H Fjellvåg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/500351/publications.pdf

Version: 2024-02-01

523 papers 19,142 citations

64 h-index 22832 112 g-index

527 all docs 527 docs citations

527 times ranked

19148 citing authors

#	Article	IF	CITATIONS
1	Hydrogen adsorption in a nickel based coordination polymer with open metal sites in the cylindrical cavities of the desolvated framework. Chemical Communications, 2006, , 959.	4.1	596
2	Theoretical investigation of magnetoelectric behavior inBiFeO3. Physical Review B, 2006, 74, .	3.2	582
3	An In Situ High-Temperature Single-Crystal Investigation of a Dehydrated Metal-Organic Framework Compound and Field-Induced Magnetization of One-Dimensional Metal-Oxygen Chains. Angewandte Chemie - International Edition, 2005, 44, 6354-6358.	13.8	528
4	Amine functionalised metal organic frameworks (MOFs) asÂadsorbents for carbon dioxide. Adsorption, 2008, 14, 755-762.	3.0	409
5	Microstructures and Spectroscopic Properties of Cryptomelane-type Manganese Dioxide Nanofibers. Journal of Physical Chemistry C, 2008, 112, 13134-13140.	3.1	398
6	Adsorption properties and structure of CO2 adsorbed on open coordination sites of metala \in organic framework Ni2(dhtp) from gas adsorption, IR spectroscopy and X-ray diffraction. Chemical Communications, 2008, , 5125.	4.1	348
7	A comparison study on Raman scattering properties of \hat{l}_{\pm} - and \hat{l}_{\pm} -MnO2. Analytica Chimica Acta, 2009, 648, 235-239.	5.4	347
8	Baseâ€Induced Formation of Two Magnesium Metalâ€Organic Framework Compounds with a Bifunctional Tetratopic Ligand. European Journal of Inorganic Chemistry, 2008, 2008, 3624-3632.	2.0	295
9	Crystal Structure and Possible Charge Ordering in One-Dimensional Ca3Co2O6. Journal of Solid State Chemistry, 1996, 124, 190-194.	2.9	280
10	Structural Changes and Coordinatively Unsaturated Metal Atoms on Dehydration of Honeycomb Analogous Microporous Metal–Organic Frameworks. Chemistry - A European Journal, 2008, 14, 2389-2397.	3.3	250
11	Magnetic properties of the one-dimensional Ca3Co2O6. Solid State Communications, 1997, 101, 187-192.	1.9	235
12	Electronic structure and optical properties of ZnX(X=O,S, Se, Te): A density functional study. Physical Review B, 2007, 75, .	3.2	225
13	Equation of state of magnetite and its high-pressure modification: Thermodynamics of the Fe-O system at high pressure. American Mineralogist, 2000, 85, 514-523.	1.9	208
14	Phase stability, electronic structure, and optical properties of indium oxide polytypes. Physical Review B, 2007, 76, .	3.2	194
15	Crystal Structures of Titanate Nanotubes: A Raman Scattering Study. Inorganic Chemistry, 2009, 48, 1423-1432.	4.0	188
16	Pressure-Induced Structural Transitions in MgH2. Physical Review Letters, 2002, 89, 175506.	7.8	186
17	Large magnetocrystalline anisotropy in bilayer transition metal phases from first-principles full-potential calculations. Physical Review B, 2001, 63, .	3.2	182
18	Oxygen Nonstoichiometry in YBaCo4O7+δ: Large Low-Temperature Oxygen Absorption/Desorption Capability. Chemistry of Materials, 2006, 18, 490-494.	6.7	178

#	Article	IF	CITATIONS
19	Energetics of intrinsic defects and their complexes in ZnO investigated by density functional calculations. Physical Review B, 2011, 83, .	3.2	162
20	Effect of Nonstoichiometry on Properties of La1â^'tMnO3+Î'. Journal of Solid State Chemistry, 1996, 124, 43-51.	2.9	159
21	Detailed electronic structure studies on superconductingMgB2and related compounds. Physical Review B, 2001, 64, .	3.2	159
22	Structural stability and pressure-induced phase transitions in MgH2. Physical Review B, 2006, 73, .	3.2	154
23	Growth of thin films of molybdenum oxide by atomic layer deposition. Journal of Materials Chemistry, 2011, 21, 705-710.	6.7	133
24	On the Crystallographic and Magnetic Structures of Nearly Stoichiometric Iron Monoxide. Journal of Solid State Chemistry, 1996, 124, 52-57.	2.9	128
25	Structural stability of alkali boron tetrahydrides ABH4 (A = Li, Na, K, Rb, Cs) from first principle calculation. Journal of Alloys and Compounds, 2005, 387, 97-104.	5.5	126
26	Accurate structure of LiAlD4 studied by combined powder neutron and X-ray diffraction. Journal of Alloys and Compounds, 2002, 346, 184-189.	5.5	124
27	Evidence for Oxygen Vacancies in Misfit-Layered Calcium Cobalt Oxide, [CoCa2O3]qCoO2. Chemistry of Materials, 2004, 16, 2790-2793.	6.7	124
28	How Crystallite Size Controls the Reaction Path in Nonaqueous Metal Ion Batteries: The Example of Sodium Bismuth Alloying. Chemistry of Materials, 2016, 28, 2750-2756.	6.7	113
29	Pressure-induced phase of NaAlH4: A potential candidate for hydrogen storage?. Applied Physics Letters, 2003, 82, 2257-2259.	3.3	112
30	Theoretical Investigations on the Chemical Bonding, Electronic Structure, And Optical Properties of the Metalâ 'Organic Framework MOF-5. Inorganic Chemistry, 2010, 49, 10283-10290.	4.0	112
31	Itinerant metamagnetism and possible spin transition in LaCoO[sub 3] by temperature/hole doping. Journal of Applied Physics, 2002, 91, 291.	2.5	108
32	Ground-state and excited-state properties of LaMnO3 from full-potential calculations. Physical Review B, 2002, 65, .	3.2	108
33	Nanocrystalline Orthoferrite GdFeO3 from a Novel Heterobimetallic Precursor. Advanced Materials, 2002, 14, 1405-1409.	21.0	108
34	Growth of Fe2O3 thin films by atomic layer deposition. Thin Solid Films, 2005, 488, 74-81.	1.8	103
35	Crystal and magnetic structure of orthorhombicHoMnO3. Physical Review B, 2001, 63, .	3.2	102
36	Growth of manganese oxide thin films by atomic layer deposition. Thin Solid Films, 2003, 444, 44-51.	1.8	101

#	Article	IF	CITATIONS
37	Synthesis of Metastable Perovskite-type YMnO3and HoMnO3. Journal of Solid State Chemistry, 1997, 129, 334-340.	2.9	100
38	Deposition of thin films of organic–inorganic hybrid materials based on aromatic carboxylic acids by atomic layer deposition. Dalton Transactions, 2010, 39, 11628.	3.3	98
39	Low-temperature structural distortion in CuS. Zeitschrift Fýr Kristallographie, 1988, 184, 111-121.	1.1	95
40	Atomic Layer Deposition of Li ₂ O–Al ₂ O ₃ Thin Films. Chemistry of Materials, 2011, 23, 4669-4675.	6.7	94
41	Huge-pressure-induced volume collapse inLiAlH4and its implications to hydrogen storage. Physical Review B, 2003, 68, .	3.2	91
42	Short hydrogenâ€"hydrogen separations in novel intermetallic hydrides, RE3Ni3In3D4 (RE=La, Ce and Nd). Journal of Alloys and Compounds, 2002, 330-332, 132-140.	5. 5	90
43	Synthesis and Properties of Layered-Structured Mn ₅ O ₈ Nanorods. Journal of Physical Chemistry C, 2010, 114, 922-928.	3.1	90
44	Growth of thin films of Co3O4 by atomic layer deposition. Thin Solid Films, 2007, 515, 7772-7781.	1.8	87
45	Lanthanum titanate and lithium lanthanum titanate thin films grown by atomic layer deposition. Journal of Materials Chemistry, 2010, 20, 2877.	6.7	87
46	Structural properties of ZrTe5 and HfTe5 as seen by powder diffraction. Solid State Communications, 1986, 60, 91-93.	1.9	86
47	Coulomb correlation effects in zinc monochalcogenides. Journal of Applied Physics, 2006, 100, 043709.	2.5	86
48	Structural, Magnetic, and Thermal Properties of La1â^'tCatCrO3â^'δ. Journal of Solid State Chemistry, 1996, 121, 202-213.	2.9	84
49	The decomposition of LiAlD4 studied by in-situ X-ray and neutron diffraction. Journal of Alloys and Compounds, 2003, 351, 222-227.	5.5	84
50	Atomic layer deposition of lithium containing thin films. Journal of Materials Chemistry, 2009, 19, 8767.	6.7	81
51	On the crystal structure and magnetic properties of MnNiGe. Journal of Magnetism and Magnetic Materials, 1985, 50, 291-297.	2.3	78
52	SAPO-34 methanol-to-olefin catalysts under working conditions: A combined in situ powder X-ray diffraction, mass spectrometry and Raman study. Journal of Catalysis, 2009, 268, 290-296.	6.2	76
53	Growth of Nano-Needles of Manganese(IV) Oxide by Atomic Layer Deposition. Journal of Nanoscience and Nanotechnology, 2008, 8, 1003-1011.	0.9	75
54	Electronic structure and optical properties of ZnSiO3 and Zn2SiO4. Journal of Applied Physics, 2009, 106, .	2.5	75

#	Article	IF	CITATIONS
55	Raman Scattering Properties of a Protonic Titanate $H < sub < i > x < i > (i > 4 < sub > 6 < i > 4 < sub > 6 < sub > 7 < sub > 8 < sub > 9 < sub$	2.6	74
56	The high resolution Powder Neutron Diffractometer PUS at the JEEP II reactor at Kjeller in Norway. Journal of Neutron Research, 2000, 8, 215-232.	1.1	72
57	Crystal and Magnetic Structure of the Orthorhombic Perovskite YbMnO3. Chemistry of Materials, 2006, 18, 2130-2134.	6.7	70
58	Structural and morphological evolution of \hat{l}^2 -MnO $<$ sub $>$ 2 $<$ /sub $>$ nanorods during hydrothermal synthesis. Nanotechnology, 2009, 20, 055610.	2.6	70
59	High hydrogen content complex hydrides: A density-functional study. Applied Physics Letters, 2006, 89, 071906.	3.3	68
60	Watching the Methanolâ€toâ€Olefin Process with Time―and Spaceâ€Resolved Highâ€Energy Operando Xâ€ray Diffraction. Angewandte Chemie - International Edition, 2012, 51, 7956-7959.	13.8	68
61	Structure determination by use of pattern decomposition and the Rietveld method on synchrotron X-ray and neutron powder data; the structures of Al2Y4O9and T2O4. Journal of Applied Crystallography, 1987, 20, 123-129.	4.5	67
62	Growth of LaCoO3 thin films from \hat{l}^2 -diketonate precursors. Applied Surface Science, 1997, 112, 243-250.	6.1	67
63	Structure and Magnetism of Pr1â^'xSrxCoO3â^'Î'. Journal of Solid State Chemistry, 1999, 147, 464-477.	2.9	66
64	Atomic Layer Deposition of Spinel Lithium Manganese Oxide by Film-Body-Controlled Lithium Incorporation for Thin-Film Lithium-Ion Batteries. Journal of Physical Chemistry C, 2014, 118, 1258-1268.	3.1	66
65	Atomic layer deposition of organic–inorganic hybrid materials based on saturated linear carboxylic acids. Dalton Transactions, 2011, 40, 4636.	3.3	65
66	Violation of the Minimum H-H Separation "Rule" for Metal Hydrides. Physical Review Letters, 2002, 89, 106403.	7.8	62
67	Structural Properties of Co3Sn2, Ni3Sn2 and Some Ternary Derivatives Acta Chemica Scandinavica, 1986, 40a, 23-30.	0.7	62
68	Deposition of LaNiO3 thin films in an atomic layer epitaxy reactor. Journal of Materials Chemistry, 1997, 7, 449-454.	6.7	61
69	On the Crystal Structure of Ln2O2CO3 II (Ln=La and Nd). Journal of Solid State Chemistry, 2001, 158, 14-24.	2.9	61
70	Design of Novel Bilayer Compounds of the CPO-8 Type Containing 1D Channels. Inorganic Chemistry, 2006, 45, 2424-2429.	4.0	61
71	UiO-7:Â A New Aluminophosphate Phase Solved by Simulated Annealing and High-Resolution Powder Diffraction. The Journal of Physical Chemistry, 1996, 100, 16641-16646.	2.9	60
72	Electronic structure and band parameters for Zn (, S, Se, Te). Journal of Crystal Growth, 2006, 287, 162-168.	1.5	60

