Peter S Nelson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5005894/publications.pdf

Version: 2024-02-01

174 papers 22,390 citations

59 h-index 9589 142 g-index

186 all docs

186
docs citations

186 times ranked 23705 citing authors

#	Article	IF	CITATIONS
1	Treatment in the absence of disease reclassification among men on active surveillance for prostate cancer. Cancer, 2022, 128, 269-274.	4.1	3
2	Evaluating the Outcomes of Active Surveillance in Grade Group 2 Prostate Cancer: Prospective Results from the Canary PASS Cohort. Journal of Urology, 2022, 207, 805-813.	0.4	3
3	Paracrine Wnt signaling is necessary for prostate epithelial proliferation. Prostate, 2022, 82, 517-530.	2.3	8
4	Analysis of separate training and validation radical prostatectomy cohorts identifies 0.25 mm diameter as an optimal definition for "large―cribriform prostatic adenocarcinoma. Modern Pathology, 2022, 35, 1092-1100.	5.5	10
5	Development and validation of a quantitative reactive stroma biomarker (qRS) for prostate cancer prognosis. Human Pathology, 2022, 122, 84-91.	2.0	6
6	Understanding Drug Sensitivity and Tackling Resistance in Cancer. Cancer Research, 2022, 82, 1448-1460.	0.9	24
7	Unchecked oxidative stress in skeletal muscle prevents outgrowth of disseminated tumour cells. Nature Cell Biology, 2022, 24, 538-553.	10.3	20
8	Comprehensive Assessment of Anaplastic Lymphoma Kinase in Localized and Metastatic Prostate Cancer Reveals Targetable Alterations. Cancer Research Communications, 2022, 2, 277-285.	1.7	4
9	Germline mutations in penetrant cancer predisposition genes are rare in men with prostate cancer selecting active surveillance. Cancer Medicine, 2022, , .	2.8	3
10	Therapeutic Implications for Intrinsic Phenotype Classification of Metastatic Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2022, 28, 3127-3140.	7.0	11
11	Response to supraphysiological testosterone is predicted by a distinct androgen receptor cistrome. JCI Insight, 2022, 7, .	5.0	9
12	<i>BRCA2</i> Alterations in Neuroendocrine/Small-Cell Carcinoma Prostate Cancer: A Case Series. JCO Precision Oncology, 2022, , .	3.0	6
13	Assessment of Androgen Receptor Splice Variant-7 as a Biomarker of Clinical Response in Castration-Sensitive Prostate Cancer. Clinical Cancer Research, 2022, 28, 3509-3525.	7.0	11
14	Regulation of CEACAM5 and Therapeutic Efficacy of an Anti-CEACAM5–SN38 Antibody–drug Conjugate in Neuroendocrine Prostate Cancer. Clinical Cancer Research, 2021, 27, 759-774.	7.0	34
15	Genomic and phenotypic heterogeneity in prostate cancer. Nature Reviews Urology, 2021, 18, 79-92.	3.8	215
16	Association of Clonal Hematopoiesis in DNA Repair Genes With Prostate Cancer Plasma Cell-free DNA Testing Interference. JAMA Oncology, 2021, 7, 107.	7.1	90
17	Cabozantinib can block growth of neuroendocrine prostate cancer patient-derived xenografts by disrupting tumor vasculature. PLoS ONE, 2021, 16, e0245602.	2.5	5
18	Inter- and intra-tumor heterogeneity of metastatic prostate cancer determined by digital spatial gene expression profiling. Nature Communications, 2021, 12, 1426.	12.8	176

#	Article	IF	Citations
19	Targeting backdoor androgen synthesis through AKR1C3 inhibition: A presurgical hormonal ablative neoadjuvant trial in highâ€risk localized prostate cancer. Prostate, 2021, 81, 418-426.	2.3	8
20	Reprogramming of the FOXA1 cistrome in treatment-emergent neuroendocrine prostate cancer. Nature Communications, 2021, 12, 1979.	12.8	70
21	Resistance to androgen receptor signaling inhibition does not necessitate development of neuroendocrine prostate cancer. JCI Insight, 2021, 6, .	5.0	22
22	Selective androgen receptor modulators activate the canonical prostate cancer androgen receptor program and repress cancer growth. Journal of Clinical Investigation, 2021, 131, .	8.2	23
23	BET Bromodomain Inhibition Blocks an AR-Repressed, E2F1-Activated Treatment-Emergent Neuroendocrine Prostate Cancer Lineage Plasticity Program. Clinical Cancer Research, 2021, 27, 4923-4936.	7.0	33
24	RNA Splicing Factors SRRM3 and SRRM4 Distinguish Molecular Phenotypes of Castration-Resistant Neuroendocrine Prostate Cancer. Cancer Research, 2021, 81, 4736-4750.	0.9	18
25	Multiplexed functional genomic analysis of 5' untranslated region mutations across the spectrum of prostate cancer. Nature Communications, 2021, 12, 4217.	12.8	30
26	The heterogeneity of prostate cancers lacking AR activity will require diverse treatment approaches. Endocrine-Related Cancer, 2021, 28, T51-T66.	3.1	28
27	Effect of Diagnostic Biopsy Practice Location on Grade/Volume Reclassification in Active Surveillance for Prostate Cancer: A Multicenter Analysis from the Canary PASS Cohort. Urology Practice, 2021, 8, 576-582.	0.5	1
28	Concordance of DNA Repair Gene Mutations in Paired Primary Prostate Cancer Samples and Metastatic Tissue or Cell-Free DNA. JAMA Oncology, 2021, 7, 1378.	7.1	40
29	Computational modeling identifies multitargeted kinase inhibitors as effective therapies for metastatic, castration-resistant prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	11
30	Reciprocal <scp>YAP1</scp> loss and <scp>INSM1</scp> expression in neuroendocrine prostate cancer. Journal of Pathology, 2021, 255, 425-437.	4.5	12
31	Subtype heterogeneity and epigenetic convergence in neuroendocrine prostate cancer. Nature Communications, 2021, 12, 5775.	12.8	59
32	Prognostic Genomic Biomarkers in Patients With Localized Prostate Cancer. JAMA Oncology, 2021, 7, 59.	7.1	3
33	Genomic attributes of homology-directed DNA repair deficiency in metastatic prostate cancer. JCI Insight, 2021, 6, .	5.0	15
34	Durable Response of Enzalutamide-resistant Prostate Cancer to Supraphysiological Testosterone Is Associated with a Multifaceted Growth Suppression and Impaired DNA Damage Response Transcriptomic Program in Patient-derived Xenografts. European Urology, 2020, 77, 144-155.	1.9	46
35	Identification of Therapeutic Vulnerabilities in Small-cell Neuroendocrine Prostate Cancer. Clinical Cancer Research, 2020, 26, 1667-1677.	7.0	30
36	Dickkopf-1 Can Lead to Immune Evasion in Metastatic Castration-Resistant Prostate Cancer. JCO Precision Oncology, 2020, 4, 1167-1179.	3.0	28

#	Article	IF	CITATIONS
37	Role of androgen receptor splice variant-7 (AR-V7) in prostate cancer resistance to 2nd-generation androgen receptor signaling inhibitors. Oncogene, 2020, 39, 6935-6949.	5.9	60
38	Tailoring Intensity of Active Surveillance for Low-Risk Prostate Cancer Based on Individualized Prediction of Risk Stability. JAMA Oncology, 2020, 6, e203187.	7.1	30
39	Two Steps Forward and One Step Back for Precision in Prostate Cancer Treatment. Journal of Clinical Oncology, 2020, 38, 3740-3742.	1.6	14
40	<scp>HPV16</scp> induces penile intraepithelial neoplasia and squamous cell carcinoma in transgenic mice: first mouse model for <scp>HPV</scp> â€related penile cancer. Journal of Pathology, 2020, 251, 411-419.	4.5	19
41	Alternative splicing of LSD1+8a in neuroendocrine prostate cancer is mediated by SRRM4. Neoplasia, 2020, 22, 253-262.	5.3	19
42	Targeting RET Kinase in Neuroendocrine Prostate Cancer. Molecular Cancer Research, 2020, 18, 1176-1188.	3.4	23
43	Mismatch repair deficiency in metastatic prostate cancer: Response to PD-1 blockade and standard therapies. PLoS ONE, 2020, 15, e0233260.	2.5	63
44	Comparison of four next generation sequencing platforms for fusion detection: Oncomine by ThermoFisher, AmpliSeq by illumina, FusionPlex by ArcherDX, and QIAseq by QIAGEN. Cancer Genetics, 2020, 243, 11-18.	0.4	22
45	17-Gene Genomic Prostate Score Test Results in the Canary Prostate Active Surveillance Study (PASS) Cohort. Journal of Clinical Oncology, 2020, 38, 1549-1557.	1.6	48
46	Imaging Fibroblast Activation Protein Alpha Improves Diagnosis of Metastatic Prostate Cancer with Positron Emission Tomography. Clinical Cancer Research, 2020, 26, 4882-4891.	7.0	32
47	Combined TP53 and RB1 Loss Promotes Prostate Cancer Resistance to a Spectrum of Therapeutics and Confers Vulnerability to Replication Stress. Cell Reports, 2020, 31, 107669.	6.4	167
48	A comparison of prostate cancer cell transcriptomes in 2D monoculture vs 3D xenografts identify consistent gene expression alterations associated with tumor microenvironments. Prostate, 2020, 80, 491-499.	2.3	8
49	<i>TMPRSS2</i> and COVID-19: Serendipity or Opportunity for Intervention?. Cancer Discovery, 2020, 10, 779-782.	9.4	329
50	Deconstructing tumor heterogeneity: the stromal perspective. Oncotarget, 2020, 11, 3621-3632.	1.8	29
51	Antibody profiling of patients with prostate cancer reveals differences in antibody signatures among disease stages., 2020, 8, e001510.		9
52	Testosterone accumulation in prostate cancer cells is enhanced by facilitated diffusion. Prostate, 2019, 79, 1530-1542.	2.3	14
53	The androgen receptor regulates a druggable translational regulon in advanced prostate cancer. Science Translational Medicine, $2019,11,\ldots$	12.4	47
54	The Role of Lineage Plasticity in Prostate Cancer Therapy Resistance. Clinical Cancer Research, 2019, 25, 6916-6924.	7.0	200

#	Article	IF	CITATIONS
55	PEG10 Promoter–Driven Expression of Reporter Genes Enables Molecular Imaging of Lethal Prostate Cancer. Cancer Research, 2019, 79, 5668-5680.	0.9	7
56	Targeting the perivascular niche sensitizes disseminated tumour cells to chemotherapy. Nature Cell Biology, 2019, 21, 238-250.	10.3	208
57	Performance of PCA3 and TMPRSS2:ERG urinary biomarkers in prediction of biopsy outcome in the Canary Prostate Active Surveillance Study (PASS). Prostate Cancer and Prostatic Diseases, 2019, 22, 438-445.	3.9	22
58	<scp>EZH</scp> 2 cooperates with gainâ€ofâ€function p53 mutants to promote cancer growth and metastasis. EMBO Journal, 2019, 38, .	7.8	55
59	Establishing a cryopreservation protocol for patientâ€derived xenografts of prostate cancer. Prostate, 2019, 79, 1326-1337.	2.3	12
60	Upregulation of Scavenger Receptor B1 Is Required for Steroidogenic and Nonsteroidogenic Cholesterol Metabolism in Prostate Cancer. Cancer Research, 2019, 79, 3320-3331.	0.9	33
61	Genomic correlates of clinical outcome in advanced prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11428-11436.	7.1	839
62	Association of prostate cancer SLCO gene expression with Gleason grade and alterations following androgen deprivation therapy. Prostate Cancer and Prostatic Diseases, 2019, 22, 560-568.	3.9	13
63	Clinical determinants for successful circulating tumor DNA analysis in prostate cancer. Prostate, 2019, 79, 701-708.	2.3	18
64	Activation of MAPK Signaling by CXCR7 Leads to Enzalutamide Resistance in Prostate Cancer. Cancer Research, 2019, 79, 2580-2592.	0.9	85
65	The Aged Microenvironment Influences the Tumorigenic Potential of Malignant Prostate Epithelial Cells. Molecular Cancer Research, 2019, 17, 321-331.	3.4	32
66	Contribution of Adrenal Glands to Intratumor Androgens and Growth of Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2019, 25, 426-439.	7.0	46
67	Targetable mechanisms driving immunoevasion of persistent senescent cells link chemotherapy-resistant cancer to aging. JCl Insight, 2019, 4, .	5.0	90
68	Supraphysiological androgens suppress prostate cancer growth through androgen receptor–mediated DNA damage. Journal of Clinical Investigation, 2019, 129, 4245-4260.	8.2	67
69	Molecular profiling stratifies diverse phenotypes of treatment-refractory metastatic castration-resistant prostate cancer. Journal of Clinical Investigation, 2019, 129, 4492-4505.	8.2	250
70	Refined Analysis of Prostate-specific Antigen Kinetics to Predict Prostate Cancer Active Surveillance Outcomes. European Urology, 2018, 74, 211-217.	1.9	30
71	Post prostatectomy outcomes of patients with high-risk prostate cancer treated with neoadjuvant androgen blockade. Prostate Cancer and Prostatic Diseases, 2018, 21, 364-372.	3.9	48
72	The long tail of oncogenic drivers in prostate cancer. Nature Genetics, 2018, 50, 645-651.	21.4	601

