiation and Increases Bone Mass in Mice Fed a High-Fat Diet. Journal of Nutrition, 2014, 144, 289-296.	2.9	26
31	Calcium homeostasis and bone metabolic responses to high-protein diets during energy deficit in healthy young adults: a randomized controlled trial. American Journal of Clinical Nutrition, 2014, 99, 400-407.	4.7	26
32	Effects of energy deficit, dietary protein, and feeding on intracellular regulators of skeletal muscle proteolysis. FASEB Journal, 2013, 27, 5104-5111.	0.5	39
33	Effects of highâ€protein diets on fatâ€free mass and muscle protein synthesis following weight loss: a randomized controlled trial. FASEB Journal, 2013, 27, 3837-3847.	O.5	208
34	Soy protein isolates prevent loss of bone quantity associated with obesity in rats through regulation of insulin signaling in osteoblasts. FASEB Journal, 2013, 27, 3514-3523.	0.5	35
35	Green Tea Polyphenols Improve Bone Microarchitecture in High-Fat-Diet–Induced Obese Female Rats Through Suppressing Bone Formation and Erosion. Journal of Medicinal Food, 2013, 16, 421-427. 	1.5	17
36	Selenium in Bone Health: Roles in Antioxidant Protection and Cell Proliferation. Nutrients, 2013, 5, 97-110.	4.1	121

Jay J Cao

#	Article	IF	CITATIONS
37	Selenium Deficiency Decreases Antioxidative Capacity and Is Detrimental to Bone Microarchitecture in Mice. Journal of Nutrition, 2012, 142, 1526-1531.	2.9	73
38	Green tea polyphenols benefits body composition and improves bone quality in long-term high-fat diet–induced obese rats. Nutrition Research, 2012, 32, 448-457.	2.9	61
39	Vitamin C Prevents Hypogonadal Bone Loss. PLoS ONE, 2012, 7, e47058.	2.5	22
40	Alphaâ€1 antitrypsin reduces ovariectomyâ€induced bone loss in mice. FASEB Journal, 2012, 26, 265.2.	0.5	0
41	Green tea and bone health: Evidence from laboratory studies. Pharmacological Research, 2011, 64, 155-161.	7.1	75
42	Alphaâ€1 antitrypsin reduces ovariectomyâ€induced bone loss in mice. Annals of the New York Academy of Sciences, 2011, 1240, E31-5.	3.8	12
43	Supplementation with Green Tea Polyphenols Improves Bone Microstructure and Quality in Aged, Orchidectomized Rats. Calcified Tissue International, 2011, 88, 455-463.	3.1	41
44	Effects of obesity on bone metabolism. Journal of Orthopaedic Surgery and Research, 2011, 6, 30.	2.3	560
45	A Diet High in Meat Protein and Potential Renal Acid Load Increases Fractional Calcium Absorption and Urinary Calcium Excretion without Affecting Markers of Bone Resorption or Formation in Postmenopausal Women. Journal of Nutrition, 2011, 141, 391-397.	2.9	77
46	Zinc deficiency increases miRâ \in 34a expression in mice. FASEB Journal, 2011, 25, 977.1.	0.5	2
47	Acid diet (high-meat protein) effects on calcium metabolism and bone health. Current Opinion in Clinical Nutrition and Metabolic Care, 2010, 13, 698-702.	2.5	52
48	Green tea polyphenols mitigate bone loss of female rats in a chronic inflammation-induced bone loss modelâ~†â~†â. Journal of Nutritional Biochemistry, 2010, 21, 968-974.	4.2	78
49	Dietâ€induced obesity alters bone remodeling leading to decreased femoral trabecular bone mass in mice. Annals of the New York Academy of Sciences, 2010, 1192, 292-297.	3.8	119
50	Suppressor of Cytokine Signaling 3 Inhibits LPS-induced IL-6 Expression in Osteoblasts by Suppressing CCAAT/Enhancer-binding Protein β Activity. Journal of Biological Chemistry, 2010, 285, 37227-37239.	3.4	37
51	Pinto bean hull extract supplementation favorably affects markers of bone metabolism and bone structure in mice. Food Research International, 2010, 43, 560-566.	6.2	13
52	High-fat diet decreases cancellous bone mass but has no effect on cortical bone mass in the tibia in mice. Bone, 2009, 44, 1097-1104.	2.9	200
53	Green tea and bone metabolism. Nutrition Research, 2009, 29, 437-456.	2.9	149
54	Relative bone mass decreased in mice fed high dietary fat despite an increase in body mass and bone formation markers. FASEB Journal, 2008, 22, 314.1.	0.5	0

JAY J CAO

#	Article	IF	CITATIONS
55	Aging Impairs ICF-I Receptor Activation and Induces Skeletal Resistance to ICF-I. Journal of Bone and Mineral Research, 2007, 22, 1271-1279.	2.8	68
56	Aging Increases Stromal/Osteoblastic Cell-Induced Osteoclastogenesis and Alters the Osteoclast Precursor Pool in the Mouse. Journal of Bone and Mineral Research, 2005, 20, 1659-1668.	2.8	161
57	Hyaluronan Increases RANKL Expression in Bone Marrow Stromal Cells Through CD44. Journal of Bone and Mineral Research, 2005, 20, 30-40.	2.8	7
58	Expression of RANKL and OPG Correlates With Age-Related Bone Loss in Male C57BL/6 Mice. Journal of Bone and Mineral Research, 2003, 18, 270-277.	2.8	144