Zhaocai Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5000977/publications.pdf

Version: 2024-02-01

279798 197818 3,272 47 23 49 h-index citations g-index papers 50 50 50 5360 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Combinatorial targeting of Hippo-STRIPAK and PARP elicits synthetic lethality in gastrointestinal cancers. Journal of Clinical Investigation, 2022, 132, .	8.2	9
2	Head-to-Tail Cross-Linking to Generate Bicyclic Helical Peptides with Enhanced Helicity and Proteolytic Stability. Organic Letters, 2022, 24, 53-57.	4.6	3
3	A TNFR2–hnRNPK Axis Promotes Primary Liver Cancer Development via Activation of YAP Signaling in Hepatic Progenitor Cells. Cancer Research, 2021, 81, 3036-3050.	0.9	32
4	Emc3 maintains intestinal homeostasis by preserving secretory lineages. Mucosal Immunology, 2021, 14, 873-886.	6.0	9
5	Editorial: A Hippo's View: From Molecular Basis to Translational Medicine. Frontiers in Cell and Developmental Biology, 2021, 9, 729155.	3.7	2
6	Squalene epoxidase promotes colorectal cancer cell proliferation through accumulating calcitriol and activating CYP24A1â€mediated MAPK signaling. Cancer Communications, 2021, 41, 726-746.	9.2	32
7	An MST4â€p <i>β</i> àâ€Catenin ^{Thr40} Signaling Axis Controls Intestinal Stem Cell and Tumorigenesis. Advanced Science, 2021, 8, e2004850.	11.2	16
8	Engineering Chameleon Prodrug Nanovesicles to Increase Antigen Presentation and Inhibit PD‣1 Expression for Circumventing Immune Resistance of Cancer. Advanced Materials, 2021, 33, e2102668.	21.0	36
9	Helix-Constrained Peptides Constructed by Head-to-Side Chain Cross-Linking Strategies. Organic Letters, 2021, 23, 7792-7796.	4.6	4
10	Platelet-armored nanoplatform to harmonize janus-faced IFN- \hat{I}^3 against tumor recurrence and metastasis. Journal of Controlled Release, 2021, 338, 33-45.	9.9	72
11	Lipid-Raft-Targeted Molecular Self-Assembly Inactivates YAP to Treat Ovarian Cancer. Nano Letters, 2021, 21, 747-755.	9.1	23
12	STK3 promotes gastric carcinogenesis by activating Ras-MAPK mediated cell cycle progression and serves as an independent prognostic biomarker. Molecular Cancer, 2021, 20, 147.	19.2	13
13	Decoding the intercellular communication network during tumorigenesis. Cancer Biology and Medicine, 2021, 18, 0-0.	3.0	3
14	A high performance wearable strain sensor with advanced thermal management for motion monitoring. Nature Communications, 2020, 11, 3530.	12.8	313
15	MST4 kinase suppresses gastric tumorigenesis by limiting YAP activation via a non-canonical pathway. Journal of Experimental Medicine, 2020, 217, .	8.5	38
16	Secreted stromal protein ISLR promotes intestinal regeneration by suppressing epithelial Hippo signaling. EMBO Journal, 2020, 39, e103255.	7.8	34
17	Selective Inhibition of STRN3-Containing PP2A Phosphatase Restores Hippo Tumor-Suppressor Activity in Gastric Cancer. Cancer Cell, 2020, 38, 115-128.e9.	16.8	70
18	Structure and Degradation of Circular RNAs Regulate PKR Activation in Innate Immunity. Cell, 2019, 177, 865-880.e21.	28.9	543