#	Article	IF	Citations
73	Prostate Cancer Disseminated Tumor Cells are Rarely Detected in the Bone Marrow of Patients with Localized Disease Undergoing Radical Prostatectomy across Multiple Rare Cell Detection Platforms. Journal of Urology, 2018, 199, 1494-1501.	0.4	21
74	Retinol dehydrogenase 11 is essential for the maintenance of retinol homeostasis in liver and testis in mice. Journal of Biological Chemistry, 2018, 293, 6996-7007.	3.4	20
75	Cellular Constituents of the Prostate Stroma: Key Contributors to Prostate Cancer Progression and Therapy Resistance. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a030510.	6.2	57
76	Androgen receptor splice variant-7 expression emerges with castration resistance in prostate cancer. Journal of Clinical Investigation, 2018, 129, 192-208.	8.2	266
77	ONECUT2 is a targetable master regulator of lethal prostate cancer that suppresses the androgen axis. Nature Medicine, 2018, 24, 1887-1898.	30.7	113
78	A phase I study of niclosamide in combination with enzalutamide in men with castration-resistant prostate cancer. PLoS ONE, 2018, 13, e0198389.	2.5	86
79	A Novel Flavonoid Composition Targets Androgen Receptor Signaling and Inhibits Prostate Cancer Growth in Preclinical Models. Neoplasia, 2018, 20, 789-799.	5.3	23
80	Microsatellite instability in prostate cancer by PCR or next-generation sequencing., 2018, 6, 29.		96
81	Inactivation of CDK12 Delineates a Distinct Immunogenic Class of Advanced Prostate Cancer. Cell, 2018, 173, 1770-1782.e14.	28.9	400
82	Structural Alterations Driving Castration-Resistant Prostate Cancer Revealed by Linked-Read Genome Sequencing. Cell, 2018, 174, 433-447.e19.	28.9	258
83	Neoadjuvant-Intensive Androgen Deprivation Therapy Selects for Prostate Tumor Foci with Diverse Subclonal Oncogenic Alterations. Cancer Research, 2018, 78, 4716-4730.	0.9	56
84	Recent advances in prostate cancer research: large-scale genomic analyses reveal novel driver mutations and DNA repair defects. F1000Research, 2018, 7, 1173.	1.6	37
85	Boolean analysis identifies CD38 as a biomarker of aggressive localized prostate cancer. Oncotarget, 2018, 9, 6550-6561.	1.8	16
86	Gene expression panel predicts metastaticâ€lethal prostate cancer outcomes in men diagnosed with clinically localized prostate cancer. Molecular Oncology, 2017, 11, 140-150.	4.6	24
87	Exploiting AR-Regulated Drug Transport to Induce Sensitivity to the Survivin Inhibitor YM155. Molecular Cancer Research, 2017, 15, 521-531.	3.4	17
88	LuCaP Prostate Cancer Patient-Derived Xenografts Reflect the Molecular Heterogeneity of Advanced Disease anÂÂd Serve as Models for Evaluating Cancer Therapeutics. Prostate, 2017, 77, 654-671.	2.3	219
89	Neoadjuvant Enzalutamide Prior to Prostatectomy. Clinical Cancer Research, 2017, 23, 2169-2176.	7.0	80
90	Evaluating the Four Kallikrein Panel of the 4Kscore for Prediction of High-grade Prostate Cancer in Men in the Canary Prostate Active Surveillance Study. European Urology, 2017, 72, 448-454.	1.9	61

