David R Yarkony

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5003298/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unified Description of the Jahn–Teller Effect in Molecules with Only C _s Symmetry: Cyclohexoxy in Its Full 48-Dimensional Internal Coordinates. Journal of Physical Chemistry A, 2022, 126, 61-67.	2.5	2
2	Internal conversion and intersystem crossing dynamics based on coupled potential energy surfaces with full geometry-dependent spin–orbit and derivative couplings. Nonadiabatic photodissociation dynamics of NH ₃ (A) leading to the NH(X ³ Σ ^{â°`} , a ¹ ΰ) + H ₂ channel. Physical Chemistry Chemical Physics, 2022, 24, 15060-15067.	2.8	3
3	High-fidelity first principles nonadiabaticity: diabatization, analytic representation of global diabatic potential energy matrices, and quantum dynamics. Physical Chemistry Chemical Physics, 2021, 23, 24962-24983.	2.8	29
4	Enabling complete multichannel nonadiabatic dynamics: A global representation of the two-channel coupled, 1,21A and 13A states of NH3 using neural networks. Journal of Chemical Physics, 2021, 154, 094121.	3.0	19
5	Vibrational energy levels of the <i>S</i> _O and <i>S</i> ₁ states of formaldehyde using an accurate ab initio based global diabatic potential energy matrix. Molecular Physics, 2021, 119, .	1.7	3
6	Enabling a Unified Description of Both Internal Conversion and Intersystem Crossing in Formaldehyde: A Global Coupled Quasi-Diabatic Hamiltonian for Its S ₀ , S ₁ , and T ₁ States. Journal of Chemical Theory and Computation, 2021, 17, 4157-4168.	5.3	12
7	Full-dimensional quantum stereodynamics of the non-adiabatic quenching of OH(A2Σ+) by H2. Nature Chemistry, 2021, 13, 909-915.	13.6	17
8	Conical intersection seams in spin–orbit coupled systems with an even number of electrons: A numerical study based on neural network fit surfaces. Journal of Chemical Physics, 2021, 155, 174115.	3.0	6
9	Extending the Representation of Multistate Coupled Potential Energy Surfaces To Include Properties Operators Using Neural Networks: Application to the 1,2 ¹ A States of Ammonia. Journal of Chemical Theory and Computation, 2020, 16, 302-313.	5.3	39
10	Insights into the Mechanism of Nonadiabatic Photodissociation from Product Vibrational Distributions. The Remarkable Case of Phenol. Journal of Physical Chemistry Letters, 2020, 11, 191-198.	4.6	25
11	Impact of Diabolical Singular Points on Nonadiabatic Dynamics and a Remedy: Photodissociation of Ammonia in the First Band. Journal of Chemical Theory and Computation, 2020, 16, 6776-6784.	5.3	6
12	Neural Network Based Quasi-diabatic Representation for S ₀ and S ₁ States of Formaldehyde. Journal of Physical Chemistry A, 2020, 124, 10132-10142.	2.5	21
13	Compact Bases for Vibronic Coupling in Spectral Simulations: The Photoelectron Spectrum of Cyclopentoxide in the Full 39 Internal Modes. Journal of Physical Chemistry Letters, 2020, 11, 7245-7252.	4.6	2
14	Construction of Quasi-diabatic Hamiltonians That Accurately Represent <i>ab Initio</i> Determined Adiabatic Electronic States Coupled by Conical Intersections for Systems on the Order of 15 Atoms. Application to Cyclopentoxide Photoelectron Detachment in the Full 39 Degrees of Freedom. Journal of Physical Chemistry A, 2020, 124, 4539-4548.	2.5	15
15	On the nonadiabatic collisional quenching of OH(A) by H ₂ : a four coupled quasi-diabatic state description. Physical Chemistry Chemical Physics, 2020, 22, 13516-13527.	2.8	15
16	Accurate Neural Network Representation of the Ab Initio Determined Spin–Orbit Interaction in the Diabatic Representation Including the Effects of Conical Intersections. Journal of Physical Chemistry Letters, 2020, 11, 1848-1858.	4.6	30
17	The generality of the GUGA MRCI approach in COLUMBUS for treating complex quantum chemistry. Journal of Chemical Physics, 2020, 152, 134110.	3.0	42
18	On the Impact of Singularities in the Two-State Adiabatic to Diabatic State Transformation: A Global Treatment. Journal of Physical Chemistry A, 2019, 123, 9874-9880.	2.5	8

#	Article	IF	CITATIONS
19	Diabatic and adiabatic representations: Electronic structure caveats. Computational and Theoretical Chemistry, 2019, 1152, 41-52.	2.5	15
20	Up to a Sign. The Insidious Effects of Energetically Inaccessible Conical Intersections on Unimolecular Reactions. Accounts of Chemical Research, 2019, 52, 501-509.	15.6	39
21	Neural network based quasi-diabatic Hamiltonians with symmetry adaptation and a correct description of conical intersections. Journal of Chemical Physics, 2019, 150, 214101.	3.0	38
22	A Quasi-Diabatic Representation of the 1,2 ¹ A States of Methylamine. Journal of Physical Chemistry A, 2019, 123, 5231-5241.	2.5	19