#	Article	IF	CITATIONS
19	TRAF3-interacting JNK-activating modulator promotes inflammation by stimulating translocation of Toll-like receptor 4 to lipid rafts. Journal of Biological Chemistry, 2019, 294, 2744-5499.	3.4	10
20	Architecture, substructures, and dynamic assembly of STRIPAK complexes in Hippo signaling. Cell Discovery, 2019, 5, 3.	6.7	58
21	Targeting IRF3 as a YAP agonist therapy against gastric cancer. Journal of Experimental Medicine, 2018, 215, 699-718.	8.5	72
22	SUN2 Modulates HIV-1 Infection and Latency through Association with Lamin A/C To Maintain the Repressive Chromatin. MBio, 2018, 9, .	4.1	23
23	The MST4–MOB4 complex disrupts the MST1–MOB1 complex in the Hippo–YAP pathway and plays a pro-oncogenic role in pancreatic cancer. Journal of Biological Chemistry, 2018, 293, 14455-14469.	3.4	58
24	MST kinases in innate immune signaling. Cell Stress, 2018, 2, 4-13.	3.2	14
25	VGLL4 targets a TCF4–TEAD4 complex to coregulate Wnt and Hippo signalling in colorectal cancer. Nature Communications, 2017, 8, 14058.	12.8	114
26	UbcD1 regulates Hedgehog signaling by directly modulating Ci ubiquitination and processing. EMBO Reports, 2017, 18, 1922-1934.	4.5	9
27	Exosome cofactor <scp>hMTR</scp> 4 competes with export adaptor <scp>ALYREF</scp> to ensure balanced nuclear <scp>RNA</scp> pools for degradation and export. EMBO Journal, 2017, 36, 2870-2886.	7.8	82
28	Disruption of the RAG2 zinc finger motif impairs protein stability and causes immunodeficiency. European Journal of Immunology, 2016, 46, 1011-1019.	2.9	3
29	Acid-Activatable Versatile Micelleplexes for PD-L1 Blockade-Enhanced Cancer Photodynamic Immunotherapy. Nano Letters, 2016, 16, 5503-5513.	9.1	356
30	\hat{l}^2 -arrestin-1 contributes to brown fat function and directly interacts with PPAR \hat{l}^\pm and PPAR \hat{l}^3 . Scientific Reports, 2016, 6, 26999.	3.3	14
31	A positive role for polycomb in transcriptional regulation via H4K20me1. Cell Research, 2016, 26, 529-542.	12.0	18
32	A nonâ€canonical role of the p97 complex in <scp>RIG</scp> â€l antiviral signaling. EMBO Journal, 2015, 34, 2903-2920.	7.8	45
33	Gut–neuron interaction via Hh signaling regulates intestinal progenitor cell differentiation in Drosophila. Cell Discovery, 2015, 1, 15006.	6.7	22
34	Structural dissection of Hippo signaling. Acta Biochimica Et Biophysica Sinica, 2015, 47, 29-38.	2.0	14
35	The kinase MST4 limits inflammatory responses through direct phosphorylation of the adaptor TRAF6. Nature Immunology, 2015, 16, 246-257.	14.5	82
36	The Transitional Endoplasmic Reticulum ATPase p97 Regulates the Alternative Nuclear Factor NF-κB Signaling via Partial Degradation of the NF-κB Subunit p100. Journal of Biological Chemistry, 2015, 290, 19558-19568.	3.4	33

#	Article	IF	CITATIONS
37	Structural Insights into Mitochondrial Antiviral Signaling Protein (MAVS)-Tumor Necrosis Factor Receptor-associated Factor 6 (TRAF6) Signaling. Journal of Biological Chemistry, 2015, 290, 26811-26820.	3.4	33
38	The Kto-Skd Complex Can Regulate ptc Expression by Interacting with Cubitus interruptus (Ci) in the Hedgehog Signaling Pathway. Journal of Biological Chemistry, 2014, 289, 22333-22341.	3.4	7
39	Structural and Biochemical Insights into the Activation Mechanisms of Germinal Center Kinase OSR1. Journal of Biological Chemistry, 2014, 289, 35969-35978.	3.4	7
40	Striatins Contain a Noncanonical Coiled Coil That Binds Protein Phosphatase 2A A Subunit to Form a 2:2 Heterotetrameric Core of Striatin-interacting Phosphatase and Kinase (STRIPAK) Complex. Journal of Biological Chemistry, 2014, 289, 9651-9661.	3.4	39
41	VGLL4 functions as a new tumor suppressor in lung cancer by negatively regulating the YAP-TEAD transcriptional complex. Cell Research, 2014, 24, 331-343.	12.0	238
42	A Peptide Mimicking VGLL4 Function Acts as a YAP Antagonist Therapy against Gastric Cancer. Cancer Cell, 2014, 25, 166-180.	16.8	476
43	Structure of MST2 SARAH domain provides insights into its interaction with RAPL. Journal of Structural Biology, 2014, 185, 366-374.	2.8	14
44	Dynamic Interactions between TIP60 and p300 Regulate FOXP3 Function through a Structural Switch Defined by a Single Lysine on TIP60. Cell Reports, 2014, 7, 1471-1480.	6.4	89
45	Structural insights into regulatory mechanisms of MO25-mediated kinase activation. Journal of Structural Biology, 2014, 186, 224-233.	2.8	17
46	Structure of the MST4 in Complex with MO25 Provides Insights into Its Activation Mechanism. Structure, 2013, 21, 449-461.	3.3	40
47	Germinal center kinases in immune regulation. Cellular and Molecular Immunology, 2012, 9, 439-445.	10.5	29