Manuel Fernando R Pereira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5003857/publications.pdf

Version: 2024-02-01

341 papers

23,637 citations

7096 78 h-index 139 g-index

348 all docs

348 docs citations

348 times ranked

21234 citing authors

#	Article	IF	CITATIONS
1	Modification of the surface chemistry of activated carbons. Carbon, 1999, 37, 1379-1389.	10.3	2,642
2	An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU. Environment International, 2015, 75, 33-51.	10.0	757
3	Occurrence and removal of organic micropollutants: An overview of the watch list of EU Decision 2015/495. Water Research, 2016, 94, 257-279.	11.3	698
4	Adsorption of anionic and cationic dyes on activated carbons with different surface chemistries. Water Research, 2004, 38, 2043-2052.	11.3	655
5	A review on environmental monitoring of water organic pollutants identified by EU guidelines. Journal of Hazardous Materials, 2018, 344, 146-162.	12.4	589
6	The role of lattice oxygen on the activity of manganese oxides towards the oxidation of volatile organic compounds. Applied Catalysis B: Environmental, 2010, 99, 353-363.	20.2	562
7	The role of surface chemistry in catalysis with carbons. Catalysis Today, 2010, 150, 2-7.	4.4	558
8	Adsorption of dyes on activated carbons: influence of surface chemical groups. Carbon, 2003, 41, 811-821.	10.3	492
9	Comparison between activated carbon, carbon xerogel and carbon nanotubes for the adsorption of the antibiotic ciprofloxacin. Catalysis Today, 2012, 186, 29-34.	4.4	311
10	Characterization of Active Sites on Carbon Catalysts. Industrial & Engineering Chemistry Research, 2007, 46, 4110-4115.	3.7	308
11	Adsorption of ciprofloxacin on surface-modified carbon materials. Water Research, 2011, 45, 4583-4591.	11.3	289
12	Adsorption of a reactive dye on chemically modified activated carbonsâ€"Influence of pH. Journal of Colloid and Interface Science, 2006, 296, 480-489.	9.4	265
13	Activated carbon catalytic ozonation of oxamic and oxalic acids. Applied Catalysis B: Environmental, 2008, 79, 237-243.	20.2	257
14	Oxidative dehydrogenation of ethylbenzene on activated carbon catalysts. I. Influence of surface chemical groups. Applied Catalysis A: General, 1999, 184, 153-160.	4.3	240
15	Adsorption of simple aromatic compounds on activated carbons. Journal of Colloid and Interface Science, 2006, 293, 128-136.	9.4	236
16	The effects of different activated carbon supports and support modifications on the properties of Pt/AC catalysts. Carbon, 2001, 39, 175-185.	10.3	234
17	Continuous ozonation of urban wastewater: Removal of antibiotics, antibiotic-resistant Escherichia coli and antibiotic resistance genes and phytotoxicity. Water Research, 2019, 159, 333-347.	11.3	222
18	Oxidation of CO, ethanol and toluene over TiO2 supported noble metal catalysts. Applied Catalysis B: Environmental, 2010, 99, 198-205.	20.2	221

#	Article	IF	Citations
19	Photocatalytic ozonation of urban wastewater and surface water using immobilized TiO2 with LEDs: Micropollutants, antibiotic resistance genes and estrogenic activity. Water Research, 2016, 94, 10-22.	11.3	185
20	Ozonation and UV254nm radiation for the removal of microorganisms and antibiotic resistance genes from urban wastewater. Journal of Hazardous Materials, 2017, 323, 434-441.	12.4	179
21	Influence of the surface chemistry of multi-walled carbon nanotubes on their activity as ozonation catalysts. Carbon, 2010, 48, 4369-4381.	10.3	176
22	MWCNT activation and its influence on the catalytic performance of Pt/MWCNT catalysts for selective hydrogenation. Carbon, 2008, 46, 1194-1207.	10.3	172
23	Structural and chemical disorder of cryptomelane promoted by alkali doping: Influence on catalytic properties. Journal of Catalysis, 2012, 293, 165-174.	6.2	165
24	Characterization of the surface chemistry of carbon materials by potentiometric titrations and temperature-programmed desorption. Carbon, 2008, 46, 1544-1555.	10.3	162
25	Decolourisation of dye solutions by oxidation with H2O2 in the presence of modified activated carbons. Journal of Hazardous Materials, 2009, 162, 736-742.	12.4	157
26	Fast mineralization and detoxification of amoxicillin and diclofenac by photocatalytic ozonation and application to an urban wastewater. Water Research, 2015, 87, 87-96.	11.3	153
27	Catalytic activity of carbon nanotubes in the oxidative dehydrogenation of ethylbenzene. Carbon, 2004, 42, 2807-2813.	10.3	150
28	Designing Novel Hybrid Materials by One-Pot Co-condensation: From Hydrophobic Mesoporous Silica Nanoparticles to Superamphiphobic Cotton Textiles. ACS Applied Materials & Samp; Interfaces, 2011, 3, 2289-2299.	8.0	147
29	Activated carbon and ceria catalysts applied to the catalytic ozonation of dyes and textile effluents. Applied Catalysis B: Environmental, 2009, 88, 341-350.	20.2	141
30	Catalytic ozonation of sulphamethoxazole in the presence of carbon materials: Catalytic performance and reaction pathways. Journal of Hazardous Materials, 2012, 239-240, 167-174.	12.4	141
31	Methane dry reforming on Ni loaded hydroxyapatite and fluoroapatite. Applied Catalysis A: General, 2007, 317, 299-309.	4.3	133
32	Synthesis of very highly dispersed platinum catalysts supported on carbon xerogels by the strong electrostatic adsorption method. Journal of Catalysis, 2009, 261, 23-33.	6.2	129
33	Synthesis and characterization of nitrogen-doped carbon xerogels. Carbon, 2009, 47, 2032-2039.	10.3	129
34	Catalytic oxidation of toluene on Ce–Co and La–Co mixed oxides synthesized by exotemplating and evaporation methods. Catalysis Today, 2015, 244, 161-171.	4.4	129
35	Tensile and impact behavior of polypropylene/low density polyethylene blends. Polymer Testing, 2005, 24, 468-473.	4.8	120
36	Monitoring of the 17 EU Watch List contaminants of emerging concern in the Ave and the Sousa Rivers. Science of the Total Environment, 2019, 649, 1083-1095.	8.0	120

#	Article	IF	CITATIONS
37	Ozonation of model organic compounds catalysed by nanostructured cerium oxides. Applied Catalysis B: Environmental, 2011, 103, 190-199.	20.2	116
38	Carbon based materials as novel redox mediators for dye wastewater biodegradation. Applied Catalysis B: Environmental, 2014, 144, 713-720.	20.2	112
39	Easy method to prepare N-doped carbon nanotubes by ball milling. Carbon, 2015, 91, 114-121.	10.3	111
40	Manganese oxide catalysts synthesized by exotemplating for the total oxidation of ethanol. Applied Catalysis B: Environmental, 2009, 93, 30-37.	20.2	109
41	Ozonation of textile effluents and dye solutions under continuous operation: Influence of operating parameters. Journal of Hazardous Materials, 2006, 137, 1664-1673.	12.4	108
42	Activated Carbon Supported Metal Catalysts for Nitrate and Nitrite Reduction in Water. Catalysis Letters, 2008, 126, 253-260.	2.6	107
43	Gold supported on carbon nanotubes for the selective oxidation of glycerol. Journal of Catalysis, 2012, 285, 83-91.	6.2	107
44	Mineralisation of coloured aqueous solutions by ozonation in the presence of activated carbon. Water Research, 2005, 39, 1461-1470.	11.3	104
45	Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol over mesoporous carbon supported Fe and Zn promoted Pt catalyst. Applied Catalysis A: General, 2008, 339, 159-168.	4.3	104
46	A novel ceria–activated carbon composite for the catalytic ozonation of carboxylic acids. Catalysis Communications, 2008, 9, 2121-2126.	3.3	103
47	Bimetallic catalysts supported on activated carbon for the nitrate reduction in water: Optimization of catalysts composition. Applied Catalysis B: Environmental, 2009, 91, 441-448.	20.2	102
48	Hydrothermal functionalization of ordered mesoporous carbons: The effect of boron on supercapacitor performance. Carbon, 2015, 95, 72-83.	10.3	102
49	Influence of activated carbon surface chemistry on the activity of Au/AC catalysts in glycerol oxidation. Journal of Catalysis, 2011, 281, 119-127.	6.2	101
50	Ozone Decomposition in Water Catalyzed by Activated Carbon:Â Influence of Chemical and Textural Properties. Industrial & Engineering Chemistry Research, 2006, 45, 2715-2721.	3.7	99
51	New insights into the functionalization of multi-walled carbon nanotubes with aniline derivatives. Carbon, 2012, 50, 3280-3294.	10.3	99
52	Gold supported on metal oxides for volatile organic compounds total oxidation. Catalysis Today, 2015, 244, 103-114.	4.4	99
53	p-Nitrophenol degradation by heterogeneous Fenton's oxidation over activated carbon-based catalysts. Applied Catalysis B: Environmental, 2017, 219, 109-122.	20.2	99
54	Oxidative dehydrogenation of ethylbenzene on activated carbon catalysts. Applied Catalysis A: General, 2001, 218, 307-318.	4.3	98