23	Nonadiabatic Dynamics in Photodissociation of Hydroxymethyl in the 32A(3px) Rydberg State: A Nine-Dimensional Quantum Study. Journal of Physical Chemistry A, 2019, 123, 1937-1944.	2.5	8
24	Representation of coupled adiabatic potential energy surfaces using neural network based quasi-diabatic Hamiltonians: 1,2 ² A′ states of LiFH. Physical Chemistry Chemical Physics, 2019, 21, 14205-14213.	2.8	45
25	Signatures of a Conical Intersection in Adiabatic Dissociation on the Ground Electronic State. Journal of the American Chemical Society, 2018, 140, 1986-1989.	13.7	42
26	Permutation invariant polynomial neural network approach to fitting potential energy surfaces. IV. Coupled diabatic potential energy matrices. Journal of Chemical Physics, 2018, 149, 144107.	3.0	61
27	Determining whether diabolical singularities limit the accuracy of molecular property based diabatic representations: The 1,21A states of methylamine. Journal of Chemical Physics, 2018, 149, 154108.	3.0	7
28	Nonadiabatic tunneling via conical intersections and the role of the geometric phase. Physical Review A, 2017, 95, .	2.5	48
29	Multistate, multichannel coupled diabatic state representations of adiabatic states coupled by conical intersections. CH2OH photodissociation. Journal of Chemical Physics, 2017, 146, 134302.	3.0	17
30	Nonadiabatic photodissociation dynamics of the hydroxymethyl radical via the 22 <i>A</i> (3 <i>s</i>) Rydberg state: A four-dimensional quantum study. Journal of Chemical Physics, 2017, 146, 224306.	3.0	13
31	Constructive and Destructive Interference in Nonadiabatic Tunneling via Conical Intersections. Journal of Chemical Theory and Computation, 2017, 13, 1902-1910.	5.3	34
32	Encoding of vinylidene isomerization in its anion photoelectron spectrum. Science, 2017, 358, 336-339.	12.6	55
33	Dynamic mapping of conical intersection seams: A general method for incorporating the geometric phase in adiabatic dynamics in polyatomic systems. Journal of Chemical Physics, 2017, 147, 044109.	3.0	25
34	On the elimination of the electronic structure bottleneck in on the fly nonadiabatic dynamics for small to moderate sized (10-15 atom) molecules using fit diabatic representations based solely on <i>ab initio</i> electronic structure data: The photodissociation of phenol. Journal of Chemical Physics, 2016. 144. 024105.	3.0	40
35	On the incorporation of the geometric phase in general single potential energy surface dynamics: A removable approximation to ab initio data. Journal of Chemical Physics, 2016, 145, 234111.	3.0	25
36	Constructing diabatic representations using adiabatic and approximate diabatic data – Coping with diabolical singularities. Journal of Chemical Physics, 2016, 144, 044104.	3.0	22

#	Article	IF	CITATIONS
37	Accurate nonadiabatic dynamics. Physical Chemistry Chemical Physics, 2016, 18, 26335-26352.	2.8	104
38	An improved quasi-diabatic representation of the 1, 2, 31A coupled adiabatic potential energy surfaces of phenol in the full 33 internal coordinates. Journal of Chemical Physics, 2016, 144, 124312.	3.0	37
39	Non-adiabaticity: the importance of conical intersections. Molecular Physics, 2016, 114, 1983-2013.	1.7	40
40	Nonadiabatic Tunneling in Photodissociation of Phenol. Journal of the American Chemical Society, 2016, 138, 7828-7831.	13.7	126
41	Communication: On the competition between adiabatic and nonadiabatic dynamics in vibrationally mediated ammonia photodissociation in its A band. Journal of Chemical Physics, 2015, 142, 091101.	3.0	30
42	On the electronic structure of the ground state of cyclopentoxy. The case for a two coupled state description. Journal of Molecular Spectroscopy, 2015, 311, 36-41.	1.2	4
43	Nonadiabatic Photodissociation of the Hydroxymethyl Radical from the 22A State. Surface Hopping Simulations Based on a Full Nine-Dimensional Representation of the 1,2,32A Potential Energy Surfaces Coupled by Conical Intersections. Journal of Physical Chemistry A, 2015, 119, 7498-7509.	2.5	14
44	On the Construction of Property Based Diabatizations: Diabolical Singular Points. Journal of Physical Chemistry A, 2015, 119, 12383-12391.	2.5	29
45	Full-Dimensional Quantum Dynamics of Vibrationally Mediated Photodissociation of NH ₃ and ND ₃ on Coupled Ab Initio Potential Energy Surfaces: Absorption Spectra and NH ₂ (Ãf ^{2A₁)/NH₂(XÌf²B₁) Branching Ratios. Journal of Physical Chemistry A. 2014. 118. 11926-11934.}	2.5	30
46	On the description of conical intersections—A continuous representation of the local topography of seams of conical intersection of three or more electronic states: A generalization of the two state result. Journal of Chemical Physics, 2014, 141, 174109.	3.0	7
47	Fitting coupled potential energy surfaces for large systems: Method and construction of a 3-state representation for phenol photodissociation in the full 33 internal degrees of freedom using multireference configuration interaction determined data. Journal of Chemical Physics, 2014, 140, 024112.	3.0	89
