
David Q-H Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5000131/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gallstones. Nature Reviews Disease Primers, 2016, 2, 16024.	30.5	428
2	Bile Acid Physiology. Annals of Hepatology, 2017, 16, S4-S14.	1.5	306
3	Regulation of Intestinal Cholesterol Absorption. Annual Review of Physiology, 2007, 69, 221-248.	13.1	258
4	Gut Microbiota and Short Chain Fatty Acids: Implications in Glucose Homeostasis. International Journal of Molecular Sciences, 2022, 23, 1105.	4.1	215
5	Cholesterol and Lipoprotein Metabolism and Atherosclerosis: Recent Advances in Reverse Cholesterol Transport. Annals of Hepatology, 2017, 16, S27-S42.	1.5	172
6	Dietary sphingomyelin suppresses intestinal cholesterol absorption by decreasing thermodynamic activity of cholesterol monomers. Gastroenterology, 2002, 122, 948-956.	1.3	166
7	Feeding natural hydrophilic bile acids inhibits intestinal cholesterol absorption: studies in the gallstone-susceptible mouse. American Journal of Physiology - Renal Physiology, 2003, 285, G494-G502.	3.4	161
8	Biliary lipids and cholesterol gallstone disease. Journal of Lipid Research, 2009, 50, S406-S411.	4.2	161
9	Spontaneous cholecysto- and hepatolithiasis inMdr2?/? mice: A model for low phospholipid-associated cholelithiasis. Hepatology, 2004, 39, 117-128.	7.3	148
10	Effect of Ezetimibe on the Prevention and Dissolution of Cholesterol Gallstones. Gastroenterology, 2008, 134, 2101-2110.	1.3	144
11	Novel Insights into the Pathogenesis and Management of the Metabolic Syndrome. Pediatric Gastroenterology, Hepatology and Nutrition, 2020, 23, 189.	1.2	128
12	An update on the pathogenesis of cholesterol gallstone disease. Current Opinion in Gastroenterology, 2018, 34, 71-80.	2.3	125
13	New Insights Into the Genetic Regulation of Intestinal Cholesterol Absorption. Gastroenterology, 2005, 129, 718-734.	1.3	120
14	Coordinate regulation of gallbladder motor function in the gut-liver axis. Hepatology, 2008, 47, 2112-2126.	7.3	117
15	Biochemical mechanisms in drug-induced liver injury: Certainties and doubts. World Journal of Gastroenterology, 2009, 15, 4865.	3.3	113
16	Role of mitochondria in nonalcoholic fatty liver disease-from origin to propagation. Clinical Biochemistry, 2012, 45, 610-618.	1.9	108
17	Phenotypic characterization of Lith genes that determine susceptibility to cholesterol cholelithiasis in inbred mice: pathophysiology of biliary lipid secretion. