Hui Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5003642/publications.pdf

Version: 2024-02-01

		257450	302126
39	2,426	24	39
papers	citations	h-index	g-index
39	39	39	2685
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Antibiotics and antibiotic resistance genes in global lakes: A review and meta-analysis. Environment International, 2018, 116, 60-73.		474
2	Plastics in the marine environment are reservoirs for antibiotic and metal resistance genes. Environment International, 2019, 123, 79-86.	10.0	305
3	Microplastics are a hotspot for antibiotic resistance genes: Progress and perspective. Science of the Total Environment, 2021, 773, 145643.	8.0	130
4	Antibiotic resistance genes in surface water of eutrophic urban lakes are related to heavy metals, antibiotics, lake morphology and anthropic impact. Ecotoxicology, 2017, 26, 831-840.	2.4	126
5	Direct microbial conversion of wheat straw into lipid by a cellulolytic fungus of Aspergillus oryzae A-4 in solid-state fermentation. Bioresource Technology, 2010, 101, 7556-7562.	9.6	112
6	Occurrence of trace elements and antibiotics in manure-based fertilizers from the Zhejiang Province of China. Science of the Total Environment, 2016, 559, 174-181.	8.0	109
7	Metagenomic insights into the abundance and composition of resistance genes in aquatic environments: Influence of stratification and geography. Environment International, 2019, 127, 371-380.	10.0	98
8	Compost-bulking agents reduce the reservoir of antibiotics and antibiotic resistance genes in manures by modifying bacterial microbiota. Science of the Total Environment, 2019, 649, 396-404.	8.0	96
9	Effect of temperature on sulfonamide antibiotics degradation, and on antibiotic resistance determinants and hosts in animal manures. Science of the Total Environment, 2017, 607-608, 725-732.	8.0	82
10	Effects of manure and mineral fertilization strategies on soil antibiotic resistance gene levels and microbial community in a paddy–upland rotation system. Environmental Pollution, 2016, 211, 332-337.	7.5	80
11	Variations in the fate and biological effects of sulfamethoxazole, norfloxacin and doxycycline in different vegetable–soil systems following manure application. Journal of Hazardous Materials, 2016, 304, 49-57.	12.4	78
12	Antibiotics and Antibiotic Resistance Genes in Sediment of Honghu Lake and East Dongting Lake, China. Microbial Ecology, 2016, 72, 791-801.	2.8	73
13	A compositional shift in the soil microbiome induced by tetracycline, sulfamonomethoxine and ciprofloxacin entering a plant-soil system. Environmental Pollution, 2016, 212, 440-448.	7.5	71
14	Degradation of tetracycline antibiotics by Arthrobacter nicotianae OTC-16. Journal of Hazardous Materials, 2021, 403, 123996.	12.4	71
15	Soil microbial systems respond differentially to tetracycline, sulfamonomethoxine, and ciprofloxacin entering soil under pot experimental conditions alone and in combination. Environmental Science and Pollution Research, 2014, 21, 7436-7448.	5.3	55
16	Preparation of a new-style composite containing a key bioflocculant produced by Pseudomonas aeruginosa ZJU1 and its flocculating effect on harmful algal blooms. Journal of Hazardous Materials, 2015, 284, 215-221.	12.4	53
17	Potential utilization of waste sweetpotato vines hydrolysate as a new source for single cell oils production by Trichosporon fermentans. Bioresource Technology, 2013, 135, 622-629.	9.6	41
18	Genetic engineering of microorganisms for biodiesel production. Bioengineered, 2013, 4, 292-304.	3.2	41