#	Article	IF	CITATIONS
73	Uncommon oxygen intake/release capability of layered cobalt oxides, REBaCo4O7+δ: Novel oxygen-storage materials. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 148, 196-198.	3.5	60
74	Microstructures, Surface Properties, and Topotactic Transitions of Manganite Nanorods. Inorganic Chemistry, 2009, 48, 6242-6250.	4.0	60
75	Precursor-Dependent Blue-Green Photoluminescence Emission of ZnO Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 25227-25233.	3.1	60
76	The iron member of the CPO-27 coordination polymer series: Synthesis, characterization, and intriguing redox properties. Microporous and Mesoporous Materials, 2012, 157, 62-74.	4.4	59
77	Characterization of Ni on La modified Al2O3 catalysts during CO2 reforming of methane. Applied Catalysis A: General, 1997, 165, 379-390.	4.3	55
78	Growth of calcium carbonate by the atomic layer chemical vapour deposition technique. Thin Solid Films, 2004, 450, 240-247.	1.8	55
79	Chemical pressure and other effects of strontium substitution in YBa2Cu3O9â^Î. Journal of Solid State Chemistry, 1991, 92, 57-67.	2.9	54
80	Synthesis of Oriented BiFeO3 Thin Films by Chemical Solution Deposition: Phase, Texture, and Microstructural Development. Journal of Materials Research, 2005, 20, 2127-2139.	2.6	54
81	Direct observation of catalyst behaviour under real working conditions with X-ray diffraction: Comparing SAPO-18 and SAPO-34 methanol to olefin catalysts. Journal of Catalysis, 2011, 279, 397-402.	6.2	54
82	Atomic layer deposition of ferroelectric LiNbO ₃ . Journal of Materials Chemistry C, 2013, 1, 4283-4290.	5.5	54
83	Chemical Structures of Specific Sodium Ion Battery Components Determined by Operando Pair Distribution Function and Xâ€ray Diffraction Computed Tomography. Angewandte Chemie - International Edition, 2017, 56, 11385-11389.	13.8	54
84	Tailor-Made Electronic and Magnetic Properties in One-Dimensional Pure and Y-SubstitutedCa3Co2O6. Physical Review Letters, 2003, 91, 186404.	7.8	53
85	Revisiting isoreticular MOFs of alkaline earth metals: a comprehensive study on phase stability, electronic structure, chemical bonding, and optical properties of A–IRMOF-1 (A = Be, Mg, Ca, Sr, Ba). Physical Chemistry Chemical Physics, 2011, 13, 10191.	2.8	53
86	The crystal structure of Cr8O21 determined from powder diffraction data: Thermal transformation and magnetic properties of a chromium-chromate-tetrachromate. Journal of Solid State Chemistry, 1991, 94, 281-293.	2.9	52
87	Crystal Structure and Magnetic Properties of La2Co2O5. Journal of Solid State Chemistry, 1998, 141, 411-417.	2.9	52
88	A scandium coordination polymer constructed from trimeric octahedral building blocks and 2,5-dihydroxyterephthalate. Dalton Transactions, 2006, , 2055-2057.	3.3	52
89	Unusual Photoluminescence of CaHfO ₃ and SrHfO ₃ Nanoparticles. Advanced Functional Materials, 2012, 22, 1174-1179.	14.9	52
90	High power nano-structured V ₂ O ₅ thin film cathodes by atomic layer deposition. Journal of Materials Chemistry A, 2014, 2, 15044-15051.	10.3	52

#	Article	IF	Citations
91	Synthesis and characterization of CPO-1; three-dimensional coordination polymers with 2,6-naphthalenedicarboxylate (ndc) ligands $[M(ndc)(H2O)]$, $M=Mn(II)$, $Zn(II)$ or $Cd(II)$. Solid State Sciences, 2002, 4, 443-447.	3.2	51
92	Structural stability of BeH2 at high pressures. Applied Physics Letters, 2004, 84, 34-36.	3.3	51
93	Effect of magnetic field on the growth of α-Fe2O3 thin films by atomic layer deposition. Applied Surface Science, 2004, 227, 40-47.	6.1	51
94	Design of Potential Hydrogen-Storage Materials Using First-Principle Density-Functional Calculations. Crystal Growth and Design, 2004, 4, 471-477.	3.0	51
95	Thin films of In2O3 by atomic layer deposition using In(acac)3. Thin Solid Films, 2009, 517, 6320-6322.	1.8	51
96	Synthesis, structure and magnetic properties of nanocrystalline YMnO3. Dalton Transactions, 2011, 40, 7583.	3.3	51
97	Combination of characterization techniques for atomic layer deposition MoO3 coatings: From the amorphous to the orthorhombic $\hat{l}\pm$ -MoO3 crystalline phase. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, .	2.1	51
98	Atomic layer deposition of functional films for Liâ€ion microbatteries. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 357-367.	1.8	51
99	Functional Perovskites by Atomic Layer Deposition – An Overview. Advanced Materials Interfaces, 2017, 4, 1600903.	3.7	51
100	Monoclinic nearly stoichiometric w $\tilde{A}\frac{1}{4}$ stite at low temperatures. American Mineralogist, 2002, 87, 347-349.	1.9	50
101	Growth of La1â^'xCaxMnO3thin films by atomic layer deposition. Journal of Materials Chemistry, 2007, 17, 1466-1475.	6.7	50
102	Epitaxial growth of cobalt oxide by atomic layer deposition. Journal of Crystal Growth, 2007, 307, 457-465.	1.5	50
103	First-principles investigations of the MMgH3 (, Na, K, Rb, Cs) series. Journal of Alloys and Compounds, 2008, 450, 327-337.	5.5	50
104	Synthesis, Crystal Structure, and Thermal Properties of the First Mixed-Metal and Anion-Substituted Rare Earth Borohydride LiCe(BH ₄) ₃ Cl. Journal of Physical Chemistry C, 2011, 115, 23591-23602.	3.1	50
105	The crystal structure of KAID4. Journal of Alloys and Compounds, 2005, 394, 35-38.	5.5	49
106	High-performing iron phosphate for enhanced lithium ion solid state batteries as grown by atomic layer deposition. Journal of Materials Chemistry A, 2013, 1, 9054-9059.	10.3	49
107	Atomic layer deposition of LixTiyOz thin films. RSC Advances, 2013, 3, 7537-7542.	3.6	49
108	In situ XRD characterization of LaNiAlO model catalysts for CO2 reforming of methane. Applied Catalysis A: General, 1996, 145, 375-388.	4.3	48

#	Article	IF	CITATIONS
109	Crystal structure, thermal and magnetic properties of La3Co3O8. Phase relations for LaCoO3â^î^(0.00â‰Î′â‰0.50) at 673 K. Journal of Materials Chemistry, 1998, 8, 2081-2088.	6.7	48
110	Delamination, synthesis, crystal structure and thermal properties of the layered metal-organic compound Zn(C12H14O4). Journal of Materials Chemistry, 2008, 18, 1002.	6.7	48
111	Re-examination of the Crystal Structure of ZrTe3 Acta Chemica Scandinavica, 1991, 45, 694-697.	0.7	48
112	On the magnetic and structural properties of the MnAs1â^'xPx system (xâ@½0.18). Journal of Magnetism and Magnetic Materials, 1984, 46, 29-39.	2.3	47
113	Short hydrogen-hydrogen separation inRNiInH1.333(R=La,Ce, Nd). Physical Review B, 2003, 67, .	3.2	47
114	Analytical model for island growth in atomic layer deposition using geometrical principles. Journal of Applied Physics, 2007, 102, 024906.	2.5	47
115	Magneticâ€Instabilityâ€Induced Giant Magnetoelectric Coupling. Advanced Materials, 2008, 20, 1353-1356.	21.0	47
116	Thin Films of Cobalt Oxide Deposited on High Aspect Ratio Supports by Atomic Layer Deposition. Chemical Vapor Deposition, 2011, 17, 135-140.	1.3	47
117	Effect of substrate on the characteristics of manganese(IV) oxide thin films prepared by atomic layer deposition. Thin Solid Films, 2004, 468, 65-74.	1.8	46
118	Structure, Water Uptake, and Electrical Conductivity of TiP2O7. Journal of the American Ceramic Society, 2011, 94, 1514-1522.	3.8	46
119	Crystal structure and phase relations for Mn3Sn2 and non-stoichiometric Mn2â°xSn. Journal of Alloys and Compounds, 1997, 259, 140-144.	5.5	45
120	Crystal structure of KAlH4 from first principle calculations. Journal of Alloys and Compounds, 2004, 363, L8-L12.	5. 5	44
121	Defect Chemistry of a Zinc-Doped Lepidocrocite Titanate CsxTi2â°'x/2Znx/2O4 (x = 0.7) and its Protonic Form. Chemistry of Materials, 2009, 21, 3503-3513.	6.7	44
122	Bismuth Vanadate and Molybdate: Stable Alloying Anodes for Sodium-Ion Batteries. Chemistry of Materials, 2017, 29, 2803-2810.	6.7	44
123	Coordination Polymers Based on the 2,5â€Dihydroxyterephthalate Ion and Alkaline Earth Metal (Ca, Sr) and Manganese CationsÂÂ. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2009, 635, 1953-1958.	1.2	42
124	Atomic layer deposition of lithium nitride and carbonate using lithium silylamide. RSC Advances, 2012, 2, 6315.	3.6	42
125	Hydrogen storage properties of γ–Mg(BH4)2 modified by MoO3 and TiO2. International Journal of Hydrogen Energy, 2015, 40, 12286-12293.	7.1	42
126	Structure and Magnetism of Pr1â^'xSrxFeO3â~'δ. Journal of Solid State Chemistry, 2000, 150, 233-249.	2.9	41

