Zhaocai Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5000977/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structure and Degradation of Circular RNAs Regulate PKR Activation in Innate Immunity. Cell, 2019, 177, 865-880.e21.	28.9	543
2	A Peptide Mimicking VGLL4 Function Acts as a YAP Antagonist Therapy against Gastric Cancer. Cancer Cell, 2014, 25, 166-180.	16.8	476
3	Acid-Activatable Versatile Micelleplexes for PD-L1 Blockade-Enhanced Cancer Photodynamic Immunotherapy. Nano Letters, 2016, 16, 5503-5513.	9.1	356
4	A high performance wearable strain sensor with advanced thermal management for motion monitoring. Nature Communications, 2020, 11, 3530.	12.8	313
5	VGLL4 functions as a new tumor suppressor in lung cancer by negatively regulating the YAP-TEAD transcriptional complex. Cell Research, 2014, 24, 331-343.	12.0	238
6	VGLL4 targets a TCF4–TEAD4 complex to coregulate Wnt and Hippo signalling in colorectal cancer. Nature Communications, 2017, 8, 14058.	12.8	114
7	Dynamic Interactions between TIP60 and p300 Regulate FOXP3 Function through a Structural Switch Defined by a Single Lysine on TIP60. Cell Reports, 2014, 7, 1471-1480.	6.4	89
8	The kinase MST4 limits inflammatory responses through direct phosphorylation of the adaptor TRAF6. Nature Immunology, 2015, 16, 246-257.	14.5	82
9	Exosome cofactor <scp>hMTR</scp> 4 competes with export adaptor <scp>ALYREF</scp> to ensure balanced nuclear <scp>RNA</scp> pools for degradation and export. EMBO Journal, 2017, 36, 2870-2886.	7.8	82
10	Targeting IRF3 as a YAP agonist therapy against gastric cancer. Journal of Experimental Medicine, 2018, 215, 699-718.	8.5	72
11	Platelet-armored nanoplatform to harmonize janus-faced IFN-γ against tumor recurrence and metastasis. Journal of Controlled Release, 2021, 338, 33-45.	9.9	72
12	Selective Inhibition of STRN3-Containing PP2A Phosphatase Restores Hippo Tumor-Suppressor Activity in Gastric Cancer. Cancer Cell, 2020, 38, 115-128.e9.	16.8	70
13	The MST4–MOB4 complex disrupts the MST1–MOB1 complex in the Hippo–YAP pathway and plays a pro-oncogenic role in pancreatic cancer. Journal of Biological Chemistry, 2018, 293, 14455-14469.	3.4	58
14	Architecture, substructures, and dynamic assembly of STRIPAK complexes in Hippo signaling. Cell Discovery, 2019, 5, 3.	6.7	58
15	A nonâ€canonical role of the p97 complex in <scp>RIG</scp> â€l antiviral signaling. EMBO Journal, 2015, 34, 2903-2920.	7.8	45
16	Structure of the MST4 in Complex with MO25 Provides Insights into Its Activation Mechanism. Structure, 2013, 21, 449-461.	3.3	40
17	Striatins Contain a Noncanonical Coiled Coil That Binds Protein Phosphatase 2A A Subunit to Form a 2:2 Heterotetrameric Core of Striatin-interacting Phosphatase and Kinase (STRIPAK) Complex. Journal of Biological Chemistry, 2014, 289, 9651-9661.	3.4	39
18	MST4 kinase suppresses gastric tumorigenesis by limiting YAP activation via a non-canonical pathway. Journal of Experimental Medicine, 2020, 217, .	8.5	38