#	Article	IF	Citations
91	ETS Related Gene mediated Androgen Receptor Aggregation and Endoplasmic Reticulum Stress in Prostate Cancer Development. Scientific Reports, 2017, 7, 1109.	3.3	17
92	Androgen Receptor Deregulation Drives Bromodomain-Mediated Chromatin Alterations in Prostate Cancer. Cell Reports, 2017, 19, 2045-2059.	6.4	99
93	DNA Damage Induces a Secretory Program in the Quiescent TME that Fosters Adverse Cancer Phenotypes. Molecular Cancer Research, 2017, 15, 842-851.	3.4	14
94	Anti-Depressant Therapy Brightens the Outlook for Prostate Cancer Bone Metastases. Cancer Cell, 2017, 31, 303-305.	16.8	5
95	Androgen Receptor Pathway-Independent Prostate Cancer Is Sustained through FGF Signaling. Cancer Cell, 2017, 32, 474-489.e6.	16.8	483
96	Prostate Cancer Screening in a New Era of Genetics. Clinical Genitourinary Cancer, 2017, 15, 625-628.	1.9	24
97	The Path of Most Resistance: Transdifferentiation Underlies Exceptional Nonresponses to Androgen Receptor Pathway Inhibition in Prostate Cancer. Cancer Discovery, 2017, 7, 673-674.	9.4	6
98	Screening Men at Increased Risk for Prostate Cancer Diagnosis: Model Estimates of Benefits and Harms. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 222-227.	2.5	33
99	Combination treatment of prostate cancer with FGF receptor and AKT kinase inhibitors. Oncotarget, 2017, 8, 6179-6192.	1.8	21
100	A Pilot Study of Clinical Targeted Next Generation Sequencing for Prostate Cancer: Consequences for Treatment and Genetic Counseling. Prostate, 2016, 76, 1303-1311.	2.3	21
101	Loss of Expression of AZGP1 Is Associated With Worse Clinical Outcomes in a Multi-Institutional Radical Prostatectomy Cohort. Prostate, 2016, 76, 1409-1419.	2.3	19
102	Characterizing the molecular features of ERG-positive tumors in primary and castration resistant prostate cancer. Prostate, 2016, 76, 810-822.	2.3	45
103	Crossâ€Platform DNA Encoding for Singleâ€Cell Imaging of Gene Expression. Angewandte Chemie, 2016, 128, 9121-9124.	2.0	0
104	Crossâ€Platform DNA Encoding for Singleâ€Cell Imaging of Gene Expression. Angewandte Chemie - International Edition, 2016, 55, 8975-8978.	13.8	10
105	Inherited DNA-Repair Gene Mutations in Men with Metastatic Prostate Cancer. New England Journal of Medicine, 2016, 375, 443-453.	27.0	1,205
106	Truncation and constitutive activation of the androgen receptor by diverse genomic rearrangements in prostate cancer. Nature Communications, 2016, 7, 13668.	12.8	134
107	A proteolytic modification of AIM promotes its renal excretion. Scientific Reports, 2016, 6, 38762.	3.3	9
108	Epigenetic signature of Gleason score and prostate cancer recurrence after radical prostatectomy. Clinical Epigenetics, 2016, 8, 97.	4.1	34