#	Article	IF	Citations
127	Electrical properties of Al2O3â^•4Hâ€SiC structures grown by atomic layer chemical vapor deposition. Journal of Applied Physics, 2007, 102, 054513.	2.5	41
128	Topological Properties of Titanate Nanotubes. Journal of Physical Chemistry C, 2008, 112, 8548-8552.	3.1	41
129	Hexagonal LaNiSnD2 with a filled ZrBeSi-type structure. Journal of Alloys and Compounds, 2002, 330-332, 141-145.	5.5	40
130	Structural stability and electronic structure forLi3AlH6. Physical Review B, 2004, 69, .	3.2	40
131	Theoretical investigations on low energy surfaces and nanowires of MgH ₂ . Nanotechnology, 2008, 19, 275704.	2.6	40
132	The adsorption of methanol and water on SAPO-34: in situ and ex situ X-ray diffraction studies. Microporous and Mesoporous Materials, 2010, 134, 210-215.	4.4	40
133	In Situ Flow MAS NMR Spectroscopy and Synchrotron PDF Analyses of the Local Response of the BrÃnsted Acidic Site in SAPOâ€34 during Hydration at Elevated Temperatures. ChemPhysChem, 2018, 19, 519-528.	2.1	40
134	Neutron powder diffraction study of crystal and magnetic structures of orthorhombic LuMnO3. Solid State Communications, 2008, 146, 152-156.	1.9	39
135	Thin film deposition of lanthanum manganite perovskite by the ALE process. Journal of Materials Chemistry, 1999, 9, 1781-1784.	6.7	38
136	Crystal Structure and Properties of Nd4Co3O10+ \hat{l} and Nd4Ni3O10 \hat{a} \hat{l} . Journal of Solid State Chemistry, 2000, 151, 46-55.	2.9	38
137	Layered aluminophosphates II. Crystal structure and thermal behaviour of the layered aluminophosphate UiO-15 and its high temperature variants. Journal of Materials Chemistry, 1999, 9, 1591-1598.	6.7	37
138	Nanoporous Intergrowths: How Crystal Growth Dictates Phase Composition and Hierarchical Structure in the CHA/AEI System. Chemistry of Materials, 2015, 27, 4205-4215.	6.7	37
139	Synthesis, structure and thermal stability of tellurium oxides and oxide sulfate formed from reactions in refluxing sulfuric acid â€. Dalton Transactions RSC, 2000, , 4542-4549.	2.3	36
140	Identification of superconducting phases in the Ba-Ca-Cu-O system: an unstable phase with Tcâ‰^126 K and its derivative with Tcâ‰^90 K. Journal of Materials Chemistry, 1999, 9, 1141-1148.	6.7	35
141	Magnetic properties of Ca-doped SrRuO3 from full-potential calculations. Journal of Solid State Chemistry, 2004, 177, 146-158.	2.9	35
142	Intergrowth structure modelling in silicoaluminophosphate SAPO-18/34 family. Microporous and Mesoporous Materials, 2014, 195, 311-318.	4.4	35
143	Lithium ionic conduction in composites of Li(BH4)0.7510.25 and amorphous 0.75Li2SÂ-0.25P2S5 for battery applications. Electrochimica Acta, 2018, 278, 332-339.	5.2	35
144	Crystal structure of the mixed conductor Sr4Fe4Co2O13. Journal of Materials Chemistry, 1997, 7, 2415-2419.	6.7	34

#	Article	IF	Citations
145	Electronic Structure and Excited-state Properties of Perovskite-like Oxides. Journal of Crystal Growth, 2004, 268, 554-559.	1.5	34
146	Oxygen and cation ordered perovskite, Ba2Y2Mn4O11. Journal of Solid State Chemistry, 2004, 177, 2122-2128.	2.9	34
147	Structure and physical properties of YCoO3 at temperatures up to 1000 K. Physical Review B, 2006, 73, .	3.2	34
148	Protonic titanate derived from Cs _x Ti _{2â^'x/2} Mg _{x/2} O ₄ (x) Tj E	ГQg0 0 0 r	gBT/Overloo
149	Structural and optical properties of lanthanide oxides grown by atomic layer deposition (Ln = Pr, Nd,) Tj ETQq $1\ 1$	0.784314	ł rggT /Overl
150	Electrical characterization of amorphous LiAlO ₂ thin films deposited by atomic layer deposition. RSC Advances, 2016, 6, 60479-60486.	3.6	34
151	UiO-6: a novel 12-ring AlPO4, made in an inorganic–organic cation system. Chemical Communications, 1996, , 1553-1554.	4.1	33
152	The synthesis and crystal structure of two novel 3D open-framework zinc phosphates UiO-21 and UiO-22. Microporous and Mesoporous Materials, 2000, 39, 341-350.	4.4	33
153	Versatile electrochemical cell for Li/Na-ion batteries and high-throughput setup for combined <i>operando</i> X-ray diffraction and absorption spectroscopy. Journal of Applied Crystallography, 2016, 49, 1972-1981.	4.5	33
154	On the Phase Relations and Structural and Magnetic Properties of the Stable Manganese Carbides Mn23C6, Mn5C2 and Mn7C3 Acta Chemica Scandinavica, 1991, 45, 549-557.	0.7	33
155	Structural properties of Ni1â°'tRhtBi3. Journal of the Less Common Metals, 1987, 128, 177-183.	0.8	32
156	Structural Properties of GeSe2 at High Pressures. Journal of Solid State Chemistry, 1999, 145, 167-173.	2.9	32
157	Modeling of hydrogen storage materials by density-functional calculations. Journal of Power Sources, 2006, 159, 88-99.	7.8	32
158	Simulation of growth dynamics in atomic layer deposition. Part I. Amorphous films. Thin Solid Films, 2007, 515, 4527-4537.	1.8	32
159	Hydride formation in ball-milled and cryomilled Mg–Fe powder mixtures. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 158, 19-25.	3.5	32
160	NdHO, a novel oxyhydride. Journal of Solid State Chemistry, 2011, 184, 1890-1894.	2.9	32
161	Structural and electronic properties of transparent conducting delafossite: a comparison between the AgBO ₂ and CuBO ₂ families (BÁ= Al, Ga, In and Sc, Y). RSC Advances, 2015, 5, 1366-1377.	3.6	32
162	First-principles study of structural stability, dynamical and mechanical properties of Li ₂ FeSiO ₄ polymorphs. RSC Advances, 2017, 7, 16843-16853.	3.6	32

#	Article	IF	Citations
163	Layered aluminophosphates I. Crystal structure of two novel layered aluminophosphates solved ab initio from powder diffraction data. Microporous and Mesoporous Materials, 1999, 32, 17-28.	4.4	31
164	Chemical-bonding and high-pressure studies on hydrogen-storage materials. Computational Materials Science, 2004, 30, 349-357.	3.0	31
165	Reconstruction of platinum–rhodium catalysts during oxidation of ammonia. Applied Catalysis A: General, 2005, 284, 163-176.	4.3	31
166	Syntheses, crystal structures and thermal properties of 3D coordination polymers assembled from 1,4,5,8-naphthalenetetracarboxylic acid. Solid State Sciences, 2006, 8, 1237-1242.	3.2	31
167	Structure and bonding in BAlH5 (, Ca, Sr) from first-principle calculations. Journal of Alloys and Compounds, 2007, 433, 225-232.	5.5	31
168	Simulation of growth dynamics in atomic layer deposition. Part II. Polycrystalline films from cubic crystallites. Thin Solid Films, 2007, 515, 4538-4549.	1.8	31
169	Novel High Pressure Phases of Î ² -AlH3: A Density-Functional Study. Chemistry of Materials, 2008, 20, 5997-6002.	6.7	31
170	Investigation of bixbyite type scandium oxides involving a magnetic cation: \hat{A} (). Solid State Communications, 2011, 151, 223-226.	1.9	31
171	The work function of n-ZnO deduced from heterojunctions with Si prepared by ALD. Journal Physics D: Applied Physics, 2012, 45, 315101.	2.8	31
172	First-principles study of the structural stability and electrochemical properties of $Na2MSiO4 (M = Mn, Fe, Co and Ni) polymorphs. Physical Chemistry Chemical Physics, 2017, 19, 14462-14470.$	2.8	31
173	Effect of external pressure and chemical substitution on the phase transitions in MnAs. Journal of Physics and Chemistry of Solids, 1987, 48, 79-89.	4.0	30
174	Novel coordination polymers based on nickel(II) and 2,6-naphthalenedicarboxylate. Solid State Sciences, 2003, 5, 303-310.	3.2	30
175	High-temperature synchrotron X-ray diffraction study of LaMn7O12. Solid State Sciences, 2009, 11, 1211-1215.	3.2	30
176	Influence of Crystal Structure of Bulk Phase on the Stability of Nanoscale Phases: Investigation on MgH ₂ Derived Nanostructures. Journal of Physical Chemistry C, 2012, 116, 18965-18972.	3.1	30
177	Atomic layer deposition of sodium and potassium oxides: evaluation of precursors and deposition of thin films. Dalton Transactions, 2014, 43, 16666-16672.	3.3	30
178	Syntheses and Crystal Structures of Titanium Oxide Sulfates Acta Chemica Scandinavica, 1996, 50, 275-283.	0.7	30
179	Organically pillared layered zinc hydroxides. Journal of Solid State Chemistry, 2004, 177, 1852-1857.	2.9	29
180	Crystal structure and magnetic properties of the solid-solution phase Ca3Co2–vMnvO6. Journal of Solid State Chemistry, 2009, 182, 331-338.	2.9	29

#	Article	IF	Citations
181	Optical Properties of Vanadium Pentoxide Deposited by ALD. Journal of Physical Chemistry C, 2012, 116, 19444-19450.	3.1	29
182	<i>Ab-initio</i> studies on Li doping, Li-pairs, and complexes between Li and intrinsic defects in ZnO. Journal of Applied Physics, 2012, 111, .	2.5	29
183	Structural, electrical and optical characterization of Ti-doped ZnO films grown by atomic layer deposition. Journal of Alloys and Compounds, 2014, 616, 618-624.	5.5	29
184	Phase stability and structural properties of Ni7 $\hat{A}\pm\hat{I}$ 'S6 and Ni9S8 Heat capacity and thermodynamic properties of Ni7S6 at temperatures from 5 K to 970 K and of Ni9S8 from 5 K to 673 K. Journal of Chemical Thermodynamics, 1994, 26, 987-1000.	2.0	28
185	Heat capacity, structural and thermodynamic properties of synthetic klockmannite CuSe at temperatures from 5 K to 652.7 K. Enthalpy of decomposition. Journal of Chemical Thermodynamics, 1996, 28, 753-766.	2.0	28
186	Metastable Nickel Sulfides with Composition Close to Ni7S6â€"Stability and Structural Properties. Journal of Solid State Chemistry, 1996, 121, 400-407.	2.9	28
187	Synthesis and Crystal Structure of the Organically Templated Open Framework Magnesium Phosphate UiO-20 with DTF Topology. Chemistry of Materials, 2000, 12, 1095-1099.	6.7	28
188	Atomic Layer Deposition of Organic-Inorganic Hybrid Materials Based on Unsaturated Linear Carboxylic Acids. European Journal of Inorganic Chemistry, 2011, 2011, 5305-5312.	2.0	28
189	MgH ₂ in Carbon Scaffolds: A Combined Experimental and Theoretical Investigation. Journal of Physical Chemistry C, 2012, 116, 21139-21147.	3.1	28
190	Structural changes in SAPO-34 due to hydrothermal treatment. A NMR, XRD, and DRIFTS study. Microporous and Mesoporous Materials, 2016, 225, 421-431.	4.4	28
191	Comparative phase transformation and magnetocaloric effect study of Co and Mn substitution by Cu in MnCoGe compounds. Journal of Alloys and Compounds, 2019, 775, 22-29.	5.5	28
192	Structural Properties of Ni(3+x)Sn4 Acta Chemica Scandinavica, 1986, 40a, 695-700.	0.7	28
193	Neutron diffraction investigation of MnAs under high pressure. Journal of Magnetism and Magnetic Materials, 1984, 43, 158-160.	2.3	27
194	The Synthesis and Characterization of a New Manganese Phosphate Templated by Piperazine. Journal of Solid State Chemistry, 2001, 156, 32-36.	2.9	27
195	Structural Phase Stability Studies on MBeH ₃ (M = Li, Na, K, Rb, Cs) from Density Functional Calculations. Inorganic Chemistry, 2008, 47, 508-514.	4.0	27
196	Atomic Layer Deposition of Copper Oxide using Copper(II) Acetylacetonate and Ozone. Chemical Vapor Deposition, 2012, 18, 173-178.	1.3	27
197	Atomic layer deposition of (K,Na)(Nb,Ta)O3 thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2016, 34, .	2.1	27
198	X-ray photoelectron spectroscopy study of Y2BaCuO5 and YBa2Cu3O9â^Î. Solid State Communications, 1987, 64, 917-921.	1.9	26