48	Full-Dimensional Quantum State-to-State Nonadiabatic Dynamics for Photodissociation of Ammonia in its <i>A</i> -Band. Journal of Physical Chemistry Letters, 2014, 5, 1055-1060.	4.6	50
49	Seams of Conical Intersections Relevant to the Quenching of OH(A ² Σ ⁺) by Collisions with H ₂ . Journal of Physical Chemistry A, 2013, 117, 7344-7355.	2.5	15
50	On the Photoionization Spectrum of Propyne: A Fully ab Initio Simulation of the Low-Energy Spectrum Including the Jahn–Teller Effect and the Spin–Orbit Interaction. Journal of Physical Chemistry A, 2013, 117, 12002-12010.	2.5	11
51	On the mechanism for the nonadiabatic reactive quenching of OH(A2Σ+) by H2(1\$Sigma _{m g}^+\$Σg+): The role of the 22A state. Journal of Chemical Physics, 2013, 139, 064314.	3.0	12
52	First principles determination of the NH2/ND2(\$skew4ilde A, skew3ilde X\$AÌf,XÌf) branching ratios for photodissociation of NH3/ND3 via full-dimensional quantum dynamics based on a new quasi-diabatic representation of coupled <i>ab initio</i> potential energy surfaces. Journal of Chemical Physics, 2012, 137, 22A541.	3.0	41
53	Nonadiabatic effects in substitutional isomers of Jahn-Teller molecules: The strange case of hydroxymethoxy. Journal of Chemical Physics, 2012, 137, 154315.	3.0	9
54	Quasi-diabatic representations of adiabatic potential energy surfaces coupled by conical intersections including bond breaking: A more general construction procedure and an analysis of the diabatic representation. Journal of Chemical Physics, 2012, 137, 22A511.	3.0	48

#	Article	IF	CITATIONS
55	On the representation of coupled adiabatic potential energy surfaces using quasi-diabatic Hamiltonians: A distributed origins expansion approach. Journal of Chemical Physics, 2012, 136, 174110.	3.0	54
56	Computational determination of the <i>Ãf </i> state absorption spectrum of NH3 and of ND3 using a new quasi-diabatic representation of the \$skew3ilde{X}\$XIf and <i>Ãf </i> states and full six-dimensional quantum dynamics. Journal of Chemical Physics, 2012, 136, 234301.	3.0	46
57	A Lippmann–Schwinger approach for the determination of photoionization and photodetachment cross sections based on a partial wave Green's function expansion and configuration interaction wave functions. Molecular Physics, 2012, 110, 845-859.	1.7	6
58	Role of Conical Intersections in Molecular Spectroscopy and Photoinduced Chemical Dynamics. Annual Review of Physical Chemistry, 2012, 63, 325-352.	10.8	401
59	Nonadiabatic Quantum Chemistry—Past, Present, and Future. Chemical Reviews, 2012, 112, 481-498.	47.7	254
60	Conical Intersections in Electron Photodetachment Spectroscopy: Theory and Applications. Advanced Series in Physical Chemistry, 2011, , 197-248.	1.5	1
61	Determining partial differential cross sections for low-energy electron photodetachment involving conical intersections using the solution of a Lippmann-Schwinger equation constructed with standard electronic structure techniques. Journal of Chemical Physics, 2011, 134, 174104.	3.0	7
62	On the determination of partial differential cross sections for photodetachment and photoionization processes producing polyatomic molecules with electronic states coupled by conical intersections. Journal of Chemical Physics, 2011, 134, 134110.	3.0	8
63	Conical Intersections. Advanced Series in Physical Chemistry, 2011, , .	1.5	300
64	On the role of conical intersections and their local topography in the photodissociation of the 1-hydroxyethyl radical. Chemical Physics, 2010, 378, 110-117.	1.9	3
65	On the determination of intensities for electron photodetachment and photoionization spectra involving states coupled by conical intersections: Total integral cross sections for polyatomic molecules. Journal of Chemical Physics, 2010, 133, 194107.	3.0	8
66	The Photoelectron Spectrum of Pyrrolide: Nonadiabatic Effects due to Conical Intersections. Journal of Physical Chemistry C, 2010, 114, 5312-5320.	3.1	13
67	Toward eliminating the electronic structure bottleneck in nonadiabatic dynamics on the fly: An algorithm to fit nonlocal, quasidiabatic, coupled electronic state Hamiltonians based on <i>ab initio</i> electronic structure data. Journal of Chemical Physics, 2010, 132, 104101.	3.0	73
68	On the representation of coupled adiabatic potential energy surfaces using quasi-diabatic Hamiltonians: description of accidental seams of conical intersection. Molecular Physics, 2010, 108, 2611-2619.	1.7	16
69	The simulated photoelectron spectrum of 1-propynide. Journal of Chemical Physics, 2009, 130, 064306.	3.0	13