#	Article	IF	CITATIONS
55	Synthesis and Characterization of Manganese Oxide Catalysts for the Total Oxidation of Ethyl Acetate. Topics in Catalysis, 2009, 52, 470-481.	2.8	97
56	Cerium, manganese and cobalt oxides as catalysts for the ozonation of selected organic compounds. Chemosphere, 2009, 74, 818-824.	8.2	97
57	Ozonation of aniline promoted by activated carbon. Chemosphere, 2007, 67, 809-815.	8.2	96
58	Controlled surface functionalization of multiwall carbon nanotubes by HNO3 hydrothermal oxidation. Carbon, 2014, 69, 311-326.	10.3	95
59	Theoretical and Experimental Studies on the Carbonâ€Nanotube Surface Oxidation by Nitric Acid: Interplay between Functionalization and Vacancy Enlargement. Chemistry - A European Journal, 2011, 17, 11467-11477.	3.3	93
60	Aging assessment of microplastics (LDPE, PET and uPVC) under urban environment stressors. Science of the Total Environment, 2021, 796, 148914.	8.0	93
61	Electrochemical Exfoliation of Graphite in Aqueous Sodium Halide Electrolytes toward Low Oxygen Content Graphene for Energy and Environmental Applications. ACS Applied Materials & Samp; Interfaces, 2017, 9, 24085-24099.	8.0	92
62	Catalytic oxidation of NO to NO2 on N-doped activated carbons. Catalysis Today, 2011, 176, 383-387.	4.4	91
63	Potentiation of 5-fluorouracil encapsulated in zeolites as drug delivery systems for in vitro models of colorectal carcinoma. Colloids and Surfaces B: Biointerfaces, 2013, 112, 237-244.	5.0	90
64	Enhanced direct production of sorbitol by cellulose ball-milling. Green Chemistry, 2015, 17, 2973-2980.	9.0	90
65	Highly active N-doped carbon nanotubes prepared by an easy ball milling method for advanced oxidation processes. Applied Catalysis B: Environmental, 2016, 192, 296-303.	20.2	90
66	Highly dispersed platinum catalysts prepared by impregnation of texture-tailored carbon xerogels. Journal of Catalysis, 2006, 240, 160-171.	6.2	89
67	Photocatalytic nitrate reduction over Pd–Cu/TiO2. Chemical Engineering Journal, 2014, 251, 123-130.	12.7	88
68	Pd–Cu/AC and Pt–Cu/AC catalysts for nitrate reduction with hydrogen: Influence of calcination and reduction temperatures. Chemical Engineering Journal, 2010, 165, 78-88.	12.7	87
69	Total oxidation of ethyl acetate, ethanol and toluene catalyzed by exotemplated manganese and cerium oxides loaded with gold. Catalysis Today, 2012, 180, 148-154.	4.4	85
70	Catalytic ozonation of sulfonated aromatic compounds in the presence of activated carbon. Applied Catalysis B: Environmental, 2008, 83, 150-159.	20.2	84
71	N/S-doped graphene derivatives and TiO2 for catalytic ozonation and photocatalysis of water pollutants. Chemical Engineering Journal, 2018, 348, 888-897.	12.7	84
72	Environmental impact assessment of advanced urban wastewater treatment technologies for the removal of priority substances and contaminants of emerging concern: A review. Journal of Cleaner Production, 2020, 261, 121078.	9.3	84

#	Article	IF	CITATIONS
73	Stabilized gold on cerium-modified cryptomelane: Highly active in low-temperature CO oxidation. Journal of Catalysis, 2014, 309, 58-65.	6.2	83
74	Tuning the surface chemistry of graphene flakes: new strategies for selective oxidation. RSC Advances, 2017, 7, 14290-14301.	3.6	83
75	Towards Controlled Degradation of Poly(lactic) Acid in Technical Applications. Journal of Carbon Research, 2021, 7, 42.	2.7	83
76	Oxidative dehydrogenation of ethylbenzene on activated carbon catalysts. Applied Catalysis A: General, 2000, 196, 43-54.	4.3	82
77	Carbon supported Ru-Ni bimetallic catalysts for the enhanced one-pot conversion of cellulose to sorbitol. Applied Catalysis B: Environmental, 2017, 217, 265-274.	20.2	82
78	Tuning of texture and surface chemistry of carbon xerogels. Journal of Colloid and Interface Science, 2008, 324, 150-155.	9.4	81
79	Nitrate reduction in water catalysed by Pd–Cu on different supports. Desalination, 2011, 279, 367-374.	8.2	81
80	Surface activation of a polymer based carbon. Carbon, 2004, 42, 1321-1325.	10.3	80
81	Catalytic activity and stability of multiwalled carbon nanotubes in catalytic wet air oxidation of oxalic acid: The role of the basic nature induced by the surface chemistry. Applied Catalysis B: Environmental, 2011, 104, 330-336.	20.2	76
82	NO oxidation over nitrogen doped carbon xerogels. Applied Catalysis B: Environmental, 2012, 125, 398-408.	20.2	75
83	Exotemplated ceria catalysts with gold for CO oxidation. Applied Catalysis A: General, 2010, 381, 150-160.	4.3	74
84	Thermal modification of activated carbon surface chemistry improves its capacity as redox mediator for azo dye reduction. Journal of Hazardous Materials, 2010, 183, 931-939.	12.4	74
85	Ceria and cerium-based mixed oxides as ozonation catalysts. Chemical Engineering Journal, 2012, 200-202, 499-505.	12.7	74
86	Photocatalytic degradation of Rhodamine B dye by cotton textile coated with SiO2-TiO2 and SiO2-TiO2-HY composites. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 346, 60-69.	3.9	74
87	Modified activated carbon as catalyst for NO oxidation. Fuel Processing Technology, 2013, 106, 727-733.	7.2	73
88	Microplastics in the environment: A DPSIR analysis with focus on the responses. Science of the Total Environment, 2020, 718, 134968.	8.0	70
89	The role of multiwalled carbon nanotubes (MWCNTs) in the catalytic ozonation of atrazine. Chemical Engineering Journal, 2014, 241, 66-76.	12.7	69
90	Development of carbon nanotube and carbon xerogel supported catalysts for the electro-oxidation of methanol in fuel cells. Carbon, 2006, 44, 2516-2522.	10.3	68

