List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5001884/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Genome-wide association study identifies five loci associated with lung function. Nature Genetics, 2010, 42, 36-44.                                                                                                                            | 21.4 | 518       |
| 2  | Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes. Nature Genetics, 2017, 49, 1126-1132.                                                | 21.4 | 472       |
| 3  | Genome-wide association and large-scale follow up identifies 16 new loci influencing lung function.<br>Nature Genetics, 2011, 43, 1082-1090.                                                                                                   | 21.4 | 367       |
| 4  | New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries. Nature Genetics, 2019, 51, 481-493.                                                                | 21.4 | 350       |
| 5  | Novel insights into the genetics of smoking behaviour, lung function, and chronic obstructive pulmonary disease (UK BiLEVE): a genetic association study in UK Biobank. Lancet Respiratory Medicine,the, 2015, 3, 769-781.                     | 10.7 | 346       |
| 6  | Genome-wide association analyses for lung function and chronic obstructive pulmonary disease identify new loci and potential druggable targets. Nature Genetics, 2017, 49, 416-425.                                                            | 21.4 | 257       |
| 7  | Genetic landscape of chronic obstructive pulmonary disease identifies heterogeneous cell-type and phenotype associations. Nature Genetics, 2019, 51, 494-505.                                                                                  | 21.4 | 257       |
| 8  | Genetic variants associated with susceptibility to idiopathic pulmonary fibrosis in people of European<br>ancestry: a genome-wide association study. Lancet Respiratory Medicine,the, 2017, 5, 869-880.                                        | 10.7 | 233       |
| 9  | Genome-Wide Association Study of Susceptibility to Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 564-574.                                                                              | 5.6  | 208       |
| 10 | Identification of <i>TMPRSS2</i> as a Susceptibility Gene for Severe 2009 Pandemic A(H1N1) Influenza<br>and A(H7N9) Influenza. Journal of Infectious Diseases, 2015, 212, 1214-1221.                                                           | 4.0  | 170       |
| 11 | Total Airway Count on Computed Tomography and the Risk of Chronic Obstructive Pulmonary Disease<br>Progression. Findings from a Population-based Study. American Journal of Respiratory and Critical<br>Care Medicine, 2018, 197, 56-65.       | 5.6  | 147       |
| 12 | Genome-Wide Joint Meta-Analysis of SNP and SNP-by-Smoking Interaction Identifies Novel Loci for<br>Pulmonary Function. PLoS Genetics, 2012, 8, e1003098.                                                                                       | 3.5  | 130       |
| 13 | Effect of Five Genetic Variants Associated with Lung Function on the Risk of Chronic Obstructive<br>Lung Disease, and Their Joint Effects on Lung Function. American Journal of Respiratory and Critical<br>Care Medicine, 2011, 184, 786-795. | 5.6  | 128       |
| 14 | Sixteen new lung function signals identified through 1000 Genomes Project reference panel imputation. Nature Communications, 2015, 6, 8658.                                                                                                    | 12.8 | 108       |
| 15 | Genome-Wide Interaction Analysis of Air Pollution Exposure and Childhood Asthma with Functional Follow-up. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 1373-1383.                                                   | 5.6  | 107       |
| 16 | Cross-Cancer Genome-Wide Analysis of Lung, Ovary, Breast, Prostate, and Colorectal Cancer Reveals<br>Novel Pleiotropic Associations. Cancer Research, 2016, 76, 5103-5114.                                                                     | 0.9  | 100       |
| 17 | Multiethnic meta-analysis identifies ancestry-specific and cross-ancestry loci for pulmonary function.<br>Nature Communications, 2018, 9, 2976.                                                                                                | 12.8 | 85        |
| 18 | BMI is associated with FEV1 decline in chronic obstructive pulmonary disease: a meta-analysis of clinical trials. Respiratory Research, 2019, 20, 236.                                                                                         | 3.6  | 72        |