#	Article	IF	Citations
109	Histologic Grading of Prostatic Adenocarcinoma Can Be Further Optimized. American Journal of Surgical Pathology, 2016, 40, 1439-1456.	3.7	107
110	Spheroid culture of LuCaP 136 patient-derived xenograft enables versatile preclinical models of prostate cancer. Clinical and Experimental Metastasis, 2016, 33, 325-337.	3.3	16
111	Mismatch repair enzyme expression in primary and castrate resistant prostate cancer. Asian Journal of Urology, 2016, 3, 223-228.	1.2	14
112	PTEN Loss as Determined by Clinical-grade Immunohistochemistry Assay Is Associated with Worse Recurrence-free Survival in Prostate Cancer. European Urology Focus, 2016, 2, 180-188.	3.1	60
113	Docetaxel-related toxicity in metastatic hormone-sensitive and metastatic castration-resistant prostate cancer. Medical Oncology, 2016, 33, 77.	2.5	11
114	Cells Comprising the Prostate Cancer Microenvironment Lack Recurrent Clonal Somatic Genomic Aberrations. Molecular Cancer Research, 2016, 14, 374-384.	3.4	34
115	Trial Design and Objectives for Castration-Resistant Prostate Cancer: Updated Recommendations From the Prostate Cancer Clinical Trials Working Group 3. Journal of Clinical Oncology, 2016, 34, 1402-1418.	1.6	1,089
116	Substantial interindividual and limited intraindividual genomic diversity among tumors from men with metastatic prostate cancer. Nature Medicine, 2016, 22, 369-378.	30.7	572
117	Identification of Combinatorial Genomic Abnormalities Associated with Prostate Cancer Early Recurrence. Journal of Molecular Diagnostics, 2016, 18, 215-224.	2.8	8
118	Epithelial mesenchymal-like transition occurs in a subset of cells in castration resistant prostate cancer bone metastases. Clinical and Experimental Metastasis, 2016, 33, 239-248.	3.3	33
119	Biallelic Inactivation of BRCA2 in Platinum-sensitive Metastatic Castration-resistant Prostate Cancer. European Urology, 2016, 69, 992-995.	1.9	228
120	High-Resolution Genomic Profiling of Disseminated Tumor Cells in Prostate Cancer. Journal of Molecular Diagnostics, 2016, 18, 131-143.	2.8	8
121	Combined <i>MYC</i> Activation and <i>Pten</i> Loss Are Sufficient to Create Genomic Instability and Lethal Metastatic Prostate Cancer. Cancer Research, 2016, 76, 283-292.	0.9	102
122	Outcomes of Active Surveillance for Clinically Localized Prostate Cancer in the Prospective, Multi-Institutional Canary PASS Cohort. Journal of Urology, 2016, 195, 313-320.	0.4	122
123	MUC1 Expression by Immunohistochemistry Is Associated with Adverse Pathologic Features in Prostate Cancer: A Multi-Institutional Study. PLoS ONE, 2016, 11, e0165236.	2.5	19
124	Mismatch repair deficiency may be common in ductal adenocarcinoma of the prostate. Oncotarget, 2016, 7, 82504-82510.	1.8	64
125	A comparative assessment of clinical whole exome and transcriptome profiling across sequencing centers: implications for precision cancer medicine. Oncotarget, 2016, 7, 52888-52899.	1.8	18
126	Expression of cell cycle-regulated genes and prostate cancer prognosis in a population-based cohort. Prostate, 2015, 75, 1354-1362.	2.3	16