#	Article	IF	CITATIONS
199	Neutron diffraction studies of Zr-containing intermetallic hydrides with ordered hydrogen sublattice. II. Orthorhombic Zr3FeD6.7 with filled Re3B-type structure. Journal of Alloys and Compounds, 1998, 278, 252-259.	5.5	26
200	Growth of iron cobaltoxides by atomic layer deposition. Dalton Transactions, 2008, , 253-259.	3.3	26
201	Preparation structural and thermal properties of MAlSiO4 (M = Li, Na, K, Rb, Cs, Tl, Ag) of ABW-type. Zeolites, 1992, 12, 898-908.	0.5	25
202	Effect of oxygen stoichiometry on spin, charge, and orbital ordering in manganites. Physical Review B, 2004, 69, .	3.2	25
203	Comparison of near-interface traps in Al2O3â^•4H-SiC and Al2O3â^•SiO2â^•4H-SiC structures. Applied Physics Letters, 2006, 89, 222103.	3.3	25
204	Growth of La $<$ sub $>$ 1 $\hat{a}^*xsub>Sr<sub>xsub>FeO<sub>3sub>thin films by atomic layer deposition. Dalton Transactions, 2009, , 481-489.$	3.3	25
205	The crystal structure of the first borohydride borate, Ca3(BD4)3(BO3). Journal of Materials Chemistry, 2011, 21, 7188.	6.7	25
206	The structures of hydride phases in the Ti3Al/H system. International Journal of Hydrogen Energy, 1999, 24, 163-168.	7.1	24
207	First-principles investigations of aluminum hydrides:M3AlH6(M=Na,K). Physical Review B, 2005, 71, .	3.2	24
208	Spin- and charge-ordering in oxygen-vacancy-ordered mixed-valenceSr4Fe4O11. Physical Review B, 2006, 74, .	3.2	24
209	On the Thermal Stability and Structures of Layered Double Hydroxides Mg _{1–<i>x</i>} Al <i>_x</i> (OH) ₂ (NO ₃) <i>_x</i> (0.18 â‰â€‰ <i>x</i>) <i>2015, 1775-178</i>	Â∙ 2i ⊚m88.	>H2∕4sub>2∢
210	MgH ₂ –CoO: a conversion-type composite electrode for LiBH ₄ -based all-solid-state lithium ion batteries. RSC Advances, 2018, 8, 23468-23474.	3.6	24
211	A foundation for complex oxide electronics -low temperature perovskite epitaxy. Nature Communications, 2020, 11, 2872.	12.8	24
212	Structural properties of some ferrierite-type zeolites. Zeolites, 1989, 9, 152-158.	0.5	23
213	Mn0.9Co0.1P in an external field: Lifshitz point and irreversibility behavior of disordered incommensurate phases. Physical Review B, 1992, 46, 3380-3390.	3.2	23
214	Synthesis, Crystal Structure, and Magnetic Properties of La4Co3O10+δ(0.00â‰Î´â‰0.30). Journal of Solid State Chemistry, 1998, 141, 212-220.	2.9	23
215	Reconstruction and loss of platinum catalyst during oxidation of ammonia. Applied Catalysis A: General, 2001, 207, 43-54.	4.3	23
216	Electronic structure, phase stability, and chemical bonding inTh2AlandTh2AlH4. Physical Review B, 2002, 65, .	3.2	23

#	Article	IF	CITATIONS
217	Huge magneto-optical effects in half-metallic double perovskites. Physical Review B, 2004, 70, .	3.2	23
218	Formation enthalpies of NaMgH 3 and KMgH 3 : A computational study. Europhysics Letters, 2006, 76, 285-290.	2.0	23
219	Increased dimensionalities of zinc–diphenic acid coordination polymers by simultaneous or subsequent addition of neutral bridging ligands. Dalton Transactions, 2006, , 586-593.	3.3	23
220	Nanostructures of LiBH4: a density-functional study. Nanotechnology, 2009, 20, 275704.	2.6	23
221	Niobium(V) Oxynitride: Synthesis, Characterization, and Feasibility as Anode Material for Rechargeable Lithium″on Batteries. Chemistry - A European Journal, 2012, 18, 5970-5978.	3.3	23
222	Structural aspects of Pr1â^'xSrxFeO3â^'w. Journal of Solid State Chemistry, 2003, 173, 148-163.	2.9	22
223	Structural phase stability and bonding behavior of BAlH5 (B=Mg,Ba) from first-principles calculations. Physical Review B, 2006, 73, .	3.2	22
224	Crystal chemistry and metal-hydrogen bonding in anisotropic and interstitial hydrides of intermetallics of rare earth (R) and transition metals (T), RT ₃ and R ₂ T ₇ . Zeitschrift $F\tilde{A}^{1}/4r$ Kristallographie, 2008, 223, 674-689.	1.1	22
225	Syntheses, Structures, and Magnetic Properties of Nickel-Doped Lepidocrocite Titanates. Inorganic Chemistry, 2009, 48, 9409-9418.	4.0	22
226	Stacking Faults and Polytypes for Layered Double Hydroxides: What Can We Learn from Simulated and Experimental X-ray Powder Diffraction Data?. Inorganic Chemistry, 2016, 55, 12881-12889.	4.0	22
227	Effect of Non-Stoichiometry on Properties of La(1-t)MnO(3+delta). Part II. Crystal Structure Acta Chemica Scandinavica, 1997, 51, 904-909.	0.7	22
228	Superconducting Cuprates with Charge Reservoir Consisting of either Peroxide-type Oxygen or H2O. Journal of Low Temperature Physics, 1999, 117, 843-847.	1.4	21
229	Synthesis, crystal structure and thermal properties of the AlPO4 material UiO-12. Microporous and Mesoporous Materials, 2000, 39, 333-339.	4.4	21
230	Synthesis and characterization of the mixed ligand coordination polymer CPO-5. Journal of Solid State Chemistry, 2003, 175, 182-187.	2.9	21
231	Search for metal hydrides with short hydrogen–hydrogen separation:â€,Ab initiocalculations. Physical Review B, 2004, 70, .	3.2	21
232	A new series of high hydrogen content hydrogen-storage materials—A theoretical prediction. Journal of Alloys and Compounds, 2007, 446-447, 44-47.	5 . 5	21
233	Structure and magnetism of rare-earth-substituted Ca3Co2O6. Journal of Solid State Chemistry, 2007, 180, 628-635.	2.9	21
234	Neutron diffraction and Raman analysis of LiMn1.5Ni0.5O4 spinel type oxides for use as lithium ion battery cathode and their capacity enhancements. Solid State Ionics, 2016, 284, 28-36.	2.7	21

#	Article	IF	Citations
235	Reversibility of metal-hydride anodes in all-solid-state lithium secondary battery operating at room temperature. Solid State Ionics, 2018, 317, 263-267.	2.7	21
236	ZrTe5 and HfTe5: The heat capacity and derived thermophysical properties from 6 to 350 K. Journal of Solid State Chemistry, 1989, 81, 103-111.	2.9	20
237	Synthesis and crystal structure of the hydrated magnesium diphosphate Mg2P2O7·3.5H2O and its high temperature variant Mg2P2O7·H2O. Solid State Sciences, 2000, 2, 205-214.	3.2	20
238	Pressure-induced phase transitions of theLiAlD4system. Physical Review B, 2005, 72, .	3.2	20
239	Synthesis of epitaxial BiFeO3 films by chemical solution deposition on Pt(100). Journal of Applied Physics, 2007, 102, 074108.	2.5	20
240	Simulation of growth dynamics in atomic layer deposition. Part III. Polycrystalline films from tetragonal crystallites. Thin Solid Films, 2007, 515, 4550-4558.	1.8	20
241	Phase stability and pressure-induced structural transitions at zero temperature in ZnSiO ₃ and Zn ₂ SiO ₄ . Journal of Physics Condensed Matter, 2009, 21, 485801.	1.8	20
242	Phonon, IR, and Raman Spectra, NMR Parameters, and Elastic Constant Calculations for AlH ₃ Polymorphs. Journal of Physical Chemistry A, 2011, 115, 10708-10719.	2.5	20
243	Combined XRD and Raman studies of coke types found in SAPO-34 after methanol and propene conversion. Microporous and Mesoporous Materials, 2013, 173, 166-174.	4.4	20
244	Guidance of growth mode and structural character in organicâ€"inorganic hybrid materials â€" a comparative study. Dalton Transactions, 2014, 43, 3492-3500.	3.3	20
245	Water-containing phases derived from "02(nⰹ1)n―superconductors Physica C: Superconductivity and Its Applications, 2000, 338, 38-45.	1.2	19
246	Crystal structure of Th2Al deuterides. Journal of Alloys and Compounds, 2000, 309, 154-164.	5.5	19
247	New Oxovanadium(IV) Complexes with Mixed Ligands - Synthesis, Thermal Stability, and Crystal Structure of (VO)2(acac)2(?-OEt)2 and (VO)2(thd)2(?-OEt)2. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2004, 630, 2311-2318.	1.2	19
248	Chemical vapor transport of platinum and rhodium with oxygen as transport agent. Journal of Crystal Growth, 2005, 279, 206-212.	1.5	19
249	Site preference of hydrogen in metal, alloy, and intermetallic frameworks. Europhysics Letters, 2005, 72, 569-575.	2.0	19
250	Syntheses, structures and magnetic properties of Mn(II) containing 3D polymeric networks. Polyhedron, 2007, 26, 5113-5119.	2.2	19
251	Syntheses, Structures, and Polymorphism of βâ€Diketonato Complexes – Co(thd) ₃ . Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2008, 634, 247-254.	1.2	19
252	In situ studies of structural stability and proton conductivity of titanate nanotubes. Energy and Environmental Science, 2009, 2, 517.	30.8	19

#	Article	IF	CITATIONS
253	From Colloidal Monodisperse Nickel Nanoparticles to Well-Defined Ni/Al ₂ O ₃ Model Catalysts. Langmuir, 2017, 33, 9836-9843.	3.5	19
254	Physical properties of Ruddlesden-Popper (nâ€=″3) nickelate: La4Ni3O10. Journal of Magnetism and Magnetic Materials, 2020, 496, 165915.	2.3	19
255	Crystallization, Phase Stability, and Electrochemical Performance of β-MoO ₃ Thin Films. Crystal Growth and Design, 2020, 20, 3861-3866.	3.0	19
256	Lanthanum substitution for barium in YBa2Cu3O9â~δ. Journal of Solid State Chemistry, 1991, 93, 163-172.	2.9	18
257	Crystal structure of Ge4Se9: a new germanium selenide with Se2 pairs breaking the edge-sharing GeSe4 tetrahedra in GeSe2. Dalton Transactions RSC, 2001, , 1043-1045.	2.3	18
258	Theoretical modeling of hydrogen storage materials: Prediction of structure, chemical bond character, and high-pressure behavior. Journal of Alloys and Compounds, 2005, 404-406, 377-383.	5.5	18
259	Highly cation-deficient manganese perovskite, La1â^'xMn1â^'yO3 with x=y. Solid State Communications, 2006, 137, 522-527.	1.9	18
260	Structural and spectroscopic characterization of potassium fluoroborohydrides. Physical Chemistry Chemical Physics, 2013, 15, 11226.	2.8	18
261	Structural Arrangement in Close-Packed Cobalt Polytypes. Crystal Growth and Design, 2018, 18, 2316-2325.	3.0	18
262	Understanding the (De)Sodiation Mechanisms in Naâ€Based Batteries through Operando Xâ€Ray Methods. Batteries and Supercaps, 2021, 4, 1039-1063.	4.7	18
263	Crystal structure, thermal and magnetic properties of La4Co3O9 . Phase relations for La4Co3O10â^'Î' (0.00â‰Î'â‰1.00) at 673 K. Journal of Materials Chemistry, 1998, 8, 2089-2093.	6.7	17
264	Spin, charge, and orbital ordering in the ferrimagnetic insulatorYBaMn2O5. Physical Review B, 2002, 65, .	3.2	17
265	Perovskite-type oxide catalysts for low temperature, anaerobic catalytic partial oxidation of methane to syngas. Journal of Catalysis, 2010, 275, 25-33.	6.2	17
266	Atomic layer deposited lithium aluminum oxide: (In)dependency of film properties from pulsing sequence. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2015, 33, .	2.1	17
267	In situ synchrotron study of ordered and disordered LiMn1.5Ni0.5O4 as lithium ion battery positive electrode. Acta Materialia, 2016, 116, 290-297.	7.9	17
268	Pressure induced phase transition in MnTe2. Physics Letters, Section A: General, Atomic and Solid State Physics, 1985, 112, 411-413.	2.1	16
269	Structural and magnetic properties of MnAs0.90P0.10. Journal of Solid State Chemistry, 1986, 64, 123-133.	2.9	16
270	Properties of LaCo1â^'tCrtO3. Journal of Solid State Chemistry, 1995, 119, 271-280.	2.9	16

#	Article	IF	CITATIONS
271	Hydrogen ordering and H-induced phase transformations in Zr-based intermetallic hydrides. Journal of Alloys and Compounds, 1999, 293-295, 74-87.	5.5	16
272	Orthorhombic NdNiSnD with filled TiNiSi-type structure. Journal of Alloys and Compounds, 2002, 336, 181-186.	5.5	16
273	Inexpensive set-up for determination of decomposition temperature for volatile compounds. Thermochimica Acta, 2003, 404, 187-192, Validity of bond-length and MA¶ssbauer parameters to assign oxidation states in multicomponent	2.7	16
274	oxides: Case study of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi mathvariant="normal">Sr</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:mi mathvariant="normal">Fe</mml:mi><mml:mn>4</mml:mn><mml:msub><mml:mi< td=""><td>3.2</td><td>16</td></mml:mi<></mml:msub></mml:mrow></mml:math>	3.2	16
275	mathvariant="normal">O <mml:mn>11</mml:mn> . Phys. Prediction of crystal structure, lattice dynamical, and mechanical properties of CaB2H2. International Journal of Hydrogen Energy, 2011, 36, 10149-10158.	7.1	16
276	Oxide Coating of Alumina Nanoporous Structure Using ALD to Produce Highly Porous Spinel. Chemical Vapor Deposition, 2012, 18, 315-325.	1.3	16
277	Burst nucleation by hot injection for size controlled synthesis of $\hat{l}\mu$ -cobalt nanoparticles. Chemistry Central Journal, 2016, 10, 10.	2.6	16
278	A first principle comparative study of the ionic diffusivity in LiAlO2 and NaAlO2 polymorphs for solid-state battery applications. Physical Chemistry Chemical Physics, 2018, 20, 9824-9832.	2.8	16
279	Crystal Structure Determination of Zeolite N from Synchrotron X-Ray Powder Diffraction Data Acta Chemica Scandinavica, 1997, 51, 969-973.	0.7	16
280	Magnetic properties of transition metal substituted MnP. Journal of Physics and Chemistry of Solids, 1984, 45, 709-718.	4.0	15
281	Thermal analysis as an aid in the synthesis of non-stoichiometric perovskite type oxides. Thermochimica Acta, 1995, 256, 75-89.	2.7	15
282	Neutron diffraction studies of Zr-containing intermetallic hydrides with ordered hydrogen sublattice,. Journal of Alloys and Compounds, 1999, 287, 189-194.	5.5	15
283	Neutron diffraction studies of Zr-containing intermetallic hydrides with ordered hydrogen sublattice Journal of Alloys and Compounds, 2000, 296, 312-316.	5. 5	15
284	Strong Coulomb correlation effects in ZnO. Solid State Communications, 2006, 139, 391-396.	1.9	15
285	Hole doping into the metastable LuMnO3 perovskite. Solid State Communications, 2006, 140, 386-390.	1.9	15
286	H-sorption behaviour of mechanically activated Mg–Zn powders. Journal of Alloys and Compounds, 2007, 446-447, 173-177.	5.5	15
287	Stability enhancement by particle size reduction in AlH3. Journal of Alloys and Compounds, 2011, 509, S662-S666.	5.5	15
288	Influence of precursors chemistry on ALD growth of cobalt–molybdenum oxide films. Dalton Transactions, 2012, 41, 2439.	3.3	15

#	Article	IF	CITATIONS
289	Prediction of structural, lattice dynamical, and mechanical properties of CaB2. RSC Advances, 2012, 2, 11687.	3.6	15
290	Atomic Layer Deposition of LaPO ₄ and Ca:LaPO ₄ **. Chemical Vapor Deposition, 2014, 20, 269-273.	1.3	15
291	Thickness dependent structural, optical and electrical properties of Ti-doped ZnO films prepared by atomic layer deposition. Applied Surface Science, 2015, 332, 494-499.	6.1	15
292	<i>Operando</i> investigations of lithiation and delithiation processes in a BiVO ₄ anode material. Physical Chemistry Chemical Physics, 2018, 20, 29798-29803.	2.8	15
293	<i>tert</i> -butoxides as precursors for atomic layer deposition of alkali metal containing thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	2.1	15
294	Factors Determining Microporous Material Stability in Water: The Curious Case of SAPO-37. Chemistry of Materials, 2020, 32, 1495-1505.	6.7	15
295	Substitution for Copper in YBa2Cu3O(9-delta) by 3d- and Pre-transition Metals Acta Chemica Scandinavica, 1991, 45, 698-708.	0.7	15
296	Synthesis and Characterization of Tin Sulfates and Oxide Sulfate Acta Chemica Scandinavica, 1998, 52, 305-311.	0.7	15
297	Structural and magnetic properties of Mn1â°'tTitAs. Journal of Physics and Chemistry of Solids, 1985, 46, 275-286.	4.0	14
298	The synthesis and crystal structure of a new open-framework zincophosphate UiOâ€17. Journal of Materials Chemistry, 1999, 9, 3119-3123.	6.7	14
299	Synthesis and characterization of the open-framework magnesium aluminophosphate UiO-28. Journal of Materials Chemistry, 2001, 11, 1242-1247.	6.7	14
300	Crystal and electronic structures of Cr3O8 and LiCr3O8: Probable cathode materials in Li batteries. Physical Review B, 2006, 73, .	3.2	14
301	Crystal structure of the monoclinic and cubic polymorphs of BiMn7O12. Journal of Solid State Chemistry, 2010, 183, 186-191.	2.9	14
302	Theoretical and experimental investigation on structural, electronic and magnetic properties of layered Mn ₅ O ₈ . Physical Chemistry Chemical Physics, 2016, 18, 27885-27896.	2.8	14
303	Intense NIR emission in YVO ₄ :Yb ³⁺ thin films by atomic layer deposition. Journal of Materials Chemistry C, 2017, 5, 8572-8578.	5.5	14
304	A first-principle study of NaMPO4 (M = Mn, Fe, Co, Ni) possible novel structures as cathode materials for sodium-ion batteries: Structural and electrochemical characterisation. Materials Chemistry and Physics, 2018, 219, 212-221.	4.0	14
305	Insights into Crystal Structure and Diffusion of Biphasic Na ₂ Zn ₂ TeO ₆ . ACS Applied Materials & Amp; Interfaces, 2020, 12, 28188-28198.	8.0	14
306	Effect of Non-Stoichiometry on Properties of La(1-t)MnO(3+delta). I. Phase Relations Acta Chemica Scandinavica, 1996, 50, 580-586.	0.7	14

#	Article	IF	CITATIONS
307	Synthesis and Characterization of Zirconium and Hafnium Sulfates, Hydroxide Sulfates and Oxide Sulfates Acta Chemica Scandinavica, 1999, 53, 24-33.	0.7	14
308	Formation and crystal structure of ThNi2Dx. Journal of the Less Common Metals, 1984, 103, 27-31.	0.8	13
309	Structural deformation and non-stoichiometry of La4Co3O10 + \hat{l} . Journal of Materials Chemistry, 2000, 10, 749-754.	6.7	13
310	Synthesis and characterization of molybdenum(VI) oxide sulfates and crystal structures of two polymorphs of MoO2(SO4). Dalton Transactions RSC, 2001, , 806-815.	2.3	13
311	Antiferromagnetic vs. ferromagnetic interactions and spin-glass-like behavior in ruthenates. Solid State Communications, 2002, 124, 293-298.	1.9	13
312	Divalent manganese in reduced LaMnO3â°Î'â€"effect of oxygen nonstoichiometry on structural and magnetic properties. Solid State Sciences, 2004, 6, 279-285.	3.2	13
313	Surface reconstruction on noble-metal catalysts during oxidation of ammonia. Applied Catalysis A: General, 2005, 284, 185-192.	4.3	13
314	Rearrangement of the oxide-semiconductor interface in annealed Al2O3â^•4H-SiC structures. Applied Physics Letters, 2007, 91, 052907.	3.3	13
315	Reverse Monte Carlo investigation of the temperature dependent deuterium distribution in ZrCr2D4. Journal of Alloys and Compounds, 2008, 457, 225-232.	5.5	13
316	Luminescent Properties of Multilayered Eu ₂ O ₃ and TiO ₂ Grown by Atomic Layer Deposition**. Chemical Vapor Deposition, 2014, 20, 274-281.	1.3	13
317	Crystal structures of aluminum-based hydrides. Emerging Materials Research, 2015, 4, 192-217.	0.7	13
318	Observation of direct magneto-dielectric behaviour in Lu3Fe5O12â^î^above room-temperature. Physical Chemistry Chemical Physics, 2015, 17, 17688-17698.	2.8	13
319	Ultra-high power capabilities in amorphous FePO4 thin films. Journal of Power Sources, 2016, 306, 454-458.	7.8	13
320	Phase Control in Thin Films of Layered Cuprates. Chemistry of Materials, 2018, 30, 1095-1101.	6.7	13
321	Structural and Magnetic Properties of $Mn(1-t)Fe(t)P(0.80 \le t \le 1.00)$ Acta Chemica Scandinavica, 1986, 40a, 227-229.	0.7	13
322	Non-Stoichiometric LaVO3. II. Powder Neutron Diffraction Study of Crystal and Magnetic Structure for La(1-x)VO3, 0.00 <= X <= 0.10 Acta Chemica Scandinavica, 1998, 52, 1301-1306.	0.7	13
323	First-Principles Exploration into the Physical and Chemical Properties of Certain Newly Identified SnO ₂ Polymorphs. ACS Omega, 2022, 7, 10382-10393.	3.5	13
324	Crystal and magnetic structure of TbNiAl-based deuterides, TbNiAlD0.30 and TbNiAlD1.04, studied by neutron diffraction and synchrotron radiation. Journal of Alloys and Compounds, 1999, 293-295, 178-184.	5.5	12

#	Article	IF	CITATIONS
325	Layered aluminophosphates III. Crystal structure and thermal properties of the novel layered aluminophosphate UiO-18. Microporous and Mesoporous Materials, 2000, 38, 311-321.	4.4	12
326	Raman- and infrared-active phonons in superconducting and nonsuperconducting rare-earth transition-metal borocarbides from full-potential calculations. Physical Review B, 2003, 67, .	3.2	12
327	Reply to "Comment on â€~Structural stability and electronic structure for Li3AlH6' ― Physical Review 2005, 71, .	∕ B _. .2	12
328	Simulation of growth dynamics for nearly epitaxial films. Journal of Crystal Growth, 2007, 308, 366-375.	1.5	12
329	Mixed Ligand Complexes of Cobalt(II) – Synthesis, Structure, and Properties of Co 4 (thd) 4 (OEt) 4. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2007, 633, 1371-1381.	1.2	12
330	From a 3D protonic conductor VO(H2PO4)2 to a 2D cationic conductor Li4VO(PO4)2 through lithium exchange. Journal of Solid State Chemistry, 2007, 180, 2437-2442.	2.9	12
331	A semi-empirical approach to accurate standard enthalpies of formation for solid hydrides. Journal of Alloys and Compounds, 2009, 469, 617-622.	5.5	12
332	The fast Z-scan method for studying working catalytic reactors with high energy X-ray diffraction: ZSM-5 in the methanol to gasoline process. Physical Chemistry Chemical Physics, 2013, 15, 8662-8671.	2.8	12
333	Luminescent properties of europium titanium phosphate thin films deposited by atomic layer deposition. RSC Advances, 2017, 7, 8051-8059.	3.6	12
334	Understanding Capacity Fading of MgH ₂ Conversion-Type Anodes via Structural Morphology Changes and Electrochemical Impedance. Journal of Physical Chemistry C, 2018, 122, 8750-8759.	3.1	12
335	Efficient Exfoliation of Layered Double Hydroxides; Effect of Cationic Ratio, Hydration State, Anions and Their Orientations. Materials, 2021, 14, 346.	2.9	12
336	Structural and magnetic properties of Mn1â^'tNitAs. Journal of Magnetism and Magnetic Materials, 1986, 61, 61-80.	2.3	11
337	Martensitic-like transformations in CrMn1 â^ As. Journal of Magnetism and Magnetic Materials, 1986, 58, 287-296.	2.3	11
338	Thermal, magnetic and structural aspects of transitions in Mn0.63Cr0.37As. Thermodynamic properties from 10 to 350 K. Journal of Magnetism and Magnetic Materials, 1987, 65, 37-52.	2.3	11
339	Superconductivity in Y(Ba1â^'yLay)2Cu3O9â^'δ. Journal of Solid State Chemistry, 1992, 97, 257-273.	2.9	11
340	Pressure induced phase transition in MnTe2 studied by synchrotron radiation â€" comparison with RuTe2. Journal of Magnetism and Magnetic Materials, 1995, 145, 118-124.	2.3	11
341	Heat capacities and entropies of La2O2CO3fromT= (12 to 300) K and of Nd2O2CO3fromT= (12 to 930) K, and their interpretation. Journal of Chemical Thermodynamics, 1999, 31, 433-449.	2.0	11
342	The incommensurately modulated structure of NiBi. Solid State Sciences, 2000, 2, 353-363.	3.2	11

#	Article	IF	CITATIONS
343	Coordination Polymers Constructed from Paddle-Wheel Building Units. Journal of Solid State Chemistry, 2002, 166, 213-218.	2.9	11
344	On synthesis, structure, and thermal stability of mercury and lead sulfates and oxide sulfates. Thermochimica Acta, 2002, 390, 113-121.	2.7	11
345	Tuning of Water and Hydroxide Content of Intercalated Ruddlesden–Popper-type Oxides in the PrSr3Co1.5Fe1.5O10ⴰδ System. Inorganic Chemistry, 2012, 51, 9181-9191.	4.0	11
346	Molecular Hybrid Structures by Atomic Layer Deposition – Deposition of Alq ₃ , Znq ₂ and Tiq ₄ (q = 8â€hydroxyquinoline). Chemical Vapor Deposition, 2013, 1 174-179.	19,3	11
347	Complex Magnetic Behavior in the PrSr3(Fe1–xCox)3O10â^Î n = 3 Ruddlesden–Popper-Type Solid Solution with High Valent Cobalt and Iron. Chemistry of Materials, 2014, 26, 886-897.	6.7	11
348	Luminescence properties of europium titanate thin films grown by atomic layer deposition. RSC Advances, 2014, 4, 11876-11883.	3.6	11
349	Atomic Layer Deposition of oriented nickel titanate (NiTiO3). Applied Surface Science, 2014, 311, 478-483.	6.1	11
350	Luminescence properties of lanthanide and ytterbium lanthanide titanate thin films grown by atomic layer deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2016, 34, .	2.1	11
351	Aluminium substituted lanthanum based perovskite type oxides, non-stoichiometry and performance in methane partial oxidation by framework oxygen. Applied Catalysis A: General, 2016, 523, 171-181.	4.3	11
352	Enhanced process and composition control for atomic layer deposition with lithium trimethylsilanolate. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	2.1	11
353	Triclinic crystal structure distortion of multiferroic BiMn ₇ O ₁₂ . Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2017, 73, 313-320.	1.1	11
354	Near-Broken-Gap Alignment between FeWO ₄ and Fe ₂ WO ₆ for Ohmic Direct pâ€"n Junction Thermoelectrics. ACS Applied Materials & Direct pâ€"n Direct pâ	8.0	11
355	Non-Stoichiometric LaVO3. I. Synthesis and Physical Properties Acta Chemica Scandinavica, 1998, 52, 1096-1103.	0.7	11
356	Reduction, Crystal Structure and Magnetic Properties of $Co(3-x)Al(x)O(4-delta)$ (0.0 <= X <= 2.0, 0.0 <=) Tj ETQq0 Scandinavica, 1998, 52, 1285-1292.	_	/Overlock 10 11
357	Temperature-induced structural changes in Be2ZrD1.5 studied by powder neutron diffraction. Journal of Alloys and Compounds, 1995, 224, 241-243.	5.5	10
358	Synthesis and Crystal Structure of UiO-16:Â An Organically Templated Layered Magnesium Phosphate. Chemistry of Materials, 1999, 11, 2872-2877.	6.7	10
359	Synthesis, structure and thermal properties of a novel 3D aluminophosphate UiO-26. Microporous and Mesoporous Materials, 2000, 40, 313-322.	4.4	10
360	Synthesis and ab-initio structure determination of organically templated magnesium phosphates from powder diffraction data. Journal of Materials Chemistry, 2000, 10, 1915-1920.	6.7	10

#	Article	IF	CITATIONS
361	Ground- and excited-state properties of inorganic solids from full-potential density-functional calculations. Journal of Solid State Chemistry, 2003, 176, 338-374.	2.9	10
362	Density Functional Theory Studies of Spin, Charge, and Orbital Ordering in YBaT ₂ O ₅ (T = Mn, Fe, Co). Inorganic Chemistry, 2008, 47, 6608-6620.	4.0	10
363	Structure, defect chemistry, and proton conductivity in nominally Sr-doped Ba3La(PO4)3. Solid State lonics, 2009, 180, 338-342.	2.7	10
364	Structure and magnetism of the β-Mn–Co solid-solution phase. Journal of Alloys and Compounds, 2009, 476, 9-13.	5.5	10
365	Structural investigation and thermodynamical properties of alkali calcium trihydrides. Journal of Chemical Physics, 2010, 132, 114504.	3.0	10
366	Square Coordinated MnO2-Units in BiMn7O12. Inorganic Chemistry, 2010, 49, 8709-8712.	4.0	10
367	ALD Applied to Conformal Coating of Nanoporous Î ³ -Alumina: Spinel Formation and Luminescence Induced by Europium Doping. Journal of the Electrochemical Society, 2012, 159, P45-P49.	2.9	10
368	Enthalpy of formation of Ln2O2CO3 II (Ln=La, Nd, Eu) and thermodynamics of decomposition equilibria. Thermochimica Acta, 2012, 550, 76-82.	2.7	10
369	Thin film fabrication and characterization of proton conducting lanthanum tungstate. Journal of Materials Chemistry A, 2014, 2, 18463-18471.	10.3	10
370	Crystal Structure of LaSr3Fe3O8(OH)2·xH2O. Inorganic Chemistry, 2016, 55, 7630-7636.	4.0	10
371	Luminescent YbVO ₄ by atomic layer deposition. Dalton Transactions, 2017, 46, 3008-3013.	3.3	10
372	Temperature induced transitions in La 4 (Co $1\hat{a}^x$ Ni x) 3 O $10+\hat{l}^z$; oxygen stoichiometry and mobility. Solid State Ionics, 2017, 305, 7-15.	2.7	10
373	P2 Type Layered Solid-State Electrolyte Na ₂ Zn ₂ TeO ₆ : Crystal Structure and Stacking Faults. Journal of the Electrochemical Society, 2019, 166, A3830-A3837.	2.9	10
374	Neutron Powder Diffraction Study of the Dehydration of Zeolite N Acta Chemica Scandinavica, 1999, 53, 85-89.	0.7	10
375	Heat capacity of MnAs0.88P0.12 from 10 to 500 K: Thermodynamic properties and transitions. Journal of Solid State Chemistry, 1987, 70, 185-198.	2.9	9
376	Superconducting properties in relation to chemical pressure in YBa 2 Cu 3 O 9-δ. Physica C: Superconductivity and Its Applications, 1989, 162-164, 49-50.	1.2	9
377	Synthesis and characterization of a novel layered zinc phosphate. Solid State Sciences, 2000, 2, 569-576.	3.2	9
378	The synthesis and crystal structure of a hydrated magnesium phosphate Mg3(PO4)2·4H2O. Solid State Sciences, 2001, 3, 353-359.	3.2	9

#	Article	IF	CITATIONS
379	Effect of α-Fe2O3 surface coating on reconstruction of platinum–rhodium catalysts during oxidation of ammonia. Applied Catalysis A: General, 2005, 284, 177-184.	4.3	9
380	Interfacial studies of Al ₂ O ₃ deposited on 4Hâ€SiC(0001). Surface and Interface Analysis, 2008, 40, 822-825.	1.8	9
381	Predicting New Materials for Hydrogen Storage Application. Materials, 2009, 2, 2296-2318.	2.9	9
382	Syntheses, Crystal Structures, and Thermal Stabilities of Polymorphs of Cr(thd)3. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2010, 636, 2422-2432.	1.2	9
383	Exfoliation and thermal transformations of Nb-substituted layered titanates. Journal of Solid State Chemistry, 2011, 184, 3135-3143.	2.9	9
384	Deposition and x-ray characterization of epitaxial thin films of LaAlO3. Thin Solid Films, 2014, 550, 90-94.	1.8	9
385	Investigation of Li+ insertion in columbite structured FeNb2O6 and rutile structured CrNb2O6 materials. Electrochimica Acta, 2015, 153, 232-237.	5.2	9
386	Electronic and Magnetic Structures of Hole Doped Trilayer La _{4â€"<i>x</i>} Sr _{<i>x</i>} Ni ₃ O ₈ from First-Principles Calculations. Inorganic Chemistry, 2016, 55, 11898-11907.	4.0	9
387	A first-principle investigation of the Li diffusion mechanism in the super-ionic conductor lithium orthothioborate Li3BS3 structure. Materials Letters, 2018, 219, 186-189.	2.6	9
388	Direct observation of reversible conversion and alloying reactions in a Bi ₂ (MoO ₄) ₃ -based lithium-ion battery anode. Journal of Materials Chemistry A, 2019, 7, 17906-17913.	10.3	9
389	Nonhexagonal Na Sublattice Reconstruction in the Super-Ionic Conductor Na2Zn2TeO6: Insights from Ab Initio Molecular Dynamics. Journal of Physical Chemistry C, 2019, 123, 4654-4663.	3.1	9
390	Characterization and evaluation of synthetic Dawsonites as CO2 sorbents. Fuel, 2019, 236, 747-754.	6.4	9
391	The Effect of Additives on the Reaction of Portland and Alumina Cement Components with Water. Time Resolved Powder Neutron Diffraction Investigations Acta Chemica Scandinavica, 1986, 40a, 126-141.	0.7	9
392	Operando XRD studies on Bi ₂ MoO ₆ as anode material for Na-ion batteries. Nanotechnology, 2022, 33, 185402.	2.6	9
393	Paramagnetic scattering experiments on MnAs1 \hat{a}^{**} xPx, x = 0.06, 0.12 and 0.18. Journal of Magnetism and Magnetic Materials, 1986, 62, 241-246.	2.3	8
394	On the low-high spin anomaly in the heat capacity of MnAs1-xPx. Journal of Physics C: Solid State Physics, 1987, 20, 3005-3010.	1.5	8
395	Low-temperature oxidative degradation of low-dimensional zirconium and hafnium tellurides. Solid State Communications, 1987, 63, 293-297.	1.9	8
396	Transition between helimagnetic states in Mn1â^'tCrtAs: phase diagram and effect of strong magnetic field. Journal of Magnetism and Magnetic Materials, 1987, 68, 115-132.	2.3	8

