
Yohei Mikami

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/50061/publications.pdf Version: 2024-02-01

Υσηει Μικαμι

#	Article	IF	CITATIONS
1	Vagus nerve-mediated intestinal immune regulation: therapeutic implications of inflammatory bowel diseases. International Immunology, 2022, 34, 97-106.	4.0	21
2	Epithelium Replacement Contributes to Field Expansion of Squamous Epithelium and Ulcerative Colitis–Associated Neoplasia. Gastroenterology, 2022, 162, 334-337.e5.	1.3	4
3	Organ and brain crosstalk: The liver-brain axis in gastrointestinal, liver, and pancreatic diseases. Neuropharmacology, 2022, 205, 108915.	4.1	28
4	Effectiveness and Durability of Ustekinumab Therapy With or Without Immunomodulators for Ulcerative Colitis Patients in Japan. Crohn's & Colitis 360, 2022, 4, .	1.1	2
5	Intracellular metabolic adaptation of intraepithelial CD4+CD8αα+ T lymphocytes. IScience, 2022, 25, 104021.	4.1	14
6	Aryl hydrocarbon receptor signals in epithelial cells govern the recruitment and location of Helios+ Tregs in the gut. Cell Reports, 2022, 39, 110773.	6.4	20
7	Heterogeneity of ILC2s in the Intestine; Homeostasis and Pathology. Frontiers in Immunology, 2022, 13, .	4.8	6
8	Significance of endoscopic deep small bowel evaluation using balloon-assisted enteroscopy for Crohn's disease in clinical remission. Journal of Gastroenterology, 2021, 56, 25-33.	5.1	8
9	Bacteriotherapy for inflammatory bowel disease. Inflammation and Regeneration, 2021, 41, 3.	3.7	21
10	MicroRNA-221 and -222 modulate intestinal inflammatory Th17 cell response as negative feedback regulators downstream of interleukin-23. Immunity, 2021, 54, 514-525.e6.	14.3	30
11	P172 Clinical characteristics of newly diagnosed adult patients with Crohn's disease in Japan: Interim analysis of Inception cohort registry study of patients with Crohn's disease (iCREST-CD). Journal of Crohn's and Colitis, 2021, 15, S246-S247.	1.3	0
12	Hepatic Adenosine Triphosphate Reduction Through the Shortâ€Chain Fatty Acids–Peroxisome Proliferatorâ€Activated Receptor γ–Uncoupling Protein 2 Axis Alleviates Immuneâ€Mediated Acute Hepatitis in Inulinâ€Supplemented Mice. Hepatology Communications, 2021, 5, 1555-1570.	4.3	10
13	CD8+ tissue-resident memory T cells promote liver fibrosis resolution by inducing apoptosis of hepatic stellate cells. Nature Communications, 2021, 12, 4474.	12.8	86
14	Pathogenesis and management of gastrointestinal inflammation and fibrosis: from inflammatory bowel diseases to endoscopic surgery. Inflammation and Regeneration, 2021, 41, 21.	3.7	7
15	Circadian rhythms in the tissue-specificity from metabolism to immunity: insights from omics studies. Molecular Aspects of Medicine, 2021, 80, 100984.	6.4	12
16	Granzyme A and CD160 expression delineates ILC1 with graded functions in the mouse liver. European Journal of Immunology, 2021, 51, 2568-2575.	2.9	28
17	MicroRNA-directed pathway discovery elucidates an miR-221/222–mediated regulatory circuit in class switch recombination. Journal of Experimental Medicine, 2021, 218, .	8.5	6
18	Cholesterol 25-hydroxylase is a metabolic switch to constrain T cell–mediated inflammation in the skin. Science Immunology, 2021, 6, eabb6444.	11.9	7

