
Taketoshi Minato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5001833/publications.pdf Version: 2024-02-01

TAKETOSHI MINIATO

#	Article	IF	CITATIONS
1	Atomic-level nature of solid/liquid interface for energy conversion revealed by frequency modulation atomic force microscopy. Japanese Journal of Applied Physics, 2021, 60, SE0806.	1.5	3
2	Defluorination/fluorination mechanism of Bi0.8Ba0.2F2.8 as a fluoride shuttle battery positive electrode. Journal of Electroanalytical Chemistry, 2021, 895, 115508.	3.8	6
3	Lactone-Based Liquid Electrolytes for Fluoride Shuttle Batteries. Journal of the Electrochemical Society, 2021, 168, 010529.	2.9	14
4	Fluoride-Ion Shuttle Battery with High Volumetric Energy Density. Chemistry of Materials, 2021, 33, 459-466.	6.7	31
5	Molecular-Scale Solvation Structures of Ionic Liquids on a Heterogeneously Charged Surface. Journal of Physical Chemistry Letters, 2020, 11, 8094-8099.	4.6	5
6	Reversible Electrochemical Reaction of a Fluoride Shuttle Battery with a Bismuth(III) Fluoride Electrode and Electrolyte Containing Triphenylboroxine as an Anion Acceptor. ChemistrySelect, 2020, 5, 6237-6241.	1.5	12
7	Xâ€Ray Total Scattering of Electrolytes in Liquidâ€Based Fluoride Shuttle Battery: Electrolyte Composition Dependence of the Low―Q Peak. Physica Status Solidi (B): Basic Research, 2020, 257, 2000202.	1.5	4
8	Effect of anion acceptor added to the electrolyte on the electrochemical performance of bismuth(III) fluoride in a fluoride shuttle battery. Chemical Physics Letters, 2020, 755, 137785.	2.6	11
9	Atomic-Scale Three-Dimensional Local Solvation Structures of Ionic Liquids. Journal of Physical Chemistry Letters, 2020, 11, 1343-1348.	4.6	21
10	Electrochemical Performance of BiF 3 â€BaF 2 Solid Solution with Three Different Phases on a Fluoride Shuttle Battery System. ChemistrySelect, 2020, 5, 4943-4946.	1.5	10
11	Reactivity of the anion acceptor in electrolyte: An important factor in achieving high electrochemical performance of a lead (II) fluoride electrode in a fluoride shuttle battery. Journal of Electroanalytical Chemistry, 2020, 871, 114103.	3.8	13
12	Influence of LiBOB as an Electrolyte Additive on the Performance of BiF ₃ /C for Fluoride Shuttle Batteries. Journal of the Electrochemical Society, 2020, 167, 120508.	2.9	10
13	Charge and Discharge Reactions of a Lead Fluoride Electrode in a Liquidâ€Based Electrolyte for Fluoride Shuttle Batteries:â€The Role of Triphenylborane as an Anion Acceptor― ChemistrySelect, 2019, 4, 5984-5987.	1.5	9
14	Improved electrochemical performances in a bismuth fluoride electrode prepared using a high energy ball mill with carbon for fluoride shuttle batteries. Journal of Electroanalytical Chemistry, 2019, 839, 173-176.	3.8	27
15	Influence of Electrolyte Composition on the Electrochemical Reaction Mechanism of Bismuth Fluoride Electrode in Fluoride Shuttle Battery. Journal of Physical Chemistry C, 2019, 123, 10246-10252.	3.1	33
16	Effects of LiBOB on salt solubility and BiF ₃ electrode electrochemical properties in fluoride shuttle batteries. Journal of Materials Chemistry A, 2019, 7, 8559-8567.	10.3	35
17	Atomic-Level Viscosity Distribution in the Hydration Layer. Physical Review Letters, 2019, 122, 116001.	7.8	23
18	Electrochemical performance of a lead fluoride electrode mixed with carbon in an electrolyte containing triphenylboroxine as an anion acceptor for fluoride shuttle batteries. Materials Chemistry and Physics, 2019, 226, 1-5.	4.0	25