ZHAOCAI ZHOU

#	Article	IF	CITATIONS
19	Engineering Chameleon Prodrug Nanovesicles to Increase Antigen Presentation and Inhibit PD‣1 Expression for Circumventing Immune Resistance of Cancer. Advanced Materials, 2021, 33, e2102668.	21.0	36
20	Secreted stromal protein ISLR promotes intestinal regeneration by suppressing epithelial Hippo signaling. EMBO Journal, 2020, 39, e103255.	7.8	34
21	The Transitional Endoplasmic Reticulum ATPase p97 Regulates the Alternative Nuclear Factor NF-κB Signaling via Partial Degradation of the NF-κB Subunit p100. Journal of Biological Chemistry, 2015, 290, 19558-19568.	3.4	33
22	Structural Insights into Mitochondrial Antiviral Signaling Protein (MAVS)-Tumor Necrosis Factor Receptor-associated Factor 6 (TRAF6) Signaling. Journal of Biological Chemistry, 2015, 290, 26811-26820.	3.4	33
23	A TNFR2–hnRNPK Axis Promotes Primary Liver Cancer Development via Activation of YAP Signaling in Hepatic Progenitor Cells. Cancer Research, 2021, 81, 3036-3050.	0.9	32
24	Squalene epoxidase promotes colorectal cancer cell proliferation through accumulating calcitriol and activating CYP24A1â€mediated MAPK signaling. Cancer Communications, 2021, 41, 726-746.	9.2	32
25	Germinal center kinases in immune regulation. Cellular and Molecular Immunology, 2012, 9, 439-445.	10.5	29
26	SUN2 Modulates HIV-1 Infection and Latency through Association with Lamin A/C To Maintain the Repressive Chromatin. MBio, 2018, 9, .	4.1	23
27	Lipid-Raft-Targeted Molecular Self-Assembly Inactivates YAP to Treat Ovarian Cancer. Nano Letters, 2021, 21, 747-755.	9.1	23
28	Gut–neuron interaction via Hh signaling regulates intestinal progenitor cell differentiation in Drosophila. Cell Discovery, 2015, 1, 15006.	6.7	22
29	A positive role for polycomb in transcriptional regulation via H4K20me1. Cell Research, 2016, 26, 529-542.	12.0	18
30	Structural insights into regulatory mechanisms of MO25-mediated kinase activation. Journal of Structural Biology, 2014, 186, 224-233.	2.8	17
31	An MST4â€p <i>β</i> atenin ^{Thr40} Signaling Axis Controls Intestinal Stem Cell and Tumorigenesis. Advanced Science, 2021, 8, e2004850.	11.2	16
32	Structure of MST2 SARAH domain provides insights into its interaction with RAPL. Journal of Structural Biology, 2014, 185, 366-374.	2.8	14
33	Structural dissection of Hippo signaling. Acta Biochimica Et Biophysica Sinica, 2015, 47, 29-38.	2.0	14
34	Î ² -arrestin-1 contributes to brown fat function and directly interacts with PPARα and PPARÎ ³ . Scientific Reports, 2016, 6, 26999.	3.3	14
35	MST kinases in innate immune signaling. Cell Stress, 2018, 2, 4-13.	3.2	14
36	STK3 promotes gastric carcinogenesis by activating Ras-MAPK mediated cell cycle progression and serves as an independent prognostic biomarker. Molecular Cancer, 2021, 20, 147.	19.2	13

ZHAOCAI ZHOU

#	Article	IF	CITATIONS
37	TRAF3-interacting JNK-activating modulator promotes inflammation by stimulating translocation of Toll-like receptor 4 to lipid rafts. Journal of Biological Chemistry, 2019, 294, 2744-5499.	3.4	10
38	UbcD1 regulates Hedgehog signaling by directly modulating Ci ubiquitination and processing. EMBO Reports, 2017, 18, 1922-1934.	4.5	9
39	Emc3 maintains intestinal homeostasis by preserving secretory lineages. Mucosal Immunology, 2021, 14, 873-886.	6.0	9
40	Combinatorial targeting of Hippo-STRIPAK and PARP elicits synthetic lethality in gastrointestinal cancers. Journal of Clinical Investigation, 2022, 132, .	8.2	9
41	The Kto-Skd Complex Can Regulate ptc Expression by Interacting with Cubitus interruptus (Ci) in the Hedgehog Signaling Pathway. Journal of Biological Chemistry, 2014, 289, 22333-22341.	3.4	7
42	Structural and Biochemical Insights into the Activation Mechanisms of Germinal Center Kinase OSR1. Journal of Biological Chemistry, 2014, 289, 35969-35978.	3.4	7
43	Helix-Constrained Peptides Constructed by Head-to-Side Chain Cross-Linking Strategies. Organic Letters, 2021, 23, 7792-7796.	4.6	4
44	Disruption of the RAG2 zinc finger motif impairs protein stability and causes immunodeficiency. European Journal of Immunology, 2016, 46, 1011-1019.	2.9	3
45	Decoding the intercellular communication network during tumorigenesis. Cancer Biology and Medicine, 2021, 18, 0-0.	3.0	3
46	Head-to-Tail Cross-Linking to Generate Bicyclic Helical Peptides with Enhanced Helicity and Proteolytic Stability. Organic Letters, 2022, 24, 53-57.	4.6	3
47	Editorial: A Hippo's View: From Molecular Basis to Translational Medicine. Frontiers in Cell and Developmental Biology, 2021, 9, 729155	3.7	2