Υόμει Μικάμι

#	Article	IF	CITATIONS
19	Predictors of necessity for endoscopic balloon dilatation in patients with Crohn's disease-related small bowel stenosis. Annals of Medicine, 2021, 53, 2025-2033.	3.8	1
20	Development of an Indigo Naturalis Suppository for Topical Induction Therapy in Patients with Ulcerative Colitis. Digestion, 2020, 101, 492-498.	2.3	17
21	Clinical and Endoscopic Characteristics of Pyogenic Granuloma in the Small Intestine: A Case Series with Literature Review. Internal Medicine, 2020, 59, 501-505.	0.7	11
22	Primary granulocytic sarcoma of the small intestine diagnosed by singleâ€balloon enteroscopy: A case report. Digestive Endoscopy, 2020, 32, 436-436.	2.3	1
23	Rapid Enhancer Remodeling and Transcription Factor Repurposing Enable High Magnitude Gene Induction upon Acute Activation of NK Cells. Immunity, 2020, 53, 745-758.e4.	14.3	46
24	The liver–brain–gut neural arc maintains the Treg cell niche in the gut. Nature, 2020, 585, 591-596.	27.8	126
25	P630 Complete endoscopic remission is not only associated with higher mucosal concentrations of 5-aminosalicylic acid but also with N-acetyl-5-aminosalicylic acid in patients with ulcerative colitis. Journal of Crohn's and Colitis, 2020, 14, S522-S523.	1.3	1
26	Plasmacytoid dendrtic cells protect against acute liver injury via IL-35. Journal of Hepatology, 2020, 73, S565-S566.	3.7	0
27	Environmental arginine controls multinuclear giant cell metabolism and formation. Nature Communications, 2020, 11, 431.	12.8	37
28	Mucosal concentrations of <i>N</i> â€acetylâ€5â€aminosalicylic acid related to endoscopic activity in ulcerative colitis patients with mesalamine. Journal of Gastroenterology and Hepatology (Australia), 2020, 35, 1878-1885.	2.8	10
29	Efficacy of Novel Ultrathin Single-Balloon Enteroscopy for Crohn's Disease: A Propensity Score-Matched Study. Gut and Liver, 2020, 14, 619-625.	2.9	3
30	5-Aminosalicylic acid intolerance is associated with a risk of adverse clinical outcomes and dysbiosis in patients with ulcerative colitis. Intestinal Research, 2020, 18, 69-78.	2.6	19
31	Tu1770 – Tlr7 Agonist Induced Dermatitis Exacerbated Colitis Via Altering Host Immune Cells and Gut Microbiota. Gastroenterology, 2019, 156, S-1117-S-1118.	1.3	0
32	Neuropeptide CGRP Limits Group 2 Innate Lymphoid Cell Responses and Constrains Type 2 Inflammation. Immunity, 2019, 51, 682-695.e6.	14.3	192
33	Tu1772 – ?Indigo Naturalis' Ameliorates Ulcerative Colitis Via Modulating Ahr Signaling and Microbe Composition. Gastroenterology, 2019, 156, S-1118.	1.3	0
34	Su1398 CLINICAL UTILITY OF BALLOON ASSISTED ENTEROSCOPY TO EVALUATE DEEP SMALL BOWEL LESIONS OF CROHN'S DISEASE. Gastrointestinal Endoscopy, 2019, 89, AB363.	1.0	0
35	Epigenetic regulation of T helper cells and intestinal pathogenicity. Seminars in Immunopathology, 2019, 41, 379-399.	6.1	20
36	P093 The Comparison of Short-Term Efficacy of Treatments Between Tofacitinib and Vedolizumab in Patients With Ulcerative Colitis. American Journal of Gastroenterology, 2019, 114, S24-S25.	0.4	0