#	Article	IF	Citations
91	Pdâ-'Cu and Ptâ-'Cu Catalysts Supported on Carbon Nanotubes for Nitrate Reduction in Water. Industrial & Diplomation of the Properties of the Properties of the Policy of	3.7	68
92	Enhancement of the selectivity to dihydroxyacetone in glycerol oxidation using gold nanoparticles supported on carbon nanotubes. Catalysis Communications, 2011 , 16 , 64 - 69 .	3.3	68
93	Catalytic oxidation of ethyl acetate over a cesium modified cryptomelane catalyst. Applied Catalysis B: Environmental, 2009, 88, 550-556.	20.2	67
94	Influence of Multiwalled Carbon Nanotubes as Additives in Biomass-Derived Carbons for Supercapacitor Applications. ACS Applied Materials & Samp; Interfaces, 2019, 11, 6066-6077.	8.0	67
95	Effect of nanostructure on the supercapacitor performance of activated carbon xerogels obtained from hydrothermally carbonized glucose-graphene oxide hybrids. Carbon, 2016, 105, 474-483.	10.3	66
96	Carbon Monoxide Oxidation Catalysed by Exotemplated Manganese Oxides. Catalysis Letters, 2010, 134, 217-227.	2.6	65
97	Catalytic ozonation of organic pollutants in the presence of cerium oxide–carbon composites. Applied Catalysis B: Environmental, 2011, 102, 539-546.	20.2	65
98	Effect of cobalt loading on the solid state properties and ethyl acetate oxidation performance of cobalt-cerium mixed oxides. Journal of Colloid and Interface Science, 2017, 496, 141-149.	9.4	64
99	Nitrogen-doped graphene-based materials for advanced oxidation processes. Catalysis Today, 2015, 249, 192-198.	4.4	62
100	Synergistic effect of bimetallic Au-Pd supported on ceria-zirconia mixed oxide catalysts for selective oxidation of glycerol. Applied Catalysis B: Environmental, 2016, 197, 222-235.	20.2	62
101	Catalytic conversion of cellulose to sorbitol over Ru supported on biomass-derived carbon-based materials. Applied Catalysis B: Environmental, 2019, 256, 117826.	20.2	61
102	Gold-supported magnetically recyclable nanocatalysts: a sustainable solution for the reduction of 4-nitrophenol in water. RSC Advances, 2015, 5, 5131-5141.	3.6	60
103	Noble-Metal-Free MOF-74-Derived Nanocarbons: Insights on Metal Composition and Doping Effects on the Electrocatalytic Activity Toward Oxygen Reactions. ACS Applied Energy Materials, 2019, 2, 1854-1867.	5.1	60
104	Ozone-based water treatment (O3, O3/UV, O3/H2O2) for removal of organic micropollutants, bacteria inactivation and regrowth prevention. Journal of Environmental Chemical Engineering, 2021, 9, 105315.	6.7	59
105	Nitrate reduction with hydrogen in the presence of physical mixtures with mono and bimetallic catalysts and ions in solution. Applied Catalysis B: Environmental, 2011, 102, 424-432.	20.2	58
106	Catalytic oxidation of ethyl acetate on cerium-containing mixed oxides. Applied Catalysis A: General, 2014, 472, 101-112.	4.3	58
107	Understanding the silylation reaction of multi-walled carbon nanotubes. Carbon, 2011, 49, 3441-3453.	10.3	55
108	Nanoparticle Size and Concentration Dependence of the Electroactive Phase Content and Electrical and Optical Properties of Ag/Poly(vinylidene fluoride) Composites. ChemPhysChem, 2013, 14, 1926-1933.	2.1	54

#	Article	IF	CITATIONS
109	Metal assessment for the catalytic reduction of bromate in water under hydrogen. Chemical Engineering Journal, 2015, 263, 119-126.	12.7	54
110	One-pot oxidation of cellobiose to gluconic acid. Unprecedented high selectivity on bifunctional gold catalysts over mesoporous carbon by integrated texture and surface chemistry optimization. Applied Catalysis B: Environmental, 2016, 184, 381-396.	20.2	54
111	The influence of activated carbon surface properties on the adsorption of the herbicide molinate and the bio-regeneration of the adsorbent. Journal of Hazardous Materials, 2006, 138, 343-349.	12.4	53
112	Screen-Printed Photochromic Textiles through New Inks Based on SiO ₂ @naphthopyran Nanoparticles. ACS Applied Materials & Interfaces, 2016, 8, 28935-28945.	8.0	53
113	Spatial and seasonal occurrence of micropollutants in four Portuguese rivers and a case study for fluorescence excitation-emission matrices. Science of the Total Environment, 2018, 644, 1128-1140.	8.0	53
114	Ozonation of sulfamethoxazole promoted by MWCNT. Catalysis Communications, 2013, 35, 82-87.	3.3	52
115	The role of O- and S-containing surface groups on carbon nanotubes for the elimination of organic pollutants by catalytic wet air oxidation. Applied Catalysis B: Environmental, 2014, 147, 314-321.	20.2	52
116	Environmental friendly method for urban wastewater monitoring of micropollutants defined in the Directive 2013/39/EU and Decision 2015/495/EU. Journal of Chromatography A, 2015, 1418, 140-149.	3.7	52
117	Adsorption of dyes on carbon xerogels and templated carbons: influence of surface chemistry. Adsorption, 2011, 17, 431-441.	3.0	50
118	Effect of the carbon nanotube surface characteristics on the conductivity and dielectric constant of carbon nanotube/poly(vinylidene fluoride) composites. Nanoscale Research Letters, 2011, 6, 302.	5.7	50
119	Ozonation of bezafibrate promoted by carbon materials. Applied Catalysis B: Environmental, 2013, 140-141, 82-91.	20.2	49
120	Nitrate Reduction Catalyzed by Pdâ€"Cu and Ptâ€"Cu Supported on Different Carbon Materials. Catalysis Letters, 2010, 139, 97-104.	2.6	48
121	Selective Oxidation of Glycerol Catalyzed by Rh/Activated Carbon: Importance of Support Surface Chemistry. Catalysis Letters, 2011, 141, 420-431.	2.6	48
122	Modification of carbon nanotubes by ball-milling to be used as ozonation catalysts. Catalysis Today, 2015, 249, 199-203.	4.4	48
123	Nitrogen-doped carbon xerogels as catalysts for advanced oxidation processes. Catalysis Today, 2015, 241, 73-79.	4.4	48
124	Oxygen surface groups analysis of carbonaceous samples pyrolysed at low temperature. Carbon, 2018, 134, 255-263.	10.3	48
125	Carbon nanofibers doped with nitrogen for the continuous catalytic ozonation of organic pollutants. Chemical Engineering Journal, 2016, 293, 102-111.	12.7	47
126	Evaluation of ion exchange-modified Y and ZSM5 zeolites in Cr(VI) biosorption and catalytic oxidation of ethyl acetate. Applied Catalysis B: Environmental, 2012, 117-118, 406-413.	20.2	46