| #  | Article                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Chronic obstructive pulmonary disease and related phenotypes: polygenic risk scores in population-based and case-control cohorts. Lancet Respiratory Medicine,the, 2020, 8, 696-708. | 10.7 | 69        |
| 20 | Molecular mechanisms underlying variations in lung function: a systems genetics analysis. Lancet<br>Respiratory Medicine,the, 2015, 3, 782-795.                                      | 10.7 | 66        |
| 21 | Identification of susceptibility pathways for the role of chromosome 15q25.1 in modifying lung cancer risk. Nature Communications, 2018, 9, 3221.                                    | 12.8 | 60        |
| 22 | A Comprehensive Evaluation of Potential Lung Function Associated Genes in the SpiroMeta General<br>Population Sample. PLoS ONE, 2011, 6, e19382.                                     | 2.5  | 56        |
| 23 | GSTCD and INTS12 Regulation and Expression in the Human Lung. PLoS ONE, 2013, 8, e74630.                                                                                             | 2.5  | 46        |
| 24 | Surfactant protein D is a causal risk factor for COPD: results of Mendelian randomisation. European<br>Respiratory Journal, 2017, 50, 1700657.                                       | 6.7  | 45        |
| 25 | Causal and Synthetic Associations of Variants in the SERPINA Gene Cluster with Alpha1-antitrypsin<br>Serum Levels. PLoS Genetics, 2013, 9, e1003585.                                 | 3.5  | 43        |
| 26 | Functional variants regulating LGALS1 (Galectin 1) expression affect human susceptibility to influenza<br>A(H7N9). Scientific Reports, 2015, 5, 8517.                                | 3.3  | 43        |
| 27 | Leveraging lung tissue transcriptome to uncover candidate causal genes in COPD genetic associations. Human Molecular Genetics, 2018, 27, 1819-1829.                                  | 2.9  | 37        |
| 28 | Introduction to precision medicine in COPD. European Respiratory Journal, 2019, 53, 1802460.                                                                                         | 6.7  | 37        |
| 29 | Gene expression analysis in asthma using a targeted multiplex array. BMC Pulmonary Medicine, 2017, 17, 189.                                                                          | 2.0  | 36        |
| 30 | The Ser82 RAGE Variant Affects Lung Function and Serum RAGE in Smokers and sRAGE Production In Vitro. PLoS ONE, 2016, 11, e0164041.                                                  | 2.5  | 34        |
| 31 | Transcriptomeâ€wide association study reveals candidate causal genes for lung cancer. International<br>Journal of Cancer, 2020, 146, 1862-1878.                                      | 5.1  | 33        |
| 32 | Network-based analysis reveals novel gene signatures in peripheral blood of patients with chronic obstructive pulmonary disease. Respiratory Research, 2017, 18, 72.                 | 3.6  | 31        |
| 33 | Protein-altering germline mutations implicate novel genes related to lung cancer development.<br>Nature Communications, 2020, 11, 2220.                                              | 12.8 | 31        |
| 34 | Whole Exome Re-Sequencing Implicates CCDC38 and Cilia Structure and Function in Resistance to Smoking Related Airflow Obstruction. PLoS Genetics, 2014, 10, e1004314.                | 3.5  | 29        |
| 35 | Hedgehog signaling in the airway epithelium of patients with chronic obstructive pulmonary disease.<br>Scientific Reports, 2019, 9, 3353.                                            | 3.3  | 29        |
| 36 | Phenotypic and functional translation of IL33 genetics in asthma. Journal of Allergy and Clinical<br>Immunology, 2021, 147, 144-157.                                                 | 2.9  | 29        |

MA'EN OBEIDAT

| #  | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Integrative pathway genomics of lung function and airflow obstruction. Human Molecular Genetics, 2015, 24, 6836-6848.                                                                                                                | 2.9  | 28        |
| 38 | Airway Epithelial Expression Quantitative Trait Loci Reveal Genes Underlying Asthma and Other Airway<br>Diseases. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 177-187.                                     | 2.9  | 28        |
| 39 | Integrative Genomics of Emphysema-Associated Genes Reveals Potential Disease Biomarkers. American<br>Journal of Respiratory Cell and Molecular Biology, 2017, 57, 411-418.                                                           | 2.9  | 28        |