70	The photoelectron spectrum of the ethoxide anion: Conical intersections, the spin-orbit interaction, and sequence bands. Journal of Chemical Physics, 2009, 131, 134303.	3.0	20
71	The photoelectron spectrum of the isopropoxide anion: Nonadiabatic effects due to conical intersections and the spin-orbit interaction. Journal of Chemical Physics, 2009, 130, 154312.	3.0	21
72	On the multimode quadratic vibronic coupling problem: An open-ended solution using a parallel Lanczos algorithm. Chemical Physics, 2008, 347, 57-64.	1.9	17

#	Article	IF	CITATIONS
73	A method to reduce the size of the vibronic basis employed in the simulation of spectra using the multimode vibronic coupling approximation. Journal of Chemical Physics, 2008, 128, 044119.	3.0	18
74	A simulation of the photoelectron spectrum of pyrazolide. Journal of Chemical Physics, 2008, 129, 064304.	3.0	16
75	Determining quasidiabatic coupled electronic state Hamiltonians using derivative couplings: A normal equations based method. Journal of Chemical Physics, 2008, 129, 124104.	3.0	52
76	On the vibronic coupling approximation: A generally applicable approach for determining fully quadratic quasidiabatic coupled electronic state Hamiltonians. Journal of Chemical Physics, 2007, 127, 094104.	3.0	43
77	On the locus of points of conical intersection: Seams near seams. Journal of Chemical Physics, 2007, 126, 044104.	3.0	8
78	On the simulation of photoelectron spectra in molecules with conical intersections and spin-orbit coupling: The vibronic spectrum of CH3S. Journal of Chemical Physics, 2007, 127, 104309.	3.0	45
79	On the Characterization of Three-State Conical Intersections Using a Group Homomorphism Approach: The Two-State Degeneracy Spacesâ€. Journal of Physical Chemistry B, 2006, 110, 19031-19039.	2.6	18
80	On the characterization of three state conical intersections using a group homomorphism approach: Mapping the full Nâ^'5 dimensional seam space. Journal of Chemical Physics, 2006, 124, 244103.	3.0	14
81	On the characterization of three state conical intersections: A quasianalytic theory using a group homomorphism approach. Journal of Chemical Physics, 2006, 124, 124109.	3.0	22
82	Interpolation of diabatic potential-energy surfaces: Quantum dynamics on ab initio surfaces. Journal of Chemical Physics, 2005, 123, 134110.	3.0	53
83	Statistical and nonstatistical nonadiabatic photodissociation from the first excited state of the hydroxymethyl radical. Journal of Chemical Physics, 2005, 122, 084316.	3.0	22
84	Escape from the double cone: Optimized descriptions of the seam space using gateway modes. Journal of Chemical Physics, 2005, 123, 134106.	3.0	15
85	On the connectivity of seams of conical intersection: Seam curvature. Journal of Chemical Physics, 2005, 123, 204101.	3.0	31
86	DETERMINATION OF POTENTIAL ENERGY SURFACE INTERSECTIONS AND DERIVATIVE COUPLINGS IN THE ADIABATIC REPRESENTATION. Advanced Series in Physical Chemistry, 2004, , 129-173.	1.5	12
87	CONICAL INTERSECTIONS: THEIR DESCRIPTION AND CONSEQUENCES. Advanced Series in Physical Chemistry, 2004, , 41-127.	1.5	46
88	Exploring molecular complexity: Conical intersections and NH3 photodissociation. Journal of Chemical Physics, 2004, 121, 628-631.	3.0	39
89	Marching along ridges. An extrapolatable approach to locating conical intersections. Faraday Discussions, 2004, 127, 325.	3.2	22
90	Analytic evaluation of nonadiabatic coupling terms at the MR-CI level. II. Minima on the crossing seam: Formaldehyde and the photodimerization of ethylene. Journal of Chemical Physics, 2004, 120, 7330-7339.	3.0	216

#	Article	IF	CITATIONS
91	Marching along Ridges. Efficient Location of Energy-Minimized Conical Intersections of Two States Using Extrapolatable Functions. Journal of Physical Chemistry A, 2004, 108, 3200-3205.	2.5	39
92	Analytic evaluation of nonadiabatic coupling terms at the MR-CI level. I. Formalism. Journal of Chemical Physics, 2004, 120, 7322-7329.	3.0	290
93	Conical Intersections. Advanced Series in Physical Chemistry, 2004, , .	1.5	864
94	Conical Intersections of Three Electronic States Affect the Ground State of Radical Species with Little or No Symmetry:Â Pyrazolyl. Journal of the American Chemical Society, 2003, 125, 12428-12429.	13.7	47
95	Beyond Two-State Conical Intersections. Three-State Conical Intersections in Low Symmetry Molecules:  the Allyl Radical. Journal of the American Chemical Society, 2003, 125, 10672-10676.	13.7	77
96	On the properties of the seam and branching spaces of conical intersections in molecules with an odd number of electrons: A group homomorphism approach. Journal of Chemical Physics, 2003, 118, 9952-9962.	3.0	11
97	Nonadiabatic processes involving three electronic states. I. Branch cuts and linked pairs of conical intersections. Journal of Chemical Physics, 2003, 119, 5058-5068.	3.0	42