#	Article	IF	CITATIONS
127	Catalytic performance of heteroatom-modified carbon nanotubes in advanced oxidation processes. Chinese Journal of Catalysis, 2014, 35, 896-905.	14.0	46
128	Pd, Pt, and Pt–Cu Catalysts Supported on Carbon Nanotube (CNT) for the Selective Oxidation of Glycerol in Alkaline and Base-Free Conditions. Industrial & Engineering Chemistry Research, 2016, 55, 8548-8556.	3.7	46
129	A "Nanopore Lithography―Strategy for Synthesizing Hierarchically Micro/Mesoporous Carbons from ZIF-8/Graphene Oxide Hybrids for Electrochemical Energy Storage. ACS Applied Materials & amp; Interfaces, 2017, 9, 44740-44755.	8.0	46
130	Synthesis and functionalization of carbon xerogels to be used as supports for fuel cell catalysts. Journal of Energy Chemistry, 2013, 22, 195-201.	12.9	45
131	Pt–Ru catalysts supported on carbon xerogels for PEM fuel cells. International Journal of Hydrogen Energy, 2012, 37, 7200-7211.	7.1	44
132	Highly dispersed ceria on activated carbon for the catalyzed ozonation of organic pollutants. Applied Catalysis B: Environmental, 2012, 113-114, 308-317.	20.2	44
133	Highly efficient reduction of bromate to bromide over mono and bimetallic ZSM5 catalysts. Green Chemistry, 2015, 17, 4247-4254.	9.0	44
134	CoMn-LDH@carbon nanotube composites: Bifunctional electrocatalysts for oxygen reactions. Catalysis Today, 2018, 301, 17-24.	4.4	44
135	Sorption of pentachlorophenol on pine bark. Chemosphere, 2005, 60, 1095-1102.	8.2	42
136	Anchoring of a [Mn(salen)Cl] complex onto mesoporous carbon xerogels. Journal of Colloid and Interface Science, 2007, 311, 152-158.	9.4	42
137	Selective Oxidation of Glycerol Catalyzed by Gold Supported on Multiwalled Carbon Nanotubes with Different Surface Chemistries. Industrial & Engineering Chemistry Research, 2012, 51, 15884-15894.	3.7	42
138	Catalytic ozonation of metolachlor under continuous operation using nanocarbon materials grown on a ceramic monolith. Journal of Hazardous Materials, 2012, 239-240, 249-256.	12.4	42
139	Direct conversion of cellulose to sorbitol over ruthenium catalysts: Influence of the support. Catalysis Today, 2017, 279, 244-251.	4.4	41
140	Catalytic reduction of bromate over monometallic catalysts on different powder and structured supports. Chemical Engineering Journal, 2017, 309, 197-205.	12.7	41
141	Photocatalytic ozonation of aniline with TiO2-carbon composite materials. Journal of Environmental Management, 2017, 195, 208-215.	7.8	41
142	Sulfamethoxazole degradation by combination of advanced oxidation processes. Journal of Environmental Chemical Engineering, 2018, 6, 4054-4060.	6.7	41
143	Engaging nanoporous carbons in "beyond adsorption―applications: Characterization, challenges and performance. Carbon, 2020, 164, 69-84.	10.3	41
144	Catalytic ozonation of organic micropollutants using carbon nanofibers supported on monoliths. Chemical Engineering Journal, 2013, 230, 115-123.	12.7	40

#	Article	IF	CITATIONS
145	Intensification of the ozone-water mass transfer in an oscillatory flow reactor with innovative design of periodic constrictions: Optimization and application in ozonation water treatment. Chemical Engineering Journal, 2020, 389, 124412.	12.7	40
146	Oxidative dehydrogenation of ethylbenzene on activated carbon fibers. Carbon, 2002, 40, 2393-2401.	10.3	39
147	Highly dispersed activated carbon supported platinum catalysts prepared by OMCVD: a comparison with wet impregnated catalysts. Applied Catalysis A: General, 2003, 243, 357-365.	4.3	39
148	Exotemplated copper, cobalt, iron, lanthanum and nickel oxides for catalytic oxidation of ethyl acetate. Journal of Environmental Chemical Engineering, 2013, 1, 795-804.	6.7	39
149	Different methodologies for synthesis of nitrogen doped carbon nanotubes and their use in catalytic wet air oxidation. Applied Catalysis A: General, 2017, 548, 62-70.	4.3	39
150	Cooperative action of heteropolyacids and carbon supported Ru catalysts for the conversion of cellulose. Catalysis Today, 2018, 301, 65-71.	4.4	39
151	Insights into the effect of the catalytic functions on selective production of ethylene glycol from lignocellulosic biomass over carbon supported ruthenium and tungsten catalysts. Bioresource Technology, 2018, 263, 402-409.	9.6	39
152	Mixture effects during the oxidation of toluene, ethyl acetate and ethanol over a cryptomelane catalyst. Journal of Hazardous Materials, 2011, 185, 1236-1240.	12.4	38
153	A life cycle assessment of solar-based treatments (H2O2, TiO2 photocatalysis, circumneutral) Tj ETQq1 1 0.78431 761, 143258.	4 rgBT /O ¹ 8.0	verlock 10 38
154	Adsorption of aromatic compounds from the biodegradation of azo dyes on activated carbon. Applied Surface Science, 2008, 254, 3497-3503.	6.1	37
155	Nitrate reduction over a Pd-Cu/MWCNT catalyst: application to a polluted groundwater. Environmental Technology (United Kingdom), 2012, 33, 2353-2358.	2.2	37
156	Catalytic oxidation of ethyl acetate over La-Co and La-Cu oxides. Journal of Environmental Chemical Engineering, 2014, 2, 344-355.	6.7	37
157	Photocatalytic-assisted ozone degradation of metolachlor aqueous solution. Chemical Engineering Journal, 2017, 318, 247-253.	12.7	37
158	Functionalization of textiles with multi-walled carbon nanotubes by a novel dyeing-like process. Journal of Materials Science, 2012, 47, 5263-5275.	3.7	36
159	Ceria dispersed on carbon materials for the catalytic ozonation of sulfamethoxazole. Journal of Environmental Chemical Engineering, 2013, 1, 260-269.	6.7	36
160	Ozonation of erythromycin over carbon materials and ceria dispersed on carbon materials. Chemical Engineering Journal, 2014, 250, 366-376.	12.7	36
161	Eco-friendly LC–MS/MS method for analysis of multi-class micropollutants in tap, fountain, and well water from northern Portugal. Analytical and Bioanalytical Chemistry, 2016, 408, 8355-8367.	3.7	36
162	Nâ€doped Carbon Nanotubes for the Oxygen Reduction Reaction in Alkaline Medium: Synergistic Relationship between Pyridinic and Quaternary Nitrogen. ChemistrySelect, 2016, 1, 2522-2530.	1.5	36

#	Article	IF	CITATIONS
163	Adsorption of dyes by ACs prepared from waste tyre reinforcing fibre. Effect of texture, surface chemistry and pH. Journal of Colloid and Interface Science, 2015, 459, 189-198.	9.4	35
164	Sucrose-derived activated carbons: electron transfer properties and application as oxygen reduction electrocatalysts. RSC Advances, 2015, 5, 102919-102931.	3.6	35
165	Jacobsen catalyst anchored onto modified carbon xerogel as enantioselective heterogeneous catalyst for alkene epoxidation. Journal of Molecular Catalysis A, 2009, 305, 135-141.	4.8	34
166	Oxidative dehydrogenation of isobutane on carbon xerogel catalysts. Catalysis Today, 2015, 249, 176-183.	4.4	34
167	Naphthopyran-Based Silica Nanoparticles as New High-Performance Photoresponsive Materials. ACS Applied Materials & Diterfaces, 2016, 8, 7221-7231.	8.0	34
168	Direct catalytic production of sorbitol from waste cellulosic materials. Bioresource Technology, 2017, 232, 152-158.	9.6	34
169	Synthesis, characterization and application of magnetic carbon materials as electron shuttles for the biological and chemical reduction of the azo dye Acid Orange 10. Applied Catalysis B: Environmental, 2017, 212, 175-184.	20.2	34
170	Conversion of hemicellulose-derived pentoses over noble metal supported on 1D multiwalled carbon nanotubes. Applied Catalysis B: Environmental, 2018, 232, 101-107.	20.2	34
171	Photocatalytic performance of N-doped TiO2nano-SiO2-HY nanocomposites immobilized over cotton fabrics. Journal of Materials Research and Technology, 2019, 8, 1933-1943.	5.8	34
172	Carbon xerogels and ceria–carbon xerogel materials as catalysts in the ozonation of organic pollutants. Applied Catalysis B: Environmental, 2012, 126, 22-28.	20.2	33
173	Glycerol oxidation with gold supported on carbon xerogels: Tuning selectivities by varying mesopore sizes. Applied Catalysis B: Environmental, 2012, 115-116, 1-6.	20.2	33
174	Selective Oxidation of Glycerol over Platinum-Based Catalysts Supported on Carbon Nanotubes. Industrial & Engineering Chemistry Research, 2013, 52, 17390-17398.	3.7	33
175	Volatile organic compounds abatement over copper-based catalysts: Effect of support. Inorganica Chimica Acta, 2017, 455, 473-482.	2.4	33
176	Distribution of micropollutants in estuarine and sea water along the Portuguese coast. Marine Pollution Bulletin, 2020, 154, 111120.	5.0	33
177	The effect of nanotube surface oxidation on the electrical properties of multiwall carbon nanotube/poly(vinylidene fluoride) composites. Journal of Materials Science, 2012, 47, 8103-8111.	3.7	32
178	Silica nanoparticles functionalized with a thermochromic dye for textile applications. Journal of Materials Science, 2013, 48, 5085-5092.	3.7	32
179	Electrochemical oxidation of aniline at mono and bimetallic electrocatalysts supported on carbon nanotubes. Chemical Engineering Journal, 2015, 260, 309-315.	12.7	32
180	Effective adsorption of the endocrine disruptor compound bisphenol a from water on surface-modified carbon materials. Applied Surface Science, 2021, 552, 149513.	6.1	32