Үонеі Мікамі

#	Article	IF	CITATIONS
37	Retinoic Acid Receptor Alpha Represses a Th9 Transcriptional and Epigenomic Program to Reduce Allergic Pathology. Immunity, 2019, 50, 106-120.e10.	14.3	54
38	Toll-Like Receptor 7 Agonist–Induced Dermatitis Causes Severe Dextran Sulfate Sodium Colitis by Altering the Gut Microbiome and Immune Cells. Cellular and Molecular Gastroenterology and Hepatology, 2019, 7, 135-156.	4.5	32
39	Plasmacytoid dendritic cells protect against immune-mediated acute liver injury via IL-35. Journal of Clinical Investigation, 2019, 129, 3201-3213.	8.2	27
40	A case report of severe amoebic pancolitis with wide range of ulcerative lesion. Progress of Digestive Endoscopy, 2019, 95, 126-128.	0.0	0
41	GoldiRunx and Remembering Cytotoxic Memory. Immunity, 2018, 48, 614-615.	14.3	1
42	NCR ⁺ ILC3 maintain larger STAT4 reservoir via Tâ€BET to regulate type 1 features upon ILâ€⊋3 stimulation in mice. European Journal of Immunology, 2018, 48, 1174-1180.	2.9	33
43	Intestinal barrier regulates immune responses in the liver via IL-10–producing macrophages. JCI Insight, 2018, 3, .	5.0	19
44	Human Intestinal Organoids Maintain Self-Renewal Capacity and Cellular Diversity in Niche-Inspired Culture Condition. Cell Stem Cell, 2018, 23, 787-793.e6.	11.1	334
45	Su1944 - Intestinal Dysbiosis Induces Systemic Dysregulation of Biotin Metabolism, Resulting in Extraintestinal Manifestation. Gastroenterology, 2018, 154, S-642.	1.3	0
46	Non-classical monocytes as mediators of tissue destruction in arthritis. Annals of the Rheumatic Diseases, 2018, 77, 1490-1497.	0.9	65
47	Innate lymphoid cells in organ fibrosis. Cytokine and Growth Factor Reviews, 2018, 42, 27-36.	7.2	25
48	013 Cholesterol 25-hydroxylase expressing CD4+ T cell regulates skin inflammation. Journal of Investigative Dermatology, 2018, 138, S3.	0.7	0
49	The Transcription Factor T-bet Limits Amplification of Type I IFN Transcriptome and Circuitry in T Helper 1 Cells. Immunity, 2017, 46, 983-991.e4.	14.3	79
50	Commensal Lactobacillus Controls Immune Tolerance during Acute Liver Injury in Mice. Cell Reports, 2017, 21, 1215-1226.	6.4	67
51	01.11â€Resident non-classical monocytes are critically important for tissue destruction in arthritis. , 2017, , .		Ο
52	Intestinal Dysbiosis and Biotin Deprivation Induce Alopecia through Overgrowth of Lactobacillus murinus in Mice. Cell Reports, 2017, 20, 1513-1524.	6.4	93
53	Epigenomic Views of Innate Lymphoid Cells. Frontiers in Immunology, 2017, 8, 1579.	4.8	26
54	Developmental Acquisition of Regulomes Underlies Innate Lymphoid Cell Functionality. Cell, 2016, 165, 1120-1133.	28.9	273

Үонеі Мікамі

#	Article	IF	CITATIONS
55	242 Novel immune regulation by CD4 + T cells via cholesterol 25-hydroxylase pathway. Journal of Investigative Dermatology, 2016, 136, S202.	0.7	0
56	SAT0050â€Resident Non-Classical Monocytes Are Critically Important for Tissue Destruction in Arthritis. Annals of the Rheumatic Diseases, 2016, 75, 681.3-682.	0.9	0
57	A Single Species of Clostridium Subcluster XIVa Decreased in Ulcerative Colitis Patients. Inflammatory Bowel Diseases, 2016, 22, 2802-2810.	1.9	126
58	A breakthrough in probiotics: Clostridium butyricum regulates gut homeostasis and anti-inflammatory response in inflammatory bowel disease. Journal of Gastroenterology, 2015, 50, 928-939.	5.1	111
59	Asymmetric Action of STAT Transcription Factors Drives Transcriptional Outputs and Cytokine Specificity. Immunity, 2015, 42, 877-889.	14.3	137
60	Macrophages and Dendritic Cells Emerge in the Liver during Intestinal Inflammation and Predispose the Liver to Inflammation. PLoS ONE, 2014, 9, e84619.	2.5	18
61	Risk and Management of Intra-Abdominal Abscess in Crohn's Disease Treated with Infliximab. Digestion, 2014, 89, 201-208.	2.3	9
62	Cross-talk Between RORÎ ³ t+ Innate Lymphoid Cells and Intestinal Macrophages Induces Mucosal IL-22 Production in Crohn's Disease. Inflammatory Bowel Diseases, 2014, 20, 1426-1434.	1.9	53
63	Helper T Cell Plasticity: Impact of Extrinsic and Intrinsic Signals on Transcriptomes and Epigenomes. Current Topics in Microbiology and Immunology, 2014, 381, 279-326.	1.1	57
64	Classical Th1 Cells Obtain Colitogenicity by Co-existence of RORÎ ³ t-expressing T Cells in Experimental Colitis. Inflammatory Bowel Diseases, 2014, 20, 1820-1827.	1.9	4
65	C-C motif chemokine receptor 9 positive macrophages activate hepatic stellate cells and promote liver fibrosis in mice. Hepatology, 2013, 58, 337-350.	7.3	78
66	Dendritic cells administered intrarectally penetrate the intestinal barrier to break intestinal tolerance via Th2-medeiated colitis in mice. Immunology Letters, 2013, 150, 123-129.	2.5	0
67	Immune aspects of the pathogenesis of inflammatory bowel disease. , 2013, 137, 283-297.		88
68	Tu1666 Colitogenic TH17 Cells Help Development of RoryT-Independent Classical TH1 Cells. Gastroenterology, 2013, 144, S-818.	1.3	0
69	Tu1976 Clostridium Butyricum Regulates IL-10 Production in Normal and Inflammatory Conditions Through Different Target Cells. Gastroenterology, 2013, 144, S-895.	1.3	0
70	Long-term prognosis of patients with ulcerative colitis treated with cytapheresis therapy. Journal of Crohn's and Colitis, 2013, 7, e49-e54.	1.3	16
71	A Single Strain of Clostridium butyricum Induces Intestinal IL-10-Producing Macrophages to Suppress Acute Experimental Colitis in Mice. Cell Host and Microbe, 2013, 13, 711-722.	11.0	241
72	CCR2 knockout exacerbates cerulein-induced chronic pancreatitis with hyperglycemia via decreased GLP-1 receptor expression and insulin secretion. American Journal of Physiology - Renal Physiology, 2013, 304, G700-G707.	3.4	10