98	Conical intersections of three states: Energies, derivative couplings, and the geometric phase effect in the neighborhood of degeneracy subspaces. Application to the allyl radical. Journal of Chemical Physics, 2003, 119, 11561-11569.	3.0	33
99	Conical Intersections and the Spin-Orbit Interaction. Advances in Chemical Physics, 2003, , 557-581.	0.3	8
100	Conical intersections and the nonadiabatic reactions H2O+O(3P)↔OH(A 2Σ+)+OH(X 2Î). Journal of Chem Physics, 2002, 117, 3733-3740.	niçal 3.0	12
101	Spin-orbit coupling and conical intersections in molecules with an odd number of electrons. III. A perturbative determination of the electronic energies, derivative couplings and a rigorous diabatic representation near a conical intersection. Journal of Chemical Physics, 2002, 116, 2825-2835.	3.0	23
102	Photodissociation of the hydroxymethyl radical. I. The role of conical intersections in line broadening and decomposition pathways. Journal of Chemical Physics, 2002, 116, 8300.	3.0	25
103	Photodissociation of the vinoxy radical through conical, and avoided, intersections. Journal of Chemical Physics, 2002, 117, 7198-7206.	3.0	23
104	Spinâ^'Orbit Coupling and Conical Intersections. IV. A Perturbative Determination of the Electronic Energies, Derivative Couplings, and a Rigorous Diabatic Representation near a Conical Intersection. The General Caseâ€. Journal of Physical Chemistry B, 2002, 106, 8108-8116.	2.6	18
105	Accidental conical intersections of three states of the same symmetry. I. Location and relevance. Journal of Chemical Physics, 2002, 117, 6907-6910.	3.0	68
106	Intersecting Conical Intersection Seams:  Their Location, Representation, and Effect on Local Topography. Journal of Physical Chemistry A, 2002, 106, 2580-2591.	2.5	31
107	On the effects of spin-orbit coupling on conical intersection seams in molecules with an odd number of electrons. I. Locating the seam. Journal of Chemical Physics, 2001, 115, 2038-2050.	3.0	28
108	Nuclear dynamics near conical intersections in the adiabatic representation: I. The effects of local topography on interstate transitions. Journal of Chemical Physics, 2001, 114, 2601-2613.	3.0	165

#	Article	IF	CITATIONS
109	Conical Intersections:Â The New Conventional Wisdom. Journal of Physical Chemistry A, 2001, 105, 6277-6293.	2.5	335
110	Intersecting conical intersection seams in tetra-atomic molecules: the S1–S0internal conversion in HNCO. Molecular Physics, 2001, 99, 1463-1467.	1.7	6
111	Symmetry Friend or Foe: Confluences of Conical Intersection Seams in Tetra-Atomic Moleculesâ€. Journal of Physical Chemistry A, 2001, 105, 2642-2645.	2.5	12
112	On the effects of spin–orbit coupling on conical intersection seams in molecules with an odd number of electrons. II. Characterizing the local topography of the seam. Journal of Chemical Physics, 2001, 115, 5066-5075.	3.0	20
113	Characterizing the local topography of conical intersections using orthogonality constrained parameters: Application to the internal conversion S1→SO in HNCO. Journal of Chemical Physics, 2001, 114, 2614-2622.	3.0	14
114	Accurate first-derivative nonadiabatic couplings for the H3 system. Journal of Chemical Physics, 2001, 115, 4640-4659.	3.0	61
115	Diabatic bases and molecular properties. International Journal of Quantum Chemistry, 2000, 76, 235-243.	2.0	38
116	Perspective on "Some recent developments in the theory of molecular energy levels". Theoretical Chemistry Accounts, 2000, 103, 242-247.	1.4	4
117	The role of conical intersections in the nonadiabatic quenching of OH(A 2Σ+) by molecular hydrogen. Journal of Chemical Physics, 2000, 113, 10091-10099.	3.0	46
118	On the adiabatic to diabatic states transformation near intersections of conical intersections. Journal of Chemical Physics, 2000, 112, 2111-2120.	3.0	106
119	On the strongly bound B 3Πstate of the CAr van der Waals complex: Bonding and predissociation. Journal of Chemical Physics, 1999, 111, 3070-3076.	3.0	9
120	A theoretical analysis of the state-specific decomposition of OH(A 2Σ+,v′,N′,F1/F2) levels, including the effects of spin–orbit and Coriolis interactions. Journal of Chemical Physics, 1999, 110, 363-376.	3.0	58
121	Determining the molecular Aharonov–Bohm phase angle: A rigorous approach employing a molecular properties based adiabatic to diabatic states transformation. Journal of Chemical Physics, 1999, 110, 701-705.	3.0	29
122	Substituent effects and the noncrossing rule: The importance of reduced symmetry subspaces. I. The quenching of OH(A 2Σ+) by H2. Journal of Chemical Physics, 1999, 111, 6661-6664.	3.0	29
123	Unusual conical intersections in the Jahn–Teller effect: The electronically excited states of Li3. Journal of Chemical Physics, 1999, 110, 3639-3642.	3.0	38