#	Article	IF	CITATIONS
181	Bimetallic activated carbon supported catalysts for the hydrogen reduction of bromate in water. Catalysis Today, 2015, 249, 213-219.	4.4	31
182	Hydrolytic hydrogenation of cellulose to ethylene glycol over carbon nanotubes supported Ru–W bimetallic catalysts. Cellulose, 2018, 25, 2259-2272.	4.9	31
183	Catalytic Transfer Hydrogenation of Furfural over Co ₃ O ₄ â^3Al ₂ O ₃ Hydrotalciteâ€derived Catalyst. ChemCatChem, 2020, 12, 1467-1475.	3.7	31
184	Application of magnetic nanoparticles for water purification. Environmental Advances, 2020, 2, 100010.	4.8	31
185	Feedstock recycling of polyethylene over AlTUD-1 mesoporous catalyst. Polymer Degradation and Stability, 2007, 92, 1513-1519.	5.8	30
186	Preparation and characterization of poly[Ni(salen)(crown receptor)]/multi-walled carbon nanotube composite films. Electrochimica Acta, 2008, 53, 6722-6731.	5.2	30
187	Composites of manganese oxide with carbon materials as catalysts for the ozonation of oxalic acid. Journal of Hazardous Materials, 2012, 213-214, 133-139.	12.4	30
188	Effect of different carbon materials as electron shuttles in the anaerobic biotransformation of nitroanilines. Biotechnology and Bioengineering, 2016, 113, 1194-1202.	3.3	30
189	Reutilization of Cr-Y zeolite obtained by biosorption in the catalytic oxidation of volatile organic compounds. Journal of Hazardous Materials, 2011, 192, 545-553.	12.4	29
190	Ethyl Acetate Abatement on Copper Catalysts Supported on Ceria Doped with Rare Earth Oxides. Molecules, 2016, 21, 644.	3.8	29
191	Development of Novel Mesoporous Carbon Materials for the Catalytic Ozonation of Organic Pollutants. Catalysis Letters, 2009, 132, 1-9.	2.6	28
192	Enhancement of the Dielectric Constant and Thermal Properties of α-Poly(vinylidene fluoride)/Zeolite Nanocomposites. Journal of Physical Chemistry C, 2010, 114, 14446-14452.	3.1	28
193	Carbon as a catalyst: Esterification of acetic acid with ethanol. Catalysis Today, 2013, 218-219, 51-56.	4.4	28
194	Heterogeneous Fenton-Like Degradation of p-Nitrophenol over Tailored Carbon-Based Materials. Catalysts, 2019, 9, 258.	3.5	28
195	Production of ethyl levulinate fuel bioadditive from 5-hydroxymethylfurfural over sulfonic acid functionalized biochar catalysts. Fuel, 2021, 303, 121227.	6.4	28
196	Application of pine bark as a sorbent for organic pollutants in effluents. Management of Environmental Quality, 2004, 15, 491-501.	4.3	27
197	Influence of the textural properties of an activated carbon catalyst on the oxidative dehydrogenation of ethylbenzene. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 241, 165-171.	4.7	27
198	Lanthanum-based perovskites as catalysts for the ozonation of selected organic compounds. Applied Catalysis B: Environmental, 2013, 140-141, 426-432.	20.2	27

#	Article	IF	CITATIONS
199	A one-pot method for the enhanced production of xylitol directly from hemicellulose (corncob) Tj ETQq1 1 0.7843	14.rgBT /0 3.6	Oyerlock 10
200	Catalytic wet oxidation of organic compounds over N-doped carbon nanotubes in batch and continuous operation. Applied Catalysis B: Environmental, 2016, 199, 361-371.	20.2	27
201	Glucose-derived carbon materials with tailored properties as electrocatalysts for the oxygen reduction reaction. Beilstein Journal of Nanotechnology, 2019, 10, 1089-1102.	2.8	27
202	Wet Air Oxidation of Aniline Using Carbon Foams and Fibers Enriched with Nitrogen. Separation Science and Technology, 2010, 45, 1546-1554.	2.5	26
203	Adsorption of phenol on supercritically activated carbon fibres: Effect of texture and surface chemistry. Journal of Colloid and Interface Science, 2011, 357, 210-214.	9.4	26
204	Photoactive Zn(II)Porphyrin–multi-walled carbon nanotubes nanohybrids through covalent β-linkages. Materials Chemistry and Physics, 2013, 143, 296-304.	4.0	26
205	Electrocatalytic activity of new Mn3O4@oxidized graphene flakes nanocomposites toward oxygen reduction reaction. Journal of Materials Science, 2019, 54, 8919-8940.	3.7	26
206	Photocatalytic ozonation of model aqueous solutions of oxalic and oxamic acids. Applied Catalysis B: Environmental, 2015, 174-175, 113-119.	20.2	25
207	Advanced oxidation technologies combined with direct contact membrane distillation for treatment of secondary municipal wastewater. Chemical Engineering Research and Design, 2020, 140, 111-123.	5.6	25
208	Selective formic acid dehydrogenation at low temperature over a RuO ₂ /COF pre-catalyst synthesized on the gram scale. Catalysis Science and Technology, 2020, 10, 1991-1995.	4.1	25
209	Promotional effect of Cu on the structure and chloronitrobenzene hydrogenation performance of carbon nanotube and activated carbon supported Pt catalysts. Applied Catalysis A: General, 2013, 464-465, 28-34.	4.3	24
210	Catalytic Advanced Oxidation Processes for Sulfamethoxazole Degradation. Applied Sciences (Switzerland), 2019, 9, 2652.	2.5	24
211	Glucose-based carbon materials as supports for the efficient catalytic transformation of cellulose directly to ethylene glycol. Cellulose, 2019, 26, 7337-7353.	4.9	24
212	Advanced oxidation technologies and constructed wetlands in aquaculture farms: What do we know so far about micropollutant removal?. Environmental Research, 2022, 204, 111955.	7.5	24
213	Ozonation of Textile Effluents and Dye Solutions in the Presence of Activated Carbon under Continuous Operation. Separation Science and Technology, 2007, 42, 1477-1492.	2.5	23
214	Catalytic ozonation of oxalic acid using carbon nanofibres on macrostructured supports. Water Science and Technology, 2012, 65, 1854-1862.	2.5	23
215	Process design for wastewater treatment: catalytic ozonation of organic pollutants. Water Science and Technology, 2013, 68, 1377-1383.	2.5	23
216	Synthesis of TiO2-Carbon Nanotubes through ball-milling method for mineralization of oxamic acid (OMA) by photocatalytic ozonation. Journal of Environmental Chemical Engineering, 2017, 5, 5599-5607.	6.7	23