#	Article	IF	Citations
127	Cellular Adhesion Promotes Prostate Cancer Cells Escape from Dormancy. PLoS ONE, 2015, 10, e0130565.	2.5	48
128	Evaluation of ERG and SPINK1 by Immunohistochemical Staining and Clinicopathological Outcomes in a Multi-Institutional Radical Prostatectomy Cohort of 1067 Patients. PLoS ONE, 2015, 10, e0132343.	2.5	28
129	Integrative Clinical Genomics of Advanced Prostate Cancer. Cell, 2015, 161, 1215-1228.	28.9	2,660
130	The Landscape of Somatic Chromosomal Copy Number Aberrations in GEM Models of Prostate Carcinoma. Molecular Cancer Research, 2015, 13, 339-347.	3.4	10
131	A multicenter study shows <i>PTEN</i> deletion is strongly associated with seminal vesicle involvement and extracapsular extension in localized prostate cancer. Prostate, 2015, 75, 1206-1215.	2.3	55
132	SRRM4 Expression and the Loss of REST Activity May Promote the Emergence of the Neuroendocrine Phenotype in Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2015, 21, 4698-4708.	7.0	137
133	ERG Activates the YAP1 Transcriptional Program and Induces the Development of Age-Related Prostate Tumors. Cancer Cell, 2015, 27, 797-808.	16.8	100
134	Precision Medicine in Active Surveillance for Prostate Cancer: Development of the Canary–Early Detection Research Network Active Surveillance Biopsy Risk Calculator. European Urology, 2015, 68, 1083-1088.	1.9	48
135	Development and Validation of a Scalable Next-Generation Sequencing System for Assessing Relevant Somatic Variants in Solid Tumors. Neoplasia, 2015, 17, 385-399.	5.3	212
136	DNA damage induces GDNF secretion in the tumor microenvironment with paracrine effects promoting prostate cancer treatment resistance. Oncotarget, 2015, 6, 2134-2147.	1.8	38
137	Chemotherapy-Induced Monoamine Oxidase Expression in Prostate Carcinoma Functions as a Cytoprotective Resistance Enzyme and Associates with Clinical Outcomes. PLoS ONE, 2014, 9, e104271.	2.5	30
138	Complex MSH2 and MSH6 mutations in hypermutated microsatellite unstable advanced prostate cancer. Nature Communications, 2014, 5, 4988.	12.8	219
139	Rapid Induction of Androgen Receptor Splice Variants by Androgen Deprivation in Prostate Cancer. Clinical Cancer Research, 2014, 20, 1590-1600.	7.0	165
140	Intense Androgen-Deprivation Therapy With Abiraterone Acetate Plus Leuprolide Acetate in Patients With Localized High-Risk Prostate Cancer: Results of a Randomized Phase II Neoadjuvant Study. Journal of Clinical Oncology, 2014, 32, 3705-3715.	1.6	220
141	<i>Pten</i> Null Prostate Epithelium Promotes Localized Myeloid-Derived Suppressor Cell Expansion and Immune Suppression during Tumor Initiation and Progression. Molecular and Cellular Biology, 2014, 34, 2017-2028.	2.3	107
142	The Androgen-Regulated Protease TMPRSS2 Activates a Proteolytic Cascade Involving Components of the Tumor Microenvironment and Promotes Prostate Cancer Metastasis. Cancer Discovery, 2014, 4, 1310-1325.	9.4	389
143	Spheroid culture of LuCaP 147 as an authentic preclinical model of prostate cancer subtype with SPOP mutation and hypermutator phenotype. Cancer Letters, 2014, 351, 272-280.	7.2	16
144	Prostate Cancer Characteristics Associated with Response to Pre-Receptor Targeting of the Androgen Axis. PLoS ONE, 2014, 9, e111545.	2.5	6