124	S1â^'SO Internal Conversion in Ketene. 1. The Role of Conical Intersections. Journal of Physical Chemistry A, 1999, 103, 6658-6668.	2.5	23
125	Suppressing the geometric phase effect: Closely spaced seams of the conical intersection in Na3(2 2E′). Journal of Chemical Physics, 1999, 111, 4906-4912.	3.0	22
126	Conical Intersections:  Diabolical and Often Misunderstood. Accounts of Chemical Research, 1998, 31, 511-518.	15.6	396

#	Article	IF	CITATIONS
127	A criterion for the confluence of two seams of conical intersection in triatomic molecules. Theoretical Chemistry Accounts, 1998, 98, 197-201.	1.4	26
128	Quenching of Li (2 P) by H 2 : potential energy surfaces, conical intersection seam, and diabatic bases. Theoretical Chemistry Accounts, 1998, 100, 154-170.	1.4	11
129	On the Construction of Diabatic Bases Using Molecular Properties. Rigorous Results in the Vicinity of a Conical Intersection. Journal of Physical Chemistry A, 1998, 102, 8073-8077.	2.5	43
130	On the Mechanism of the Spin-Nonconserving Chemical Reaction O(3P) + HCCH → CH2(ã1A1) + CO(X1Σ+). I. Feasibility. Journal of Physical Chemistry A, 1998, 102, 5305-5311.	2.5	29
131	Unanticipated confluences of seams of conical intersection: Reinvestigating intersecting potential-energy surfaces using new tools. I. C(3P)+H2. Journal of Chemical Physics, 1998, 109, 7047-7050.	3.0	17
132	Systematic location of intersecting seams of conical intersection in triatomic molecules: The 1 2A′–2â€9 conical intersections in BH2. Journal of Chemical Physics, 1998, 108, 5657-5659.	%32A′ 3.0	30
133	On the adiabatic to diabatic states transformation in the presence of a conical intersection: A most diabatic basis from the solution to a Poisson's equation. I. Journal of Chemical Physics, 1998, 109, 20-25.	3.0	86
134	On the description of potential energy surfaces exhibiting conical intersections: a compact representation of the energies and derivative couplings and locally diabatic bases for the HOH and OHH portions of the 11A'-21A' seam of conical intersection in water. Molecular Physics, 1998, 93, 971-983	1.7	17
135	On the origin of the heavy atom effect in the fine-structure splitting of the 1 2Πstate of alkali metal 2P-rare gas van der Waals molecules. Journal of Chemical Physics, 1997, 107, 7690-7694.	3.0	21
136	Electronic structure aspects of the spin-forbidden reaction CH3(X 2A2″)+N(4S)→HCN(X 1Σ+)+H2(Xá Journal of Chemical Physics, 1997, 107, 4994-4999.	쀉1Σg+ 3.0	.) ₂₈
137	A theoretical investigation of the spin–orbit-induced predissociation of Bar C2Δ. Journal of Chemical Physics, 1997, 106, 6607-6611.	3.0	11
138	Resonances in the predissociation of the A 2ÎΩ state of MgBr. Journal of Chemical Physics, 1997, 106, 4091-4101.	3.0	13
139	On the Relation between Bonding and the Spinâ^'Orbit Interaction in BNe: the C2Δ and 14Î States. Journal of Physical Chemistry A, 1997, 101, 9520-9524.	2.5	7
140	Energies and derivative couplings in the vicinity of a conical intersection. II. CH2(2 3A″,3 3A″) and H2S(1 1A″,2 1A″), unexpected results in an ostensibly standard case. Journal of Chemical Physics, 1 7825-7838.	9 9.7 , 107,	48
141	The Reactions Al(2P) + H2 → AlH2(12Aâ€~, 22Aâ€~) → AlH2(X2A1) or AlH(XΣ+) + H:  Unusual Conical Inters and Possible Nonadiabatic Recrossing. Journal of Physical Chemistry A, 1997, 101, 7953-7959.	ections 2.5	51
142	Energies and Derivative Couplings in the Vicinity of a Conical Intersection Using Degenerate Perturbation Theory and Analytic Gradient Techniques. 1. Journal of Physical Chemistry A, 1997, 101, 4263-4270.	2.5	119
143	New and Unusual Bonding in Open Shell van der Waals Molecules Revealed by the Heavy Atom Effect: The Case of BAr. Journal of Physical Chemistry A, 1997, 101, 3166-3173.	2.5	14
144	Diabolical conical intersections. Reviews of Modern Physics, 1996, 68, 985-1013.	45.6	853

#	Article	IF	CITATIONS
145	Current Issues in Nonadiabatic Chemistryâ€. The Journal of Physical Chemistry, 1996, 100, 18612-18628.	2.9	179
146	On the role of conical intersections in photodissociation. V. Conical intersections and the geometric phase in the photodissociation of methyl mercaptan. Journal of Chemical Physics, 1996, 104, 7866-7881.	3.0	25
147	On the consequences of nonremovable derivative couplings. I. The geometric phase and quasidiabatic states: A numerical study. Journal of Chemical Physics, 1996, 105, 10456-10461.	3.0	112
148	Radiative and Nonradiative Decay of the BH(b3Σ-) State: A Joint Experimental and Theoretical Study. The Journal of Physical Chemistry, 1996, 100, 5649-5653.	2.9	9
149	Quenching of CH(a ⁴ î£ ⁻) by CO(Xî£ ⁺):  Surfaces of Intersection, Spinâ^'Orbit Interactions, and the Incorporation of Kramers' Degeneracy. The Journal of Physical Chemistry, 1996, 100, 17439-17445.	2.9	13