#	Article	IF	CITATIONS
217	Preparation of ceramic and metallic monoliths coated with cryptomelane as catalysts for VOC abatement. Chemical Engineering Journal, 2020, 382, 122923.	12.7	23
218	Pore tuned activated carbons as supports for an enantioselective molecular catalyst. Journal of Colloid and Interface Science, 2008, 328, 314-323.	9.4	22
219	Stability of a cryptomelane catalyst in the oxidation of toluene. Catalysis Today, 2010, 154, 308-311.	4.4	22
220	Effect of support and pre-treatment conditions on Ptâ€"Sn catalysts: Application to nitrate reduction in water. Journal of Colloid and Interface Science, 2012, 369, 294-301.	9.4	22
221	Removal of oxalic acid, oxamic acid and aniline by a combined photolysis and ozonation process. Environmental Technology (United Kingdom), 2015, 36, 1075-1083.	2.2	22
222	Comparison of different silica microporous structures as drug delivery systems for in vitro models of solid tumors. RSC Advances, 2017, 7, 13104-13111.	3.6	22
223	The impact of surface chemistry of carbon xerogels on their performance in phenol removal from wastewaters via combined adsorption-catalytic process. Applied Surface Science, 2020, 511, 145467.	6.1	22
224	Antibiotics removal from aquaculture effluents by ozonation: chemical and toxicity descriptors. Water Research, 2022, 218, 118497.	11.3	22
225	Perspectives on carbon materials as powerful catalysts in continuous anaerobic bioreactors. Water Research, 2016, 101, 441-447.	11.3	21
226	Catalytic and Photocatalytic Nitrate Reduction Over Pd-Cu Loaded Over Hybrid Materials of Multi-Walled Carbon Nanotubes and TiO2. Frontiers in Chemistry, 2018, 6, 632.	3.6	21
227	The role of surface properties in CO ₂ methanation over carbon-supported Ni catalysts and their promotion by Fe. Catalysis Science and Technology, 2020, 10, 7217-7225.	4.1	21
228	Kinetic Modeling of Nitrate Reduction Catalyzed by Pd–Cu Supported on Carbon Nanotubes. Industrial & Lamp; Engineering Chemistry Research, 2012, 51, 4854-4860.	3.7	20
229	High efficiency of the cylindrical mesopores of MWCNTs for the catalytic wet peroxide oxidation of C.I. Reactive Red 241 dissolved in water. Applied Catalysis B: Environmental, 2012, 121-122, 182-189.	20.2	20
230	Kinetic and equilibrium studies of phosphorous adsorption: Effect of physical and chemical properties of adsorption agent. Ecological Engineering, 2015, 82, 527-530.	3.6	20
231	Simultaneous catalytic conversion of cellulose and corncob xylan under temperature programming for enhanced sorbitol and xylitol production. Bioresource Technology, 2017, 244, 1173-1177.	9.6	20
232	Influence of carbon anode properties on performance and microbiome of Microbial Electrolysis Cells operated on urine. Electrochimica Acta, 2018, 267, 122-132.	5.2	20
233	Catalytic bromate reduction in water: Influence of carbon support. Journal of Environmental Chemical Engineering, 2019, 7, 103015.	6.7	20
234	Metal-free carbon materials as catalysts for wet air oxidation. Catalysis Today, 2020, 356, 189-196.	4.4	20

#	Article	IF	CITATIONS
235	Carbon Nanotube/Poly(dimethylsiloxane) Composite Materials to Reduce Bacterial Adhesion. Antibiotics, 2020, 9, 434.	3.7	20
236	Relationships between texture, surface chemistry and performance of N-doped carbon xerogels in the oxygen reduction reaction. Applied Surface Science, 2021, 548, 149242.	6.1	20
237	In situ investigation of the CO2 methanation on carbon/ceria-supported Ni catalysts using modulation-excitation DRIFTS. Applied Catalysis B: Environmental, 2022, 312, 121376.	20.2	20
238	Mineralization of Substituted Aromatic Compounds by Ozonation Catalyzed by Cerium Oxide and a Cerium Oxide-activated Carbon Composite. Catalysis Letters, 2009, 127, 195-203.	2.6	19
239	Influence of the Surface Chemistry of Multiwalled Carbon Nanotubes on the Selective Conversion of Cellulose into Sorbitol. ChemCatChem, 2017, 9, 888-896.	3.7	19
240	Direct catalytic conversion of agro-forestry biomass wastes into ethylene glycol over CNT supported Ru and W catalysts. Industrial Crops and Products, 2021, 166, 113461.	5. 2	19
241	A thermodynamic approach to assess organic solute adsorption onto activated carbon in water. Carbon, 2012, 50, 3774-3781.	10.3	18
242	Efficient immobilization of montmorillonite onto cotton textiles through their functionalization with organosilanes. Applied Clay Science, 2014, 101, 304-314.	5. 2	18
243	Incorporation of carbon nanotubes in polydimethylsiloxane to controlEscherichia coliadhesion. Polymer Composites, 2019, 40, E1697-E1704.	4.6	18
244	Electrocatalytic oxidation of oxalic and oxamic acids in aqueous media at carbon nanotube modified electrodes. Electrochimica Acta, 2012, 60, 278-286.	5.2	17
245	Tuning CNT Properties for Metal-Free Environmental Catalytic Applications. Journal of Carbon Research, 2016, 2, 17.	2.7	17
246	Electrochemical storage mechanisms in non-stoichiometric cerium oxide/multiwalled carbon nanotube composites. Electrochimica Acta, 2016, 209, 25-35.	5. 2	17
247	Rethinking water treatment targets: Bacteria regrowth under unprovable conditions. Water Research, 2021, 201, 117374.	11.3	17
248	Overgrowth control of potentially hazardous bacteria during storage of ozone treated wastewater through natural competition. Water Research, 2022, 209, 117932.	11.3	17
249	Optical Properties of Nanostructures Obtained by Encapsulation of Cation Chromophores in Y Zeolite. Journal of Physical Chemistry C, 2010, 114, 10719-10724.	3.1	16
250	Micro- and Mesoporous Structures as Drug Delivery Carriers for Salicylic Acid. Journal of Physical Chemistry C, 2015, 119, 3589-3595.	3.1	16
251	Bifunctionality of the pyrone functional group in oxidized carbon nanotubes towards oxygen reduction reaction. Catalysis Science and Technology, 2017, 7, 1868-1879.	4.1	16
252	Effect of porous structure on doping and the catalytic performance of carbon xerogels towards the oxygen reduction reaction. Microporous and Mesoporous Materials, 2020, 293, 109811.	4.4	16