#	Article	IF	Citations
397	Structure and magnetic properties of TbNiAl-based deuterides. Journal of Alloys and Compounds, 2002, 330-332, 169-174.	5.5	8
398	Reverse Monte Carlo investigation of the short-range order in \hat{l}_{\pm} -VD0.8. Journal of Alloys and Compounds, 2004, 363, 214-221.	5.5	8
399	Measuring the heat evolved from individual reaction steps in atomic layer deposition. Journal of Thermal Analysis and Calorimetry, 2011, 105, 33-37.	3.6	8
400	Structural and magnetic aspects of La ₄ (Co _{1â^'} <i>_x</i> Ni <i>_x</i>) _{)₃O₁₀₊}	sub ı.s i> <s< td=""><td>ubx8δ<</td></s<>	ubx8δ<
401	Freeze-dryed LixMoO3 nanobelts used as cathode materials for lithium-ion batteries: A bulk and interface study. Journal of Power Sources, 2015, 297, 276-282.	7.8	8
402	Effect of Larger Pore Size on the Sorption Properties of Isoreticular Metal–Organic Frameworks with High Number of Open Metal Sites. Chemistry - A European Journal, 2020, 26, 13523-13531.	3.3	8
403	Solid Solution Phases with MnP Type Structure: T(1-t)Ni(t)P (T = Titanium-Cobalt) Acta Chemica Scandinavica, 1986, 40a, 8-16.	0.7	8
404	Pressure induced transitions in MnAs and MnAs0.80Sb0.20. Physics Letters, Section A: General, Atomic and Solid State Physics, 1986, 118, 293-296.	2.1	7
405	Pressure induced heli- to ferromagnetic transition in Mn0.615Cr0.385As. Journal of Magnetism and Magnetic Materials, 1986, 62, 247-250.	2.3	7
406	Hydrolysis and structure of carbides related to propadiene. Journal of Alloys and Compounds, 1992, 178, 285-295.	5.5	7
407	On the magnetic properties of UFe4â°'xCuxAl8 alloys. Journal of Alloys and Compounds, 1996, 236, 121-131.	5.5	7
408	Properties of LaCo1â^'tCrtO3 III. Catalytic activity for CO oxidation. Applied Catalysis A: General, 1996, 147, 189-205.	4.3	7
409	Synthesis and Crystal Structure of the Vacancy-Ordered LaNi1â^'xMxO2.5+Î'(M=Mn, Fe, Co) Phase. Journal of Solid State Chemistry, 1998, 135, 103-110.	2.9	7
410	Neutron diffraction studies of Zr-containing intermetallic hydrides with ordered hydrogen sublattice Journal of Alloys and Compounds, 1999, 290, 157-163.	5.5	7
411	In situ powder synchrotron and neutron diffraction study of Zr2Ni deuterides. Journal of Alloys and Compounds, 2005, 394, 107-115.	5.5	7
412	Etching of platinum–rhodium alloys in oxygen-containing atmospheres. Journal of Alloys and Compounds, 2005, 402, 53-57.	5.5	7
413	Crystal structure and magnetic properties of the solid-solution phase Ca3Co2â^vScvO6. Journal of Solid State Chemistry, 2007, 180, 834-839.	2.9	7
414	Thermodynamic Control of Product Formation During the Reaction Between CH4 and Pt Promoted Ceria-zirconia Solid Solutions. Catalysis Letters, 2011, 141, 8-14.	2.6	7

#	Article	IF	Citations
415	Electronic Properties of ZnO/Si Heterojunction Prepared by ALD Solid State Phenomena, 0, 178-179, 130-135.	0.3	7
416	Structure and Polymorphism of $\langle i \rangle M \langle i \rangle (thd) \langle sub \rangle 3 \langle sub \rangle (\langle i \rangle M \langle i \rangle = Al, Cr, Mn, Fe, Co, Ga, and In). Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 770-778.$	1.2	7
417	Amphoteric behavior of hydrogen ($<$ i> $>$ H $<$ /i> $<$ sup> $+$ 1 $<$ sup> and $<$ i> $>$ H $<$ /i> $<$ sup> $=$ â $^{\circ}$ 1 $<$ sup>) in complex hydrides from van der Waals interaction-including $<$ i> $>$ ab initio $<$ /i> $>$ calculations. Journal of Materials Chemistry A, 2019, 7, 6228-6240.	10.3	7
418	Control of growth orientation in as-deposited epitaxial iron-rich nickel ferrite spinel. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, 021502.	2.1	7
419	First-Principles Study of the Structural Stability and Dynamic Properties of Li2MSiO4 (M = Mn, Co, Ni) Polymorphs. Energies, 2019, 12, 224.	3.1	7
420	Adiabatic calorimetry and neutron diffraction studies of phases and phase transitions in [Ni(ND3)6](NO3)2. Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1986, 138, 295-304.	0.9	6
421	Magnetic ordering in MnSe2. Solid State Communications, 1987, 63, 65-67.	1.9	6
422	Magnetic phase transition in MnTe2. Physics Letters, Section A: General, Atomic and Solid State Physics, 1987, 120, 44-46.	2.1	6
423	Structural and magnetic properties of Mn1â^'tFetAs (0.00 ≠t ≠0.20). Journal of Magnetism and Magnetic Materials, 1988, 73, 318-326.	2.3	6
424	The magnetic structure of TbNiAlD1.1. Journal of Alloys and Compounds, 2000, 311, 114-119.	5.5	6
425	Spin, charge, and orbital orderings in oxides with dual-valent transition metal ions. Ceramics International, 2004, 30, 1993-1998.	4.8	6
426	Quantification and key factors in delamination of (Mg 1 \hat{a} 'y Ni y) 1 \hat{a} 'x Al x (OH) 2 (NO 3) x \hat{A} · m H 2 O. Applied Clay Science, 2016, 124-125, 102-110.	5.2	6
427	Two New Series of Coordination Polymers and Evaluation of Their Properties by Density Functional Theory. Crystal Growth and Design, 2016, 16, 339-346.	3.0	6
428	Engineering Functions into Platinum and Platinum–Rhodium Nanoparticles in a Oneâ€Step Microwave Irradiation Synthesis. ChemistryOpen, 2017, 6, 273-281.	1.9	6
429	Tuning electronic properties in LaNiO ₃ thin films by B-site Cu-substitution. Journal of Materials Chemistry C, 2020, 8, 12662-12668.	5.5	6
430	Atomic Layer Deposition of GdCoO3 and Gd0.9Ca0.1CoO3. Materials, 2020, 13, 24.	2.9	6
431	Effect of a magnetic field on MnAs0.88P0.12 below 80 K. Journal of Magnetism and Magnetic Materials, 1985, 50, 287-290.	2.3	5
432	Time resolved powder neutron diffraction investigations of reactions of solids with water. Cement and Concrete Research, 1986, 16, 871-874.	11.0	5

#	Article	IF	CITATIONS
433	Applications of combined EXAFS and powder diffraction analysis in solid state chemistry. Journal of Synchrotron Radiation, 2001, 8, 305-307.	2.4	5
434	Synthesis, structure, and properties of chromium(III) sulfates. Journal of Solid State Chemistry, 2004, 177, 4351-4358.	2.9	5
435	Hole doping into Co-12s2 copper oxides with s fluorite-structured layers between CuO2 planes. Journal of Solid State Chemistry, 2006, 179, 632-645.	2.9	5
436	On the application of a single-crystal \hat{l}^2 -diffractometer and a CCD area detector for \hat{A} studies of thin films. Journal of Synchrotron Radiation, 2013, 20, 644-647.	2.4	5
437	Poly[bis(1,3-dimethylimidazolidin-2-one)(μ ₂ -2,5-dioxidoterephthalato)zirconium(IV)]. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, m152-m152.	0.2	5
438	Thermal stability of photovoltaic a-Si:H determined by neutron reflectometry. Applied Physics Letters, 2014, 105, .	3.3	5
439	Supported Nickel Based Catalysts, Ni/Mg(Al)O, for Natural Gas Conversion, Prepared via Delamination and Restacking of MgAl- and NiAl-Nanosheets. Topics in Catalysis, 2015, 58, 877-886.	2.8	5
440	Metal oxide nanoparticles embedded in rare-earth matrix for low temperature thermal imaging applications. Materials Research Express, 2016, 3, 055010.	1.6	5
441	A novel polytype – the stacking fault based γ-MoO ₃ nanobelts. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2016, 72, 201-208.	1.1	5
442	SAPO-37 microporous catalysts: revealing the structural transformations during template removal. Journal of Lithic Studies, 2017, 3, 79-88.	0.5	5
443	Chemical Structures of Specific Sodium Ion Battery Components Determined by Operando Pair Distribution Function and Xâ€ray Diffraction Computed Tomography. Angewandte Chemie, 2017, 129, 11543-11547.	2.0	5
444	Zinc substituted MgH2 - a potential material for hydrogen storage applications. International Journal of Hydrogen Energy, 2019, 44, 13632-13646.	7.1	5
445	Controlled alloying of Pt-Rh nanoparticles by the polyol approach. Journal of Alloys and Compounds, 2019, 779, 879-885.	5.5	5
446	Synthesis and Evaluation of K-Promoted Co _{3-x} Mg _x Al-Oxides as Solid CO ₂ Sorbents in the Sorption-Enhanced Waterâ Gas Shift (SEWGS) Reaction. Industrial & Lamp; Engineering Chemistry Research, 2020, 59, 17837-17844.	3.7	5
447	Defects and polaronic electron transport in Fe ₂ WO ₆ . Physical Chemistry Chemical Physics, 2020, 22, 15541-15548.	2.8	5
448	Coupling of magnetoresistance switching and glassy magnetic state at the metal–insulator transition in Ruddlesden-Popper manganite Ca4Mn3O10. Journal of Magnetism and Magnetic Materials, 2020, 511, 166949.	2.3	5
449	One-pot synthesis of cobalt–rhenium nanoparticles taking the unusual β-Mn type structure. Nanoscale Advances, 2020, 2, 1850-1853.	4.6	5

Structural and magnetic characterization of the elusive Jahn-Teller active <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>NaCrF</mml:mi><mml:mn>3</mml:mb4></mre></mre>
Physical Review Materials, 2020, 4, .