150	Radiationless decay of the 1,2,3 3Îg states of Al2: A fully first principles treatment using adiabatic and rigorous diabatic states. Journal of Chemical Physics, 1995, 102, 1955-1964.	3.0	20
151	On the spin-orbit induced radiationless decay of the b3Σ-state of BH. Molecular Physics, 1995, 84, 611-618.	1.7	6
152	On the role of conical intersections in photodissociation. III. The case of hydroxylamine. Journal of Chemical Physics, 1995, 102, 8431-8439.	3.0	18
153	Radiative and radiationless decay of resonances resulting from electronically nonadiabatic interactions: A computational approach valid for both narrow and broad linewidths and large energy shifts. Journal of Chemical Physics, 1995, 103, 7336-7346.	3.0	13
154	ELECTRONIC STRUCTURE ASPECTS OF NONADIABATIC PROCESSES IN POLYATOMIC SYSTEMS. Advanced Series in Physical Chemistry, 1995, , 642-721.	1.5	27
155	On the role of conical intersections of two potential energy surfaces of the same symmetry in photodissociation. I. CH3SH→CH3S+H and CH3+SH. Journal of Chemical Physics, 1994, 100, 3639-3644.	3.0	33
156	On the perturbation of the B̃ 2A' state of HCO by the 1 4Aâ€~ and 1 4A' states: Surfaces spin–orbit interactions. Journal of Chemical Physics, 1994, 100, 473-480.	of interse	ection and
157	Nonadiabatic perturbations and fine structure splittings in the 1,2 3Îg states of B2: An analysis based on adiabatic and rigorous diabatic states. Journal of Chemical Physics, 1994, 100, 8204-8211.	3.0	14
158	On the radiative lifetime of the (a 4Σâ^',v,N,Fi) levels of the CH radical: An ab initio treatment. Journal of Chemical Physics, 1994, 100, 8991-8998.	3.0	16
159	On the intersection of two potential energy surfaces of the same symmetry. Systematic characterization using a Lagrange multiplier constrained procedure. Journal of Chemical Physics, 1993, 99, 5251-5256.	3.0	133
160	Theoretical studies of spinâ€forbidden radiationless decay in polyatomic systems. II. Radiationless decay of aâ€N2O2. Journal of Chemical Physics, 1993, 98, 3845-3849.	3.0	26
161	On the electronic structure aspects of spinâ€forbidden processes in N2O. Journal of Chemical Physics, 1993, 99, 6824-6831.	3.0	47
162	A theoretical treatment of the predissociation of the individual rovibronic levels of OH/OD(A 2Σ+). Journal of Chemical Physics, 1992, 97, 1838-1849.	3.0	80

#	Article	IF	CITATIONS
163	On the intersection of potential energy surfaces in charge transfer reactions: A crossing seam for two states of the same symmetry in the reaction H++NO(X 2Î)→H(2S)+NO+(X 1Σ+). Journal of Chemic Physics, 1992, 97, 715-717.	als.o	18
164	Spin-forbidden chemistry within the Breit-Pauli approximation. International Reviews in Physical Chemistry, 1992, 11, 195-242.	2.3	86
165	Radiative and nonradiative decay of the NH(ND)A 3Î electronic state: Predissociation induced by the5Σâ^'state. Journal of Chemical Physics, 1991, 94, 1913-1922.	3.0	44
166	A theoretical treatment of thea 3Σ1+ →X1Σ0++ spinâ€forbidden dipoleâ€allowed radiative transition i Journal of Chemical Physics, 1991, 95, 6562-6566.	n NO+. 3.0	19
167	Predissociation of the c 1Πstate of NH (ND): The role of dipolar spin–spin coupling. Journal of Chemical Physics, 1991, 94, 2364-2367.	3.0	17
168	On the mechanism of the reaction CH(X 2Î)+N2(X 1Σ+g)→HCN(X 1Σ+) +N(4S ). I. A theoretic electronic structure aspects of the intersystem crossing. Journal of Chemical Physics, 1991, 95, 1808-1816.	al treatme 3.0	ent of the 73
169	Spinâ€forbidden decay of the dication HS2+. Journal of Chemical Physics, 1991, 94, 7208-7211.	3.0	13
170	On the characterization of regions of avoided surface crossings using an analytic gradient based method. Journal of Chemical Physics, 1990, 92, 2457-2463.	3.0	65
171	Spin–orbit effects in the decomposition reaction N3H(X̃1A')→N2(X1Σ+g)+NH(X3σâ^', a1Δ). Journal of C Physics, 1990, 92, 320-323.	Chemical	28
172	On the electronic structure and dynamical aspects of the predissociation of theA 2ÎΩstates of MgCl. A rigorous quantum mechanical treatment incorporating spin–orbit and derivative coupling effects. Journal of Chemical Physics, 1990, 93, 6403-6418.	3.0	21
173	On the noncrossing rule in polyatomic systems: Determination of a seam of actual surface crossings relevant to the quenching of H2(B 1Σ+u) by helium. Journal of Chemical Physics, 1990, 93, 4473-4474.	3.0	33
174	Nonadiabatic effects in the vicinity of multiple surface crossings. Evaluation of derivative couplings with respect to rotational and internal degrees of freedom. Application to the charge transfer reaction H++NO→H+NO+. Journal of Chemical Physics, 1989, 90, 1657-1665.	3.0	28
175	On the quenching of helium 2 3S: Potential energy curves for, and nonadiabatic, relativistic, and radiative couplings between, the a 3Σ+u, A 1Σ+u, b 3Îg, B 1Îg, c 3Σ+g, and C 1Σ+g s Physics, 1989, 90, 7164-7175.	t ate s of H	e28Journal c