Τακετοςηι Μινατο

#	Article	IF	CITATIONS
19	Evolution and Migration of Lithium-Deficient Phases during Electrochemical Delithiation of Large Single Crystals of LiFePO ₄ . ACS Applied Energy Materials, 2018, 1, 1140-1145.	5.1	13
20	Triphenylboroxine and Triphenylborane as Anion Acceptors for Electrolyte in Fluoride Shuttle Batteries. Chemistry Letters, 2018, 47, 1346-1349.	1.3	32
21	Atomic-Scale 3D Local Hydration Structures Influenced by Water-Restricting Dimensions. Langmuir, 2018, 34, 9114-9121.	3.5	17
22	Electrochemical properties of lead fluoride electrode in fluoride shuttle battery. Journal of Electroanalytical Chemistry, 2018, 826, 60-64.	3.8	30
23	Improvement of cycling performance in bismuth fluoride electrodes by controlling electrolyte composition in fluoride shuttle batteries. Journal of Applied Electrochemistry, 2018, 48, 1205-1211.	2.9	34
24	Site-Selective Analysis of Nickel-Substituted Li-Rich Layered Material: Migration and Role of Transition Metal at Charging and Discharging. Journal of Physical Chemistry C, 2018, 122, 20099-20107.	3.1	7
25	Cycling Fading Mechanism for a Bismuth Fluoride Electrode in a Lithiumâ€ l on Battery. ChemistrySelect, 2017, 2, 3504-3510.	1.5	13
26	Interface structure between tetraglyme and graphite. Journal of Chemical Physics, 2017, 147, 124701.	3.0	13
27	Electrochemical Reaction Mechanism for Bi _{1â€<i>x</i>} Ba _{<i>x</i>} F _{3â€<i>x</i>} (<i>x</i> =0, 0.1, 0.2, and 0.4) Electrodes in Lithiumâ€Ion Batteries. ChemistrySelect, 2017, 2, 6399-6406.	1.5	9
28	Electrochemical Performance of a Bismuth Fluoride Electrode in a Reserve-Type Fluoride Shuttle Battery. Journal of the Electrochemical Society, 2017, 164, A3702-A3708.	2.9	59
29	Surface and interface sciences of Li-ion batteries. Progress in Surface Science, 2017, 92, 240-280.	8.3	71
30	Difference of rate performance between discharge and charge reactions for bismuth fluoride electrode in lithium-ion battery. Journal of Electroanalytical Chemistry, 2017, 806, 82-87.	3.8	22
31	Structural Understanding of Superior Battery Properties of Partially Ni-Doped Li2MnO3 as Cathode Material. Journal of Physical Chemistry Letters, 2016, 7, 2063-2067.	4.6	29
32	Dynamic Behavior at the Interface between Lithium Cobalt Oxide and an Organic Electrolyte Monitored by Neutron Reflectivity Measurements. Journal of Physical Chemistry C, 2016, 120, 20082-20088.	3.1	39
33	Unsupported Nanoporous Gold Catalyst for Chemoselective Hydrogenation Reactions under Low Pressure: Effect of Residual Silver on the Reaction. Journal of the American Chemical Society, 2016, 138, 10356-10364.	13.7	90
34	Dependence of Structural Defects in Li ₂ MnO ₃ on Synthesis Temperature. Chemistry of Materials, 2016, 28, 4143-4150.	6.7	54
35	Lithium intercalation and structural changes at the LiCoO2 surface under high voltage battery operation. Journal of Power Sources, 2016, 307, 599-603.	7.8	37
36	Oxidation behaviour of lattice oxygen in Li-rich manganese-based layered oxide studied by hard X-ray photoelectron spectroscopy. Journal of Materials Chemistry A, 2016, 4, 5909-5916.	10.3	48