#	Article	IF	CITATIONS
253	Phosphorus-doped carbon/carbon nanotube hybrids as high-performance electrodes for supercapacitors. Electrochimica Acta, 2020, 354, 136713.	5.2	16
254	Impact of Thermal Treatment of Nb2O5 on Its Performance in Glucose Dehydration to 5-Hydroxymethylfurfural in Water. Nanomaterials, 2020, 10, 1685.	4.1	16
255	Nanostructured Layers of Mechanically Processed Multiwalled Carbon Nanotubes for Catalytic Ozonation of Organic Pollutants. ACS Applied Nano Materials, 2020, 3, 5271-5284.	5.0	16
256	Lanthano phosphomolybdate-decorated silica nanoparticles: novel hybrid materials with photochromic properties. Dalton Transactions, 2015, 44, 4582-4593.	3.3	15
257	Phosphomolybdate@Carbon-Based Nanocomposites as Electrocatalysts for Oxygen Reduction Reaction. ChemistrySelect, 2016, 1, 6257-6266.	1.5	15
258	CO oxidation over gold supported on Cs, Li and Ti-doped cryptomelane materials. Journal of Colloid and Interface Science, 2016, 480, 17-29.	9.4	15
259	Electrochemical oxidation of amoxicillin on carbon nanotubes and carbon nanotube supported metal modified electrodes. Catalysis Today, 2020, 357, 322-331.	4.4	15
260	Optimizing CNT Loading in Antimicrobial Composites for Urinary Tract Application. Applied Sciences (Switzerland), 2021, 11, 4038.	2.5	15
261	Understanding the importance of Nâ´'doping for CNT-supported Ni catalysts for CO2 methanation. Carbon, 2022, 195, 35-43.	10.3	15
262	Green synthesis of polypyrrole-supported metal catalysts: application to nitrate removal in water. RSC Advances, 2015, 5, 32706-32713.	3.6	14
263	Co ₃ O ₄ Nanoparticles Anchored on Selectively Oxidized Graphene Flakes as Bifunctional Electrocatalysts for Oxygen Reactions. ChemistrySelect, 2018, 3, 10064-10076.	1.5	14
264	Effect of ball milling on the catalytic activity of cryptomelane for VOC oxidation. Environmental Technology (United Kingdom), 2020, 41, 117-130.	2.2	14
265	Mixed Platinumâ^Manganese Oxide Catalysts for Combustion of Volatile Organic Compounds. Industrial & Description of Property (1988) Industrial & Descripti	3.7	13
266	Carbon Xerogel Catalyst for NO Oxidation. Catalysts, 2012, 2, 447-465.	3.5	13
267	Modification of microfluidic paper-based devices with dye nanomaterials obtained by encapsulation of compounds in Y and ZSM5 zeolites. Sensors and Actuators B: Chemical, 2018, 261, 66-74.	7.8	13
268	Mechanothermal Approach for N-, S-, P-, and B-Doping of Carbon Nanotubes: Methodology and Catalytic Performance in Wet Air Oxidation. Journal of Carbon Research, 2019, 5, 30.	2.7	13
269	4-Nitrobenzaldehyde removal by catalytic ozonation in the presence of CNT. Journal of Water Process Engineering, 2020, 38, 101573.	5.6	13
270	Highly electroactive N–Fe hydrothermal carbons and carbon nanotubes for the oxygen reduction reaction. Journal of Energy Chemistry, 2020, 50, 260-270.	12.9	13

#	Article	IF	CITATIONS
271	Dibenzothiophene adsorption onto carbon-based adsorbent produced from the coconut shell: Effect of the functional groups density and textural properties on kinetics and equilibrium. Fuel, 2021, 292, 120354.	6.4	13
272	Comprehensive Genetic Analysis and Structural Characterization of CYP21A2 Mutations in CAH Patients. Experimental and Clinical Endocrinology and Diabetes, 2012, 120, 535-539.	1.2	12
273	The electrochemical mineralization of oxalic and oxamic acids using modified electrodes based on carbon nanotubes. Chemical Engineering Journal, 2013, 228, 374-380.	12.7	12
274	Oxidative dehydrogenation of isobutane catalyzed by an activated carbon fiber cloth exposed to supercritical fluids. Applied Catalysis A: General, 2015, 502, 71-77.	4.3	12
275	Oxidation of mixtures of ethyl acetate and butyl acetate over cryptomelane and the effect of water vapor. Environmental Progress and Sustainable Energy, 2016, 35, 1324-1329.	2.3	12
276	Air oxidized activated carbon catalyst for aerobic oxidative aromatizations of N-heterocycles. Catalysis Science and Technology, 2021, 11, 5962-5972.	4.1	12
277	Chapter 3. Novel carbon materials modified with heteroatoms as metal-free catalyst and metal catalyst support. Catalysis, 0, , 72-108.	1.0	11
278	Oxidation of Volatile Organic Compounds by Highly Efficient Metal Zeolite Catalysts. ChemCatChem, 2018, 10, 3754-3760.	3.7	11
279	Nitrate Catalytic Reduction over Bimetallic Catalysts: Catalyst Optimization. Journal of Carbon Research, 2020, 6, 78.	2.7	11
280	Ozonation of cytostatic drugs in aqueous phase. Science of the Total Environment, 2021, 795, 148855.	8.0	11
281	Solar Light-Induced Methylene Blue Removal over TiO2/AC Composites and Photocatalytic Regeneration. Nanomaterials, 2021, 11, 3016.	4.1	11
282	Probing the surface chemistry of different oxidized MWCNT for the improved electrical wiring of cytochrome c nitrite reductase. Electrochemistry Communications, 2013, 35, 17-21.	4.7	10
283	Ozonation of bezafibrate over ceria and ceria supported on carbon materials. Environmental Technology (United Kingdom), 2015, 36, 776-785.	2.2	10
284	Cutting the Green Waste. Structureâ€Performance Relationship in Functionalized Carbon Xerogels for Hydrolysis of Cellobiose. ChemCatChem, 2018, 10, 4934-4946.	3.7	10
285	Magnetic Nanoparticles for Photocatalytic Ozonation of Organic Pollutants. Catalysts, 2019, 9, 703.	3.5	10
286	Tailoring Carbon Nanotubes to Enhance their Efficiency as Electron Shuttle on the Biological Removal of Acid Orange 10 Under Anaerobic Conditions. Nanomaterials, 2020, 10, 2496.	4.1	10
287	Influence of organic matter formed during oxidative processes in the catalytic reduction of nitrate. Journal of Environmental Chemical Engineering, 2021, 9, 105545.	6.7	10
288	Selecting the most environmentally friendly oxidant for UVC degradation of micropollutants in urban wastewater by assessing life cycle impacts: Hydrogen peroxide, peroxymonosulfate or persulfate?. Science of the Total Environment, 2022, 808, 152050.	8.0	10

#	Article	IF	CITATIONS
289	Carbonized polyacrylonitrile fibers for the catalytic ozonation of oxalic acid. Catalysis Today, 2015, 249, 59-62.	4.4	9
290	Ethyl and butyl acetate oxidation over manganese oxides. Chinese Journal of Catalysis, 2018, 39, 27-36.	14.0	9
291	Detoxification of Ciprofloxacin in an Anaerobic Bioprocess Supplemented with Magnetic Carbon Nanotubes: Contribution of Adsorption and Biodegradation Mechanisms. International Journal of Molecular Sciences, 2021, 22, 2932.	4.1	9
292	Degradation and mineralization of oxalic acid using catalytic wet oxidation over carbon coated ceramic monoliths. Journal of Environmental Chemical Engineering, 2021, 9, 105369.	6.7	9
293	Solid acid carbon catalysts for sustainable production of biofuel enhancers via transesterification of glycerol with ethyl acetate. Fuel, 2021, 304, 121381.	6.4	9
294	Solid-phase extraction cartridges with multi-walled carbon nanotubes and effect of the oxygen functionalities on the recovery efficiency of organic micropollutants. Scientific Reports, 2020, 10, 22304.	3.3	9
295	Implementation of Transition Metal Phosphides as Pt-Free Catalysts for PEM Water Electrolysis. Energies, 2022, 15, 1821.	3.1	9
296	Cascade Conversion of Cellobiose to Gluconic Acid: The Large Impact of the Small Modification of Electronic Interaction on the Performance of Au/TiO ₂ Bifunctional Catalysts. Energy Technology, 2018, 6, 1675-1686.	3.8	8
297	Optimization of the preparation conditions of cordierite honeycomb monoliths washcoated with cryptomelane-type manganese oxide for VOC oxidation. Environmental Technology (United Kingdom), 2021, 42, 2504-2515.	2.2	8
298	An overview of the hydrolytic hydrogenation of lignocellulosic biomass using carbon-supported metal catalysts. Materials Today Sustainability, 2021, 11-12, 100058.	4.1	8
299	Multi-Walled Carbon Nanotubes Enhance Methanogenesis from Diverse Organic Compounds in Anaerobic Sludge and River Sediments. Applied Sciences (Switzerland), 2020, 10, 8184.	2.5	8
300	Metal-zeolite catalysts for the removal of pharmaceutical pollutants in water by catalytic ozonation. Journal of Environmental Chemical Engineering, $2021, 9, 106458$.	6.7	8
301	Fenton-Type Bimetallic Catalysts for Degradation of Dyes in Aqueous Solutions. Catalysts, 2021, 11, 32.	3.5	8
302	Bifunctional gold catalysts: Relationship between preparation method and catalytic performance in tandem cellobiose valorization. Catalysis Today, 2018, 301, 55-64.	4.4	7
303	Study of the Electroreactivity of Amoxicillin on Carbon Nanotubeâ€Supported Metal Electrodes. ChemCatChem, 2018, 10, 4900-4909.	3.7	7
304	Metal-Free Catalytic Wet Oxidation: From Powder to Structured Catalyst Using N-Doped Carbon Nanotubes. Topics in Catalysis, 2018, 61, 1957-1966.	2.8	7
305	Encapsulation and characterisation of cationic benzo[<i>a</i>]phenoxazines in zeolite HY. New Journal of Chemistry, 2019, 43, 15785-15792.	2.8	7
306	Efficiency and stability of metal-free carbon nitride in the photocatalytic ozonation of oxamic acid under visible light. Journal of Environmental Chemical Engineering, 2020, 8, 104172.	6.7	7