#	Article	IF	Citations
145	Characterization of single disseminated prostate cancer cells reveals tumor cell heterogeneity and identifies dormancy associated pathways. Oncotarget, 2014, 5, 9939-9951.	1.8	92
146	A Gain-of-Function Mutation in DHT Synthesis in Castration-Resistant Prostate Cancer. Cell, 2013, 154, 1074-1084.	28.9	257
147	Urinary TMPRSS2:ERG and PCA3 in an Active Surveillance Cohort: Results from a Baseline Analysis in the Canary Prostate Active Surveillance Study. Clinical Cancer Research, 2013, 19, 2442-2450.	7.0	132
148	Tmprss2 Is Essential for Influenza H1N1 Virus Pathogenesis in Mice. PLoS Pathogens, 2013, 9, e1003774.	4.7	163
149	A Model for the Design and Construction of a Resource for the Validation of Prognostic Prostate Cancer Biomarkers. Advances in Anatomic Pathology, 2013, 20, 39-44.	4.3	24
150	Characterization of osteoblastic and osteolytic proteins in prostate cancer bone metastases. Prostate, 2013, 73, 932-940.	2.3	53
151	Molecular States Underlying Androgen Receptor Activation: A Framework for Therapeutics Targeting Androgen Signaling in Prostate Cancer. Journal of Clinical Oncology, 2012, 30, 644-646.	1.6	122
152	Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nature Medicine, 2012, 18, 1359-1368.	30.7	682
153	Cellular senescence and cancer chemotherapy resistance. Drug Resistance Updates, 2012, 15, 123-131.	14.4	120
154	Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nature Genetics, 2012, 44, 685-689.	21.4	1,300
155	Androgen action and metabolism in prostate cancer. Molecular and Cellular Endocrinology, 2012, 360, 3-13.	3.2	153
156	INTRACRINE SYNTHESIS OF ANDROGENS BY PROSTATE CANCER IN RESPONSE TO ANDROGEN DEPRIVATION THERAPY., 2011,, 193-218.		2
157	Canary Prostate Active Surveillance Study: Design of a Multi-institutional Active Surveillance Cohort and Biorepository. Urology, 2010, 75, 407-413.	1.0	70
158	Castration-resistant prostate cancer: Targeting androgen metabolic pathways in recurrent disease. Urologic Oncology: Seminars and Original Investigations, 2009, 27, 251-257.	1.6	86
159	Maintenance of Intratumoral Androgens in Metastatic Prostate Cancer: A Mechanism for Castration-Resistant Tumor Growth. Cancer Research, 2008, 68, 4447-4454.	0.9	1,237
160	Intraprostatic Androgens and Androgen-Regulated Gene Expression Persist after Testosterone Suppression: Therapeutic Implications for Castration-Resistant Prostate Cancer. Cancer Research, 2007, 67, 5033-5041.	0.9	474
161	Analysis of testosterone and dihydrotestosterone from biological fluids as the oxime derivatives using highâ€performance liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2007, 21, 3200-3206.	1.5	92
162	A BAYESIAN FRAMEWORK FOR DATA AND HYPOTHESES DRIVEN FUSION OF HIGH THROUGHPUT DATA: APPLICATION TO MOUSE ORGANOGENESIS. , 2007, , .		1

#	Article	lF	CITATION
163	Cell type-specific analyses for identifying prostate cancer biomarkers. Current Urology Reports, 2006, 7, 57-63.	2.2	1
164	The Gene Expression Program of Prostate Fibroblast Senescence Modulates Neoplastic Epithelial Cell Proliferation through Paracrine Mechanisms. Cancer Research, 2006, 66, 794-802.	0.9	382
165	A molecular correlate to the Gleason grading system for prostate adenocarcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10991-10996.	7.1	261
166	Unconventional therapy for prostate cancer: good, bad or questionable?. Nature Reviews Cancer, 2003, 3, 845-858.	28.4	47
167	Dual-substrate Specificity Short Chain Retinol Dehydrogenases from the Vertebrate Retina. Journal of Biological Chemistry, 2002, 277, 45537-45546.	3.4	179
168	The human (PEDB) and mouse (mPEDB) Prostate Expression Databases. Nucleic Acids Research, 2002, 30, 218-220.	14.5	27
169	The program of androgen-responsive genes in neoplastic prostate epithelium. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11890-11895.	7.1	407
170	Digital expression profiles of the prostate androgen-response program. Journal of Steroid Biochemistry and Molecular Biology, 2002, 80, 13-23.	2.5	39
171	Prostate cancer genomics. Current Urology Reports, 2001, 2, 70-78.	2.2	9
172	Toll receptors: an expanding role in our understanding of human disease. Journal of Leukocyte Biology, 2000, 67, 767-773.	3.3	84
173	Comprehensive analyses of prostate gene expression: Convergence of expressed sequence tag databases, transcript profiling and proteomics. Electrophoresis, 2000, 21, 1823-1831.	2.4	86
174	Comprehensive analyses of prostate gene expression: Convergence of expressed sequence tag	2.4	2