Τακετοςηι Μινατο

#	Article	IF	CITATIONS
37	Tunneling Desorption of Single Hydrogen on the Surface of Titanium Dioxide. ACS Nano, 2015, 9, 6837-6842.	14.6	22
38	Effect of an Electrolyte Additive of Vinylene Carbonate on the Electronic Structure at the Surface of a Lithium Cobalt Oxide Electrode under Battery Operating Conditions. Journal of Physical Chemistry C, 2015, 119, 9791-9797.	3.1	55
39	Atomic Defects in Titanium Dioxide. Chemical Record, 2014, 14, 923-934.	5.8	19
40	Origin of Surface Coating Effect for MgO on LiCoO ₂ to Improve the Interfacial Reaction between Electrode and Electrolyte. Advanced Materials Interfaces, 2014, 1, 1400195.	3.7	56
41	The synergistic effect of nanoporous AuPd alloy catalysts on highly chemoselective 1,4-hydrosilylation of conjugated cyclic enones. Chemical Communications, 2014, 50, 3344.	4.1	31
42	Relationship between Phase Transition Involving Cationic Exchange and Charge–Discharge Rate in Li2FeSiO4. Chemistry of Materials, 2014, 26, 1380-1384.	6.7	47
43	MgFePO ₄ F as a feasible cathode material for magnesium batteries. Journal of Materials Chemistry A, 2014, 2, 11578-11582.	10.3	75
44	Improved Cyclic Performance of Lithium-Ion Batteries: An Investigation of Cathode/Electrolyte Interface via In Situ Total-Reflection Fluorescence X-ray Absorption Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 9538-9543.	3.1	60
45	Local structural change in Li2FeSiO4 polyanion cathode material during initial cycling. Solid State Ionics, 2014, 262, 110-114.	2.7	11
46	Stabilization of the Electronic Structure at the Cathode/Electrolyte Interface via MgO Ultra-thin Layer during Lithium-ions Insertion/Extraction. Electrochemistry, 2014, 82, 891-896.	1.4	21
47	High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements. Scientific Reports, 2014, 4, 5622.	3.3	286
48	STM Investigation of CO Ordering on Pt(111): From an Isolated Molecule to High-Coverage Superstructures. Journal of Physical Chemistry C, 2013, 117, 16429-16437.	3.1	35
49	Selective Aerobic Oxidation of Methanol in the Coexistence of Amines by Nanoporous Gold Catalysts: Highly Efficient Synthesis of Formamides. Chemistry - A European Journal, 2013, 19, 11832-11836.	3.3	77
50	A novel cationic-ordering fluoro-polyanionic cathode LiV0.5Fe0.5PO4F and its single phase Li+ insertion/extraction behaviour. RSC Advances, 2013, 3, 22935.	3.6	6
51	Phase Transition Analysis between LiFePO ₄ and FePO ₄ by In-Situ Time-Resolved X-ray Absorption and X-ray Diffraction. Journal of the Electrochemical Society, 2013, 160, A3061-A3065.	2.9	50
52	Impact of Lithium-Ion Ordering on Surface Electronic States of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub> <mml:mi>Li</mml:mi> <mml:mi>x</mml:mi> </mml:msub> <mml:msub> <mml:mi>C Physical Review Letters, 2013, 111, 126104.</mml:mi></mml:msub></mml:math 	oÖ∛mml:	mi> <mml:mr< td=""></mml:mr<>
53	Quantitating the Lattice Strain Dependence of Monolayer Pt Shell Activity toward Oxygen Reduction. Journal of the American Chemical Society, 2013, 135, 5938-5941.	13.7	112
54	Substituent Effect on the Intermolecular Arrangements of One-Dimensional Molecular Assembly on the Si(100)-(2×1)-H Surface. Journal of Physical Chemistry C, 2013, 117, 270-275.	3.1	7