#	Article	IF	CITATIONS
307	Electrochemical oxidation of diclofenac on CNT and M/CNT modified electrodes. New Journal of Chemistry, 2021, 45, 12622-12633.	2.8	7
308	Nano- and macro-structured cerium oxide $\hat{a}\in$ Carbon nanotubes composites for the catalytic ozonation of organic pollutants in water. Catalysis Today, 2022, 384-386, 187-196.	4.4	7
309	Heteroatom (N, S) Co-Doped CNTs in the Phenol Oxidation by Catalytic Wet Air Oxidation. Catalysts, 2021, 11, 578.	3.5	7
310	O3 based advanced oxidation for ibuprofen degradation. Chinese Journal of Chemical Engineering, 2022, 42, 277-284.	3.5	7
311	Feasibility of using magnetic nanoparticles in water disinfection. Journal of Environmental Management, 2021, 288, 112410.	7.8	7
312	New Opportunity for Carbonâ€Supported Niâ€based Electrocatalysts: Gasâ€Phase CO ₂ Methanation. ChemCatChem, 2021, 13, 4770-4779.	3.7	7
313	Unveiling the role of oxidative treatments on the electrochemical performance of carbon nanotube-based cotton textile supercapacitors. Carbon Trends, 2021, 5, 100137.	3.0	7
314	Performance of Graphene/Polydimethylsiloxane Surfaces against S. aureus and P. aeruginosa Single-and Dual-Species Biofilms. Nanomaterials, 2022, 12, 355.	4.1	7
315	Study and characterization of the lignocellulosic Fique (Furcraea Andina spp.) fiber. Cellulose, 2022, 29, 2187-2198.	4.9	7
316	Porous Texture Versus Surface Chemistry in Applications of Adsorption by Carbons., 2012,, 471-498.		6
317	Supported Pt-particles on multi-walled carbon nanotubes with controlled surface chemistry. Materials Letters, 2012, 66, 64-67.	2.6	6
318	Comparative study of different catalysts for the direct conversion of cellulose to sorbitol. Green Processing and Synthesis, 2015, 4, .	3.4	6
319	Hydrothermal Carbon/Carbon Nanotube Composites as Electrocatalysts for the Oxygen Reduction Reaction. Journal of Composites Science, 2020, 4, 20.	3.0	6
320	Influence of preparation methods on the activity of macro-structured ball-milled MWCNT catalysts in the ozonation of organic pollutants. Journal of Environmental Chemical Engineering, 2021, 9, 104578.	6.7	6
321	Highly N2-Selective Activated Carbon-Supported Pt-In Catalysts for the Reduction of Nitrites in Water. Frontiers in Chemistry, 2021, 9, 733881.	3.6	6
322	Processing Methods Used in the Fabrication of Macrostructures Containing 1D Carbon Nanomaterials for Catalysis. Processes, 2020, 8, 1329.	2.8	5
323	Binuclear furanyl-azine metal complexes encapsulated in NaY zeolite as efficiently heterogeneous catalysts for phenol hydroxylation. Journal of Molecular Structure, 2020, 1206, 127687.	3.6	5
324	Towards the efficient reduction of perchlorate in water using rhenium-noble metal bimetallic catalysts supported on activated carbon. Journal of Environmental Chemical Engineering, 2021, 9, 106397.	6.7	5

#	Article	IF	Citations
325	Performance of self-cleaning cotton textiles coated with TiO2, TiO2-SiO2 and TiO2-SiO2-HY in removing Rhodamine B and Reactive Red 120 dyes from aqueous solutions., 0, 223, 447-455.		5
326	Spontaneous gold decoration of activated carbons. Inorganica Chimica Acta, 2013, 408, 235-239.	2.4	4
327	Fenton's oxidation using iron-containing activated carbon as catalyst for degradation of p-nitrophenol in a continuous stirred tank reactor. Journal of Water Process Engineering, 2021, 44, 102386.	5.6	4
328	Quenchers in advanced oxidation technologies for analysis of micropollutants by liquid chromatography coupled to mass spectrometry: Sodium sulphite or catalase?. Science of the Total Environment, 2019, 692, 995-1004.	8.0	3
329	CNT-based Materials as Electrodes for Flexible Supercapacitors. U Porto Journal of Engineering, 2021, 7, 151-162.	0.4	3
330	Fe, Co, N-doped carbon nanotubes as bifunctional oxygen electrocatalysts. Applied Surface Science, 2022, 572, 151459.	6.1	3
331	Engineering of Nanostructured Carbon Catalyst Supports for the Continuous Reduction of Bromate in Drinking Water. Journal of Carbon Research, 2022, 8, 21.	2.7	3
332	Carbon xerogels combined with nanotubes as solid-phase extraction sorbent to determine metaflumizone and seven other surface and drinking water micropollutants. Scientific Reports, 2021, 11, 13817.	3.3	2
333	Copper Supported on Mesoporous Structured Catalysts for NO Reduction. Catalysts, 2022, 12, 170.	3.5	2
334	Synthesis of monometallic macrostructured catalysts for bromate reduction in a continuous catalytic system. Environmental Technology (United Kingdom), 2023, 44, 3834-3849.	2.2	2
335	Inside Cover: Theoretical and Experimental Studies on the Carbon-Nanotube Surface Oxidation by Nitric Acid: Interplay between Functionalization and Vacancy Enlargement (Chem. Eur. J. 41/2011). Chemistry - A European Journal, 2011, 17, 11354-11354.	3.3	1
336	Using square wave voltammetry for the electrochemical characterization of cerium oxide/multiwalled carbon nanotube composites in different aqueous electrolytes. Journal of Electroanalytical Chemistry, 2019, 847, 113269.	3.8	1
337	Microbial conversion of oily wastes to methane: Effect of ferric nanomaterials., 2019,, 339-345.		1
338	Palladium Impregnation on Electrospun Carbon Fibers for Catalytic Reduction of Bromate in Water. Processes, 2022, 10, 458.	2.8	1
339	In Focus Section CHEMPOR 2014. Journal of Chemical Technology and Biotechnology, 2015, 90, 1545-1546.	3.2	0
340	From Nano- to Macrostructured Carbon Catalysts for Water and Wastewater Treatment. , 2021, , 273-308.		0
341	Bezafibrate removal by coupling ozonation and photocatalysis: effect of experimental conditions. Environmental Nanotechnology, Monitoring and Management, 2021, 17, 100610.	2.9	0