#	Article	IF	CITATIONS
19	Fate of tetracycline and sulfonamide resistance genes in a grassland soil amended with different organic fertilizers. Ecotoxicology and Environmental Safety, 2019, 170, 39-46.	6.0	38
20	Acidic conditions enhance the removal of sulfonamide antibiotics and antibiotic resistance determinants in swine manure. Environmental Pollution, 2020, 263, 114439.	7.5	33
21	Simultaneous reductions in antibiotics and heavy metal pollution during manure composting. Science of the Total Environment, 2021, 788, 147830.	8.0	33
22	Artificial construction and characterization of a fungal consortium that produces cellulolytic enzyme system with strong wheat straw saccharification. Bioresource Technology, 2011, 102, 10569-10576.	9.6	29
23	Sweetpotato vines hydrolysate promotes single cell oils production of Trichosporon fermentans in high-density molasses fermentation. Bioresource Technology, 2015, 176, 249-256.	9.6	26
24	Evaluation of Bacterial Expansin EXLX1 as a Cellulase Synergist for the Saccharification of Lignocellulosic Agro-Industrial Wastes. PLoS ONE, 2013, 8, e75022.	2.5	25
25	Sweetpotato vines hydrolysate induces glycerol to be an effective substrate for lipid production of Trichosporon fermentans. Bioresource Technology, 2013, 136, 725-729.	9.6	20
26	Plants Mitigate Nitrous Oxide Emissions from Antibiotic-Contaminated Agricultural Soils. Environmental Science & Environmental	10.0	18
27	Effect of composting on the conjugative transmission of sulfonamide resistance and sulfonamide-resistant bacterial population. Journal of Cleaner Production, 2021, 285, 125483.	9.3	17
28	Wheat Bran Enhances the Cytotoxicity of Immobilized Alcaligenes aquatilis F8 against Microcystis aeruginosa. PLoS ONE, 2015, 10, e0136429.	2.5	16
29	Comparative genome analysis of the oleaginous yeast Trichosporon fermentans reveals its potential applications in lipid accumulation. Microbiological Research, 2016, 192, 203-210.	5.3	15
30	Soil microbial activity and community composition as influenced by application of pig biogas slurry in paddy field in southeast China. Paddy and Water Environment, 2020, 18, 15-25.	1.8	12
31	Characterization of Cellulase Secretion and Cre1-Mediated Carbon Source Repression in the Potential Lignocellulose-Degrading Strain Trichoderma asperellum T-1. PLoS ONE, 2015, 10, e0119237.	2.5	10
32	Agro-industrial waste recycling by Trichosporon fermentans: conversion of waste sweetpotato vines alone into lipid. Environmental Science and Pollution Research, 2018, 25, 8793-8799.	5.3	9
33	The binding, synergistic and structural characteristics of BsEXLX1 for loosening the main components of lignocellulose: Lignin, xylan, and cellulose. Enzyme and Microbial Technology, 2016, 92, 67-75.	3.2	6
34	Engineering Aspergillus oryzae A-4 through the Chromosomal Insertion of Foreign Cellulase Expression Cassette to Improve Conversion of Cellulosic Biomass into Lipids. PLoS ONE, 2014, 9, e108442.	2.5	6
35	Isolation and characterization of <i>Rhodococcus</i> sp. NB5 capable of degrading a high concentration of nitrobenzene. Journal of Basic Microbiology, 2011, 51, 397-403.	3.3	5
36	Mechanism for the disparity of the lipid production by Trichosporon fermentans grown on different sweetpotato vines hydrolysates. Industrial Crops and Products, 2013, 50, 844-851.	5.2	4

#	Article	IF	CITATIONS
37	Genomic insights into the antibiotic resistance pattern of the tetracycline-degrading bacterium, Arthrobacter nicotianae OTC-16. Scientific Reports, 2021, 11, 15638.	3.3	4
38	Copper exposure effects on antibiotic degradation in swine manure vary between mesophilic and thermophilic conditions. Science of the Total Environment, 2022, 841, 156759.	8.0	3
39	Efficient degradation of tylosin by Klebsiella oxytoca TYL-T1. Science of the Total Environment, 2022, 847, 157305.	8.0	2