Τακετοςηι Μινατο

#	Article	IF	CITATIONS
55	Dispersive Electronic States of the π-Orbitals Stacking in Single Molecular Lines on the Si(001)-(2×1)-H Surface. Journal of Physical Chemistry Letters, 2013, 4, 1199-1204.	4.6	2
56	Photoresponse on the Desorption of an Atomic Hydrogen on Titanium Dioxide Surface Induced by a Tip of Scanning Tunneling Microscope. Chemistry Letters, 2013, 42, 942-943.	1.3	4
57	Creation of single oxygen vacancy on titanium dioxide surface. Journal of Materials Research, 2012, 27, 2237-2240.	2.6	19
58	Aerobic oxidation of alcohols in the liquid phase with nanoporous gold catalysts. Chemical Communications, 2012, 48, 4540.	4.1	82
59	Nanoporous Gold Catalyst for Highly Selective Semihydrogenation of Alkynes: Remarkable Effect of Amine Additives. Journal of the American Chemical Society, 2012, 134, 17536-17542.	13.7	201
60	Nanoporous Copper Metal Catalyst in Click Chemistry: Nanoporosityâ€Dependent Activity without Supports and Bases. Advanced Synthesis and Catalysis, 2011, 353, 3095-3100.	4.3	70
61	The Electronic State and Spatial Distribution of Excess Charge Created by Oxygen Vacancies on Titanium Dioxide Surfaces. Hyomen Kagaku, 2010, 31, 474-479.	0.0	0
62	High-resolution molecular images of rubrene single crystals obtained by frequency modulation atomic force microscopy. Applied Physics Letters, 2009, 95, 093302.	3.3	23
63	Electronic state observation of inner organic thin films beneath electrodes: Fluorescence-yield X-ray absorption spectra of pentacene derivative films. Journal of Electron Spectroscopy and Related Phenomena, 2009, 174, 93-99.	1.7	2
64	The electronic structure of oxygen atom vacancy and hydroxyl impurity defects on titanium dioxide (110) surface. Journal of Chemical Physics, 2009, 130, 124502.	3.0	197
65	First-principles calculations of hydrogen diffusion on rutile TiO2(110) surfaces. Journal of Chemical Physics, 2007, 127, 104709.	3.0	41
66	Monitoring Trace Amounts of Lead and Arsenic Adsorption by Xray Absorption Fine Structure Combined with Fluorescence Spectrometry. Physica Scripta, 2005, , 933.	2.5	4
67	X-ray Absorption Fine Structure Combined with X-ray Fluorescence Spectrometry. Improvement of Spectral Resolution at the Absorption Edges of 9â°'29 keV. Analytical Chemistry, 2005, 77, 6969-6975.	6.5	22
68	Investigation of the electronic interaction between TiO2(110) surfaces and Au clusters by PES and STM. Surface Science, 2004, 566-568, 1012-1017.	1.9	99
69	Nitric Oxide Reduction by Carbon Monoxide over Supported Hexaruthenium Cluster Catalysts. 1. The Active Site Structure That Depends on Supporting Metal Oxide and Catalytic Reaction Conditions. Journal of Physical Chemistry B, 2003, 107, 9022-9028.	2.6	6
70	32 X-ray absorption fine structure utilizing a fluorescence spectrometer: Site selective structure determination of environmental catalysts and adsorbents. Studies in Surface Science and Catalysis, 2003, 145, 177-180.	1.5	0
71	X-ray Absorption Fine Structure Combined with Fluorescence Spectrometry for Monitoring Trace Amounts of Lead Adsorption in the Environmental Conditions. Analytical Chemistry, 2002, 74, 3819-3823.	6.5	36
72	Nanoparticles of Amorphous Ruthenium Sulfide Easily Obtainable from a TiO2-Supported Hexanuclear Cluster Complex [Ru6C(CO)16]2â^: A Highly Active Catalyst for the Reduction of SO2 with H2. Chemistry - A European Journal, 2002, 8, 3260.	3.3	19

#	Article	IF	CITATIONS
73	Nanoparticles of Amorphous Ruthenium Sulfide Easily Obtainable from a TiO2-Supported Hexanuclear Cluster Complex [Ru6C(CO)16]2â^: A Highly Active Catalyst for the Reduction of SO2 with H2. , 2002, 8, 3260.		1
74	Site-selective XAFS spectroscopy tuned to surface active sites of copper catalysts. Journal of Electron Spectroscopy and Related Phenomena, 2001, 119, 193-199.	1.7	24
75	Site-selective XAFS spectroscopy tuned to surface active sites of Cu/ZnO and Cr/SiO2catalysts. Journal of Synchrotron Radiation, 2001, 8, 605-607.	2.4	5
76	Supported ruthenium carbido-cluster catalysts for the catalytic removal of nitrogen monoxide and sulfur dioxide: the preparation process monitored by sulfur K-edge X-ray absorption near-edge structure. Studies in Surface Science and Catalysis, 2000, 143, 361-368.	1.5	0
77	Study of Behavior of Supporting Electrolyte Ion of Fluoride Shuttle Battery Using Anomalous Xâ€Ray Scattering. Advanced Energy and Sustainability Research, 0, , 2200020.	5.8	Ο