Υόμει Μικάμι

#	Article	IF	CITATIONS
73	IL-22-Producing RORÎ ³ t-Dependent Innate Lymphoid Cells Play a Novel Protective Role in Murine Acute Hepatitis. PLoS ONE, 2013, 8, e62853.	2.5	30
74	Dysregulated balance of retinoid-related orphan receptor Î ³ t-dependent innate lymphoid cells is involved in the pathogenesis of chronic DSS-induced colitis. Biochemical and Biophysical Research Communications, 2012, 427, 694-700.	2.1	16
75	RORÎ ³ t-dependent IL-17A-producing cells in the pathogenesis of intestinal inflammation. Mucosal Immunology, 2012, 5, 240-247.	6.0	69
76	T-helper 17 and Interleukin-17–Producing Lymphoid Tissue Inducer-Like Cells Make Different Contributions to Colitis in Mice. Gastroenterology, 2012, 143, 1288-1297.	1.3	33
77	MyD88-dependent interleukin-10 production from regulatory CD11b+Gr-1high cells suppresses development of acute cerulein pancreatitis in mice. Immunology Letters, 2012, 148, 172-177.	2.5	14
78	Sa1936 Anti-Viral Therapy is Not Necessarily Indicated in Ulcerative Colitis Patients With Cytomegalovirus Infection Detected by Immunohistochemistry. Gastroenterology, 2012, 142, S-363.	1.3	3
79	CCR9+ plasmacytoid dendritic cells in the small intestine suppress development of intestinal inflammation in mice. Immunology Letters, 2012, 146, 64-69.	2.5	37
80	CCR9+ macrophages are required for eradication of peritoneal bacterial infections and prevention of polymicrobial sepsis. Immunology Letters, 2012, 147, 75-79.	2.5	6
81	IgA plasma cells express the negative regulatory co-stimulatory molecule programmed cell death 1 ligand and have a potential tolerogenic role in the intestine. Biochemical and Biophysical Research Communications, 2012, 425, 918-923.	2.1	19
82	P217 The efficacy of anti-TNF-α antibody infliximab in refractory ulcerative colitis: Its positioning among the variety of treatment options. Journal of Crohn's and Colitis, 2012, 6, S96.	1.3	0
83	P238 Serum CRP level and loss of infliximab response in early phase can be markers for abdominal abscess for Crohn's disease; a report by multivariate study. Journal of Crohn's and Colitis, 2012, 6, S104.	1.3	0
84	CCR9+ Macrophages Are Required for Acute Liver Inflammation in Mouse Models of Hepatitis. Gastroenterology, 2012, 142, 366-376.	1.3	72
85	1093 A Single Strain of Clostridium Butyricum Suppresses Intestinal Inflammation by Converting Activated Lamina Propria Cd11b+CD11cInt Macrophages to IL-10-Producing Regulatory Macrophages. Gastroenterology, 2012, 142, S-196.	1.3	0
86	Anticoagulation therapy dramatically improved severe sigmoiditis with findings resembling inflammatory bowel disease, which was caused by mesenteric venous thrombosis. Clinical Journal of Gastroenterology, 2012, 5, 377-382.	0.8	0
87	Mo1732 Developmental Pathway of Colitogenic TH1 Cells Derived via Classical Pathway May Require the Help of Ror ?T+ TH17 and TH17/TH1 Cells. Gastroenterology, 2012, 142, S-671-S-672.	1.3	0
88	Mo1783 New Immunosuppressive System by Myeloid-Derived Suppressor Cells in the Lamina Propria of Ulcerative Colitis Patients. Gastroenterology, 2012, 142, S-684.	1.3	0
89	Immunological Abnormalities in the Pathogenesis of Inflammatory Bowel Disease. Intestinal Research, 2012, 10, 317.	2.6	3
90	Regulatory T Cells Suppress Development of Colitis, Blocking Differentiation of T-Helper 17 Into Alternative T-Helper 1 Cells. Gastroenterology, 2011, 141, 1014-1023.	1.3	63