176	On the electronic structure of the NH radical. The fine structure splitting of the X 3Σâ^' state and the spinâ€forbidden (b 1Σ+, a 1Δ)→X 3Σâ^', and the spinâ€allowed A 3Î→X 3Σâ^' and câ€% Chemical Physics, 1989, 91, 4745-4757.	₀ ፄîô†' (bâ€	ે‰થીî£+,â€%
177	Spinâ€forbidden radiative decay involving quasidegenerate states. Application to the B 1Σ+→a 3Î trans MgO. Journal of Chemical Physics, 1988, 89, 7324-7333.	ition in 3.0	25
178	On the electronic structure of the He+H2 system: Characterization of, and nonadiabatic interactions between, the 1 1A' and 2 1A' potential energy surfaces. Journal of Chemical Physics, 1988, 89, 4	9 ³ 5 ⁰ 4953.	18
179	On the evaluation of nonâ€Born–Oppenheimer interactions for Born–Oppenheimer wave functions. V. A body fixed frame approach. Applications to isotope effects on equilibrium geometries and the adiabatic correction for the X 1Σ+ state of LiH. Journal of Chemical Physics, 1988, 89, 975-982.	3.0	38
180	On the evaluation of lifetimes for spinâ€forbidden radiative transitions originating in coupling to states embedded in a continuum. Application to CHâ^. Journal of Chemical Physics, 1988, 88, 3853-3860.	3.0	8

#	Article	IF	CITATIONS
181	On the radiative lifetimes of the b 1Σ+ and a 1Δ states in NCl. Journal of Chemical Physics, 1987, 86, 1642-1643.	3.0	30
182	On the evaluation of nonadiabatic coupling matrix elements for MCSCF/CI wave functions. IV. Second derivative terms using analytic gradient methods. Journal of Chemical Physics, 1987, 86, 321-328.	3.0	36
183	On the quenching of Na(2P) by HCl: Nonadiabatic effects. Journal of Chemical Physics, 1987, 86, 4990-4996.	3.0	23
184	On the quenching of Li(2p) by HCl: Nonadiabatic effects. International Journal of Quantum Chemistry, 1987, 31, 91-97.	2.0	16
185	On the evaluation of nonadiabatic coupling matrix elements for MCSCF/CI wave functions using analytic derivative methods. III. Second derivative terms. Journal of Chemical Physics, 1986, 84, 348-353.	3.0	56
186	A theoretical description of the radiative decay processes (b 1Σ+, a 1Δ)→X 3Σâ~' in NF. Journal of (Physics, 1986, 85, 7261-7267.	Chemical	21
187	On the use of the Breit–Pauli approximation for evaluating line strengths for spinâ€forbidden transitions. II. The symbolic matrix element method. Journal of Chemical Physics, 1986, 84, 2075-2078.	3.0	25
188	On the reaction Na(2P)+H2→Na(2S)+H2nonadiabatic effects. Journal of Chemical Physics, 1986, 84, 3206-3211.	3.0	47
189	On the evaluation of non-adiabatic coupling matrix elements for large scale CI wavefunctions. Chemical Physics Letters, 1985, 113, 159-164.	2.6	96
190	On the use of the Breit–Pauli approximation for evaluating line strengths for spinâ€forbidden transitions: Application to NF. Journal of Chemical Physics, 1985, 83, 1168-1172.	3.0	39
191	On the Mg(3P)–He(1S) interaction using SAâ€MCSCF/ICF I wave functions. Journal of Chemical Physics, 1984, 80, 5089-5094.	3.0	30
192	On the evaluation of nonadiabatic coupling matrix elements using SAâ€MCSCF/CI wave functions and analytic gradient methods. I. Journal of Chemical Physics, 1984, 81, 4549-4553.	3.0	158
193	Electronic structure and vertical excitation spectrum of methylene amidogen CH2N. International Journal of Quantum Chemistry, 1983, 23, 437-446.	2.0	21
194	On the electronic structure of the X, A, and B states of CaCl. Journal of Chemical Physics, 1983, 79, 4376-4381.	3.0	34
195	On the reaction Mg+N2O→MgO+N2. Journal of Chemical Physics, 1983, 78, 6763-6772.	3.0	46
196	The electronic structure of CaO. II. An MCSCF/CI treatment of the lowâ€lying 1Σ+ and 1Î states. Journal of Chemical Physics, 1982, 77, 5573-5580.	3.0	30
197	On the lowâ€lying states of MgO. II. Journal of Chemical Physics, 1981, 74, 2379-2383.	3.0	32
198	MCSCF wave functions for excited states of polar molecules: Application to BeO. Journal of Chemical Physics, 1980, 72, 1138-1144.	3.0	37

#	Article	IF	CITATIONS
199	On the low lying singlet states of BeO. Journal of Chemical Physics, 1980, 73, 5702-5705.	3.0	15
200	Electronic structure of CaO. I. Journal of Chemical Physics, 1978, 68, 3990-3997.	3.0	49
201	On the electronic structure of the 2 1A1 state of methylene. Journal of Chemical Physics, 1978, 69, 3875-3877.	3.0	18
202	Diabatic bases and molecular properties. , 0, .		1
203	Nonadiabatic Interactions Between Potential Energy Surfaces: Theory and Applications. Advances in Chemical Physics, 0, , 1-71.	0.3	82
204	Representation of Diabatic Potential Energy Matrices for Multiconfiguration Time-Dependent Hartree Treatments of High-Dimensional Nonadiabatic Photodissociation Dynamics. Journal of Chemical Theory and Computation, 0, , .	5.3	1