| 40 | Responsiveness to Ipratropium Bromide in Male and Female Patients with Mild to Moderate Chronic<br>Obstructive Pulmonary Disease. EBioMedicine, 2017, 19, 139-145.                                                                   | 6.1  | 27        |
| 41 | Susceptibility to Chronic Mucus Hypersecretion, a Genome Wide Association Study. PLoS ONE, 2014, 9, e91621.                                                                                                                          | 2.5  | 25        |
| 42 | COPD GWAS variant at 19q13.2 in relation with DNA methylation and gene expression. Human Molecular Genetics, 2018, 27, 396-405.                                                                                                      | 2.9  | 24        |
| 43 | Macrophages with reduced expressions of classical M1 and M2 surface markers in human<br>bronchoalveolar lavage fluid exhibit pro-inflammatory gene signatures. Scientific Reports, 2021, 11,<br>8282.                                | 3.3  | 24        |
| 44 | Polymorphisms Associated with Expression of BPIFA1/BPIFB1 and Lung Disease Severity in Cystic Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2015, 53, 607-614.                                               | 2.9  | 23        |
| 45 | Immune-mediated genetic pathways resulting in pulmonary function impairment increase lung cancer susceptibility. Nature Communications, 2020, 11, 27.                                                                                | 12.8 | 23        |
| 46 | Understanding the role of the chromosome 15q25.1 in COPD through epigenetics and transcriptomics.<br>European Journal of Human Genetics, 2018, 26, 709-722.                                                                          | 2.8  | 21        |
| 47 | Occurrence of Accelerated Epigenetic Aging and Methylation Disruptions in Human Immunodeficiency<br>Virus Infection Before Antiretroviral Therapy. Journal of Infectious Diseases, 2021, 223, 1681-1689.                             | 4.0  | 19        |
| 48 | Genome-wide association meta-analysis identifies pleiotropic risk loci for aerodigestive squamous cell<br>cancers. PLoS Genetics, 2021, 17, e1009254.                                                                                | 3.5  | 19        |
| 49 | Meta-analysis of exome array data identifies six novel genetic loci for lung function. Wellcome Open<br>Research, 2018, 3, 4.                                                                                                        | 1.8  | 19        |
| 50 | The Effect of Different Case Definitions of Current Smoking on the Discovery of Smoking-Related<br>Blood Gene Expression Signatures in Chronic Obstructive Pulmonary Disease. Nicotine and Tobacco<br>Research, 2016, 18, 1903-1909. | 2.6  | 18        |
| 51 | The Overlap of Lung Tissue Transcriptome of Smoke Exposed Mice with Human Smoking and COPD.<br>Scientific Reports, 2018, 8, 11881.                                                                                                   | 3.3  | 18        |
| 52 | Genes related to emphysema are enriched for ubiquitination pathways. BMC Pulmonary Medicine, 2014, 14, 187.                                                                                                                          | 2.0  | 17        |
| 53 | The Effect of Statins on Blood Gene Expression in COPD. PLoS ONE, 2015, 10, e0140022.                                                                                                                                                | 2.5  | 16        |
| 54 | Aryl hydrocarbon receptor deficiency causes the development of chronic obstructive pulmonary disease through the integration of multiple pathogenic mechanisms. FASEB Journal, 2021, 35, e21376.                                     | 0.5  | 15        |

| #  | Article                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The pharmacogenomics of inhaled corticosteroids and lung function decline in COPD. European<br>Respiratory Journal, 2019, 54, 1900521.                                                              | 6.7 | 14        |
| 56 | Latrophilin receptors: novel bronchodilator targets in asthma. Thorax, 2017, 72, 74-82.                                                                                                             | 5.6 | 12        |
| 57 | Widespread Sexual Dimorphism in the Transcriptome of Human Airway Epithelium in Response to<br>Smoking. Scientific Reports, 2019, 9, 17600.                                                         | 3.3 | 12        |
