
Peter McColgan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5006133/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Longitudinal thalamic white and grey matter changes associated with visual hallucinations in Parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 169-179.	1.9	17
2	Timing of selective basal ganglia white matter loss in premanifest Huntington's disease. NeuroImage: Clinical, 2022, 33, 102927.	2.7	10
3	Neurofilament light-associated connectivity in young-adult Huntington's disease is related to neuronal genes. Brain, 2022, 145, 3953-3967.	7.6	3
4	Reply to â€~Topographical layer imaging as a tool to track neurodegenerative disease spread in M1'. Nature Reviews Neuroscience, 2021, 22, 69-69.	10.2	3
5	Regional brain iron and gene expression provide insights into neurodegeneration in Parkinson's disease. Brain, 2021, 144, 1787-1798.	7.6	44
6	Relating quantitative <scp>7T MRI</scp> across cortical depths to cytoarchitectonics, gene expression and connectomics. Human Brain Mapping, 2021, 42, 4996-5009.	3.6	17
7	F05â€Biological and clinical characteristics of gene carriers far from predicted onset in the hd-yas study: a cross-sectional analysis. , 2021, , .		0
8	Visual Dysfunction Predicts Cognitive Impairment and White Matter Degeneration in Parkinson's Disease. Movement Disorders, 2021, 36, 1191-1202.	3.9	32
9	Identifying diseaseâ€associated biomarker network features through conditional graphical model. Biometrics, 2020, 76, 995-1006.	1.4	6
10	Differences in network controllability and regional gene expression underlie hallucinations in Parkinson's disease. Brain, 2020, 143, 3435-3448.	7.6	31
11	Dementia risk in Parkinson's disease is associated with interhemispheric connectivity loss and determined by regional gene expression. NeuroImage: Clinical, 2020, 28, 102470.	2.7	7
12	Biological and clinical characteristics of gene carriers far from predicted onset in the Huntington's disease Young Adult Study (HD-YAS): a cross-sectional analysis. Lancet Neurology, The, 2020, 19, 502-512.	10.2	122
13	The human motor cortex microcircuit: insights for neurodegenerative disease. Nature Reviews Neuroscience, 2020, 21, 401-415.	10.2	56
14	Fiber-specific white matter reductions in Parkinson hallucinations and visual dysfunction. Neurology, 2020, 94, e1525-e1538.	1.1	51
15	Brain Regions Showing White Matter Loss inÂHuntington's Disease Are Enriched for Synaptic and Metabolic Genes. Biological Psychiatry, 2018, 83, 456-465.	1.3	79
16	Can neuroimaging predict dementia in Parkinson's disease?. Brain, 2018, 141, 2545-2560.	7.6	46
17	White matter predicts functional connectivity in premanifest Huntington's disease. Annals of Clinical and Translational Neurology, 2017, 4, 106-118.	3.7	38
18	Large-scale DCMs for resting-state fMRI. Network Neuroscience, 2017, 1, 222-241.	2.6	146

PETER MCCOLGAN

#	Article	IF	CITATIONS
19	Structural and functional brain network correlates of depressive symptoms in premanifest Huntington's disease. Human Brain Mapping, 2017, 38, 2819-2829.	3.6	28
20	Reply: MRI findings of visual system alterations in Parkinson's disease. Brain, 2017, 140, e70-e70.	7.6	0
21	1609â€Length of white matter connexions determine their rate of atrophy in premanifest huntington's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, A9.2-A9.	1.9	Ο
22	Topological length of white matter connections predicts their rate of atrophy in premanifest Huntington's disease. JCI Insight, 2017, 2, .	5.0	37
23	D18â€Brain network breakdown and pathophysiological correlates in huntington's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A40.2-A40.	1.9	Ο
24	D19â€Longitudinal changes in functional connectivity of cortico-basal ganglia networks in manifest and premanifest huntington's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A41.1-A41.	1.9	0
25	Cerebrospinal fluid total tau concentration predicts clinical phenotype in Huntington's disease. Journal of Neurochemistry, 2016, 139, 22-25.	3.9	58
26	Longitudinal changes in functional connectivity of corticoâ€basal ganglia networks in manifests and premanifest huntington's disease. Human Brain Mapping, 2016, 37, 4112-4128.	3.6	27
27	Cerebrospinal Fluid Inflammatory Biomarkers Reflect Clinical Severity in Huntington's Disease. PLoS ONE, 2016, 11, e0163479.	2.5	58
28	Basal gangliaâ€cortical structural connectivity in Huntington's disease. Human Brain Mapping, 2015, 36, 1728-1740.	3.6	29
29	Oculoleptomeningeal Amyloidosis associated with transthyretin Leu12Pro in an African patient. Journal of Neurology, 2015, 262, 228-234.	3.6	24
30	Selective vulnerability of Rich Club brain regions is an organizational principle of structural connectivity loss in Huntington's disease. Brain, 2015, 138, 3327-3344.	7.6	96
31	Acute cerebellar ataxia due to Epstein–Barr virus. Practical Neurology, 2012, 12, 238-240.	1.1	8
32	Addenbrooke's Cognitive Examinationâ€Revised for mild cognitive impairment in Parkinson's disease. Movement Disorders, 2012, 27, 1173-1177.	3.9	38
33	Towards the identification of blood biomarkers for acute stroke in humans: a comprehensive systematic review. British Journal of Clinical Pharmacology, 2012, 74, 230-240.	2.4	95
34	The genetics of sporadic ruptured and unruptured intracranial aneurysms: a genetic meta-analysis of 8 genes and 13 polymorphisms in approximately 20,000 individuals. Journal of Neurosurgery, 2010, 112, 714-721.	1.6	50
35	Polymorphisms of matrix metalloproteinases 1, 2, 3 and 9 and susceptibility to lung, breast and colorectal cancer in over 30,000 subjects. International Journal of Cancer, 2009, 125, 1473-1478.	5.1	51
36	The genetics of abdominal aortic aneurysms: a comprehensive meta-analysis involving eight candidate genes in over 16,700 patients. International Surgery, 2009, 94, 350-8.	0.1	23

#	Article	IF	CITATIONS
37	The Genetics of Carotid Dissection: Meta-Analysis of a MTHFR/C677T Common Molecular Variant. Cerebrovascular Diseases, 2008, 25, 561-565.	1.7	19