Υομει Μικαμι

#	Article	IF	CITATIONS
91	MyD88-Dependent Pathway Accelerates the Liver Damage of Concanavalin A-Induced Hepatitis. Gastroenterology, 2011, 140, S-330.	1.3	0
92	The Roles of Helicobacter Hepaticus in the Initiation and the Maintenance of Chronic Colitis in the Gnotobiotic System in Mice. Gastroenterology, 2011, 140, S-845.	1.3	0
93	LTα-Expressing Lymphoid-Tissue Inducer Cells Produce IL-6 and Promote the Development of Intestinal TH17 Cells in Collaboration With CD11c + Dendritic Cells. Gastroenterology, 2011, 140, S-844.	1.3	0
94	CD4 + CD25 + Regulatory T Cells Suppress the Developmental Pathway From TH17 to Alternative TH1 Cells via TH17/TH1 and TH1-Like Cells. Gastroenterology, 2011, 140, S-150.	1.3	0
95	The Breakdown of Liver Tolerance in Colitic Conditions Induced by the Disappearance of Immature CCR9 + Pdcs and the Emergence of Activated Macrophages in Liver. Gastroenterology, 2011, 140, S-492.	1.3	0
96	Competition between colitogenic Th1 and Th17 cells contributes to the amelioration of colitis. European Journal of Immunology, 2010, 40, 2409-2422.	2.9	41
97	Monocyte Chemoattractant Protein-1 Contributes to Gut Homeostasis and Intestinal Inflammation by Composition of IL-10–Producing Regulatory Macrophage Subset. Journal of Immunology, 2010, 184, 2671-2676.	0.8	128
98	398 Lymphotoxin Alpha-Expressing Lymphoid-Tissue Inducer Cells are Essential for the Development of Intestinal TH17 Cells. Gastroenterology, 2010, 138, S-59.	1.3	0
99	915 Competition Between Colitogenic T Helper 1- And 17- CD4+ T Cells Contributes to the Amelioration of Colitis. Gastroenterology, 2010, 138, S-130-S-131.	1.3	0
100	MyD88-dependent pathway accelerates the liver damage of Concanavalin A-induced hepatitis. Biochemical and Biophysical Research Communications, 2010, 399, 744-749.	2.1	31
101	Critical role of class IA PI3K for c-Rel expression in B lymphocytes. Blood, 2009, 113, 1037-1044.	1.4	20
102	Peritumoral Angiogenesis in Carcinomas of the Head and Neck. Auris Nasus Larynx, 1996, 23, 57-62.	1.2	8
103	Two Cases of Head and Neck Cancer with Carotid Artery Reconstruction. Auris Nasus Larynx, 1994, 21, 132-135.	1.2	3