| 58 | Informed Genomeâ€Wide Association Analysis With Family History As a Secondary Phenotype Identifies<br>Novel Loci of Lung Cancer. Genetic Epidemiology, 2015, 39, 197-206.                           | 1.3 | 11        |
| 59 | The Well-Known Gene <i>HHIP</i> and Novel Gene <i>MECR</i> Are Implicated in Small Airway<br>Obstruction. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 1299-1302.         | 5.6 | 11        |
| 60 | ldentification of Drug Candidates to Suppress Cigarette Smoke–induced Inflammation via Connectivity<br>Map Analyses. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 727-735. | 2.9 | 11        |
| 61 | The genetics of smoking in individuals with chronic obstructive pulmonary disease. Respiratory Research, 2018, 19, 59.                                                                              | 3.6 | 11        |
| 62 | Meta-analysis of exome array data identifies six novel genetic loci for lung function. Wellcome Open<br>Research, 0, 3, 4.                                                                          | 1.8 | 11        |
| 63 | Genetics of complex respiratory diseases: implications for pathophysiology and pharmacology studies.<br>British Journal of Pharmacology, 2011, 163, 96-105.                                         | 5.4 | 10        |
| 64 | Total particulate matter concentration skews cigarette smoke's gene expression profile. ERJ Open<br>Research, 2016, 2, 00029-2016.                                                                  | 2.6 | 10        |
| 65 | Lung cancer susceptibility genetic variants modulate HOXB2 expression in the lung. International<br>Journal of Developmental Biology, 2018, 62, 857-864.                                            | 0.6 | 8         |
| 66 | Differential lung tissue gene expression in males and females: implications for the susceptibility to develop COPD. European Respiratory Journal, 2019, 54, 1702567.                                | 6.7 | 8         |
| 67 | Genetic regulation of gene expression of MIF family members in lung tissue. Scientific Reports, 2020, 10, 16980.                                                                                    | 3.3 | 8         |
| 68 | Precision health: treating the individual patient with chronic obstructive pulmonary disease. Medical<br>Journal of Australia, 2019, 210, 424-428.                                                  | 1.7 | 6         |
| 69 | Impact of Statins on Gene Expression in Human Lung Tissues. PLoS ONE, 2015, 10, e0142037.                                                                                                           | 2.5 | 4         |
| 70 | Variants associated with HHIP expression have sex-differential effects on lung function. Wellcome<br>Open Research, 2020, 5, 111.                                                                   | 1.8 | 4         |
| 71 | Variants associated with HHIP expression have sex-differential effects on lung function. Wellcome Open Research, 2020, 5, 111.                                                                      | 1.8 | 3         |
| 72 | MA03.09 Transcriptome-Wide Association Study Reveals Candidate Causal Genes for Lung Cancer.<br>Journal of Thoracic Oncology, 2018, 13, S365.                                                       | 1.1 | 1         |

| #  | Article                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Meta-analysis of exome array data identifies six novel genetic loci for lung function. Wellcome Open<br>Research, 0, 3, 4.                                         | 1.8 | 1         |
| 74 | GDF11: a fountain of youth for the ageing COPD lung?. Thorax, 2017, 72, 874-875.                                                                                   | 5.6 | 0         |
| 75 | The Causal Effect of Body Mass Index on Mortality in COPD: Investigating the "Obesity Paradox" Using Non-Linear Mendelian Randomization. , 2020, , .               |     | 0         |
| 76 | Integrative -Omics Identify Potential Biomarkers and Therapeutic Targets for Idiopathic Pulmonary<br>Fibrosis. , 2020, , .                                         |     | 0         |
| 77 | A Polygenic Score for Asthma Is Associated with Airway Hyperresponsiveness in People with Chronic<br>Obstructive Pulmonary Disease. , 2020, , .                    |     | 0         |
| 78 | Gene Expression Signature of Human Alveolar Macrophages Recovered from Human Broncho-Alveolar<br>Lavage. , 2020, , .                                               |     | 0         |
| 79 | T1â€Meta-analysis of idiopathic pulmonary fibrosis genome-wide analyses identifies three novel genetic signals associated with disease susceptibility. , 2019, , . |     | 0         |