#	Article	IF	Citations
451	The synthesis and crystal structure of UiO-19; an organically templated layered titanium phosphate with the ULM-11 topology. Dalton Transactions RSC, 2000, , 551-554.	2.3	4
452	The magnetic structure of TbNiSiD1.78. Journal of Alloys and Compounds, 2002, 340, 62-66.	5.5	4
453	Structural stability, electronic structure, and magnetic properties of mixed-valenceACr3O8phases (A=Na, K, Rb). Physical Review B, 2005, 72, .	3.2	4
454	Annealing study of H2O and O3grown Al2O3deposited by atomic layer chemical vapour deposition on n-type 4H-SiC. Physica Scripta, 2006, T126, 6-9.	2.5	4
455	display="inline"> <mml:mrow><mml:mi>R</mml:mi><mml:mi mathvariant="normal">Ba</mml:mi><mml:msub><mml:mi mathvariant="normal">Mn</mml:mi><mml:mn></mml:mn></mml:msub><mml:msub><mml:mi< td=""><td></td><td></td></mml:mi<></mml:msub></mml:mrow>		

#	Article	IF	CITATIONS
469	Classification of martensitic-like transformations in CrxMn1â^xxAs1–yPy Crystals. Physica Status Solidi A, 1988, 110, 141-154.	1.7	3
470	Mn0.9Co0.1P in field parallel to hard direction: phase diagram and irreversibility of CONE phase. Journal of Magnetism and Magnetic Materials, 1992, 104-107, 71-72.	2.3	3
471	Nd substitution effects in YBa2Cu4O8 prepared using a conversion reaction from Y1â^'xNdxBa2Cu3O7â^'Î and CuO. Solid State Sciences, 2000, 2, 269-276.	0.7	3
472	Coordination Preference of Ga in Hydrides. Inorganic Chemistry, 2006, 45, 10698-10701.	4.0	3
473	Temperature dependant X-ray diffraction study of PrSr ₃ Co _{1.5} Fe _{1.5} O _{10–⟨i⟩d⟨ i⟩ ⟨ sub⟩; ⟨i⟩n⟨ i⟩ = 3 Ruddlesden-Popper phase. Zeitschrift Fù/₄r Kristallographie, 2009, 224, 295-301.}	1.1	3
474	Synthesis and Crystal Structure of [Cr(thd)2(OEt)]2. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2011, 637, 56-61.	1.2	3
475	Thermogravimetric Analysis – A Viable Method for Screening Novel Materials for the Sorbent Enhanced Water-gas Shift Process. Energy Procedia, 2017, 114, 2294-2303.	1.8	3
476	Canted antiferromagnetism in high-purity <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>NaFeF</mml:mi> prepared by a novel wet-chemical synthesis method. Physical Review Materials, 2020, 4, .</mml:mrow></mml:msub></mml:math>	mml 2::4 row:	۰<۱ : mn>3
477	Antifluorite-type Na ₅ FeO ₄ as a low-cost, environment-friendly cathode with combined cationic/anionic redox activity for sodium ion batteries: a first-principles investigation. RSC Advances, 2022, 12, 17410-17421.	3.6	3
478	Magnetic phase diagrams and properties of transition metal substituted MnP. Journal of Physics and Chemistry of Solids, 1988, 49, 1087-1090.	4.0	2
479	A Mössbauer study of57Fe in MnAs. Physica Scripta, 1988, 37, 373-380.	2.5	2
480	Pressure induced transitions between para-, heli- and ferromagnetic phases of Mn0.61Cr0.39As studied by neutron diffraction. Journal of Magnetism and Magnetic Materials, 1990, 92, 75-79.	2.3	2
481	The crystal structure of Zr2NiD4.5. Acta Crystallographica Section B: Structural Science, 2006, 62, 972-978.	1.8	2
482	First-principles density-functional calculations on HCr3O8: An exercise to better understand the ACr3O8(A = alkali metal) family. Journal of Electroceramics, 2006, 17, 15-20.	2.0	2
483	Electrical Properties and Gas Sensing Characteristics of the Al ₂ O ₃ /4H SiC Interface Studied by Impedance Spectroscopy. Materials Science Forum, 0, 645-648, 531-534.	0.3	2
484	(E)-1-(2-lodophenyl)-2-phenyldiazene. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o2326-o2326.	0.2	2
485	ALD Applied to Conformal Rare-Earth Coating of ZnO Nanoparticles for Low Temperature Thermal Imaging Applications. ECS Transactions, 2014, 64, 23-31.	0.5	2
486	4,4′-Dimethoxybiphenyl-3,3′-dicarboxylic acid. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o615-o615.	0.2	2

#	Article	IF	Citations
487	Revised electronic structure, Raman and IR studies of AB2H2and ABCH (A = Sr, Ba; B = Al, Ga; C = Si, Ge) phases. RSC Advances, 2014, 4, 22-31.	3.6	2
488	Synthesis and Properties of Ethyl, Propyl, and Butyl Hexa-alkyldisilanes and Tetrakis(tri-alkylsilyl)silanes. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 2956-2961.	1.2	2
489	Atomic Layer Deposited Hybrid Organic-Inorganic Aluminates as Potential Low-k Dielectric Materials. Materials Research Society Symposia Proceedings, 2015, 1791, 15-20.	0.1	2
490	<i>In situ</i> synchrotron X-ray diffraction of thin films under perturbation by an electric field. Ferroelectrics, 2018, 537, 20-26.	0.6	2
491	Development of custom made bimetallic alloy model systems based on platinum – rhodium for heterogeneous catalysis. Journal of Alloys and Compounds, 2019, 786, 1021-1029.	5.5	2
492	Exotic Compositional Ordering in Manganese–Nickel–Arsenic (Mnâ€Niâ€As) Intermetallics. Angewandte Chemie - International Edition, 2020, 59, 22382-22387.	13.8	2
493	Crystal structure of dimethyl 4,4′-dimethoxybiphenyl-3,3′-dicarboxylate. Acta Crystallographica Section E: Crystallographic Communications, 2016, 72, 328-330.	0.5	2
494	Structural and Magnetic Properties of the Chemical Pressure System $Mn(0.64)Cr(0.36)As(1-x)Sb(x)$ Acta Chemica Scandinavica, 1997, 51, 910-917.	0.7	2
495	On the MnP ⇌ NiAs-type transition in Mn0.63Cr0.37As: Structural and thermodynamic properties. Journal of Solid State Chemistry, 1988, 75, 355-363.	2.9	1
496	Equation of state of MnAs0.88P0.12. Journal of Solid State Chemistry, 1990, 87, 222-228.	2.9	1
497	Influence of phosphorus substitution on Mn0.63Cr0.37As. Journal of Magnetism and Magnetic Materials, 1991, 94, 347-354.	2.3	1
498	Electron microscopy study of some Ni-S phases. Micron and Microscopica Acta, 1992, 23, 177-178.	0.2	1
499	A combined EXAFS and powder diffraction study of local and averaged structure in complex oxides. AIP Conference Proceedings, 2001, , .	0.4	1
500	Density-functional calculations of the crystal structures and properties of CsCr3O8andACr3O8(A=In,Tl,Cu,Ag,Au). Physical Review B, 2006, 73, .	3.2	1
501	The Mixedâ€Valence, Mixedâ€Ligand Complex Co ₃ (thd) ₃ (EtO) ₄ (<i>tert</i> â€BuCOO). Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2011, 637, 2175-2182.	1.2	1
502	Reply to "A comment on †Prediction of crystal structure, lattice dynamical, and mechanical properties of CaB2H2' by Vajeeston etÂal., Int J Hydrogen Energy, 36 (2011) 10149†10158†International Journal of Hydrogen Energy, 2012, 37, 2711-2712.	7.1	1
503	Dimethyl 3,3′-dimethoxybiphenyl-4,4′-dicarboxylate. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o449-o449.	0.2	1
504	Two new Cu(ii) and La(iii) 2D coordination polymers, synthesis and in situ structural analysis by X-ray diffraction. Dalton Transactions, 2016, 45, 12827-12834.	3.3	1

#	Article	IF	CITATIONS
505	Ab initio structure solution and thermal stability evaluation of a new Ca(<scp>ii</scp>) 3D coordination polymer using synchrotron powder X-ray diffraction data. CrystEngComm, 2017, 19, 5857-5863.	2.6	1
506	Giant Magnetoelectric Coupling in Multiferroic PbTi _{1â€"<i>x</i>} V _{<i>x</i>} O ₃ from Density Functional Calculations. ACS Omega, 2019, 4, 16743-16755.	3.5	1
507	Variability in the Formation and Framework Polymorphism of Metalâ€organic Frameworks based on Yttrium(III) and the Bifunctional Organic Linker 2,5â€Dihydroxyterephthalic Acid. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 15-25.	1.2	1
508	Total Scattering Study of Local Structural Changes in MnAs1–xPx Influenced by Magnetic Interactions. Chemistry of Materials, 2021, 33, 2576-2584.	6.7	1
509	Effect of Electron Doping on the Crystal Structure and Physical Properties of an ⟨i⟩n⟨ i⟩ = 3 Ruddlesden–Popper Compound La⟨sub⟩4⟨ sub⟩Ni⟨sub⟩3⟨ sub⟩O⟨sub⟩10⟨ sub⟩. ACS Applied Electronic Materials, 2021, 3, 2671-2684.	4.3	1
510	Jahn-Teller active fluoroperovskites ACrF3 (A=Na+,K+): Magnetic and thermo-optical properties. Physical Review Materials, 2021, 5, .	2.4	1
511	Understanding the (De)Sodiation Mechanisms in Naâ€Based Batteries through Operando Xâ€ray Methods. Batteries and Supercaps, 2021, 4, 1035-1035.	4.7	1
512	Nanocrystalline Orthoferrite GdFeO3 from a Novel Heterobimetallic Precursor. , 2002, 14, 1405.		1
513	Structural and Magnetic Properties of V(1-t)Ti(t)As Acta Chemica Scandinavica, 1986, 40a, 17-22.	0.7	1
514	Hyperfine interactions in MnAs probed by 57Fe. Hyperfine Interactions, 1988, 41, 475-478.	0.5	0
515	Mn1â^t(Ti0.50V0.50)tAs; diluted manganese monoarsenide with zero overall chemical pressure. Journal of Physics and Chemistry of Solids, 1989, 50, 187-195.	4.0	0
516	Mössbauer studies of 57Fe-doped CrAs. Journal of Magnetism and Magnetic Materials, 1991, 97, 251-255.	2.3	0
517	Nb-substituted TiO2 Nanosheet Exfoliated from Layered Titanate for photocatalysis. Materials Research Society Symposia Proceedings, 2011, 1352, 103.	0.1	0
518	Publisher's Note: ALD Applied to Conformal Coating of Nanoporous \hat{I}^3 -Alumina: Spinel Formation and Luminescence Induced by Europium Doping [I Electrochem. Soc. I , 159, P45 (2012)]. Journal of the Electrochemical Society, 2012, 159, S15-S15.	2.9	0
519	Methyl 5-iodo-2-methoxybenzoate. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, 0462-0462.	0.2	0
520	Colossal positive magneto-resistance in oxygen deficient Ca <inf>4</inf> Mn <inf>3</inf> O <inf>10</inf> ., 2017,,.		0
521	Exotic Compositional Ordering in Manganese–Nickel–Arsenic (Mnâ€Niâ€As) Intermetallics. Angewandte Chemie, 2020, 132, 22568-22573.	2.0	0
522	Tuning the Magnetically Segregated Nanolayering in Mn–Ni–As Intermetallics. Chemistry of Materials, 2021, 33, 3002-3010.	6.7	0

H FJELLVÃ¥G

#	Article	IF	CITATIONS
523	Colossal Positive Magnetoresistance in Oxygen-Deficient Ca4Mn3O10. IEEE Transactions on Magnetics, 2017, 53, 1-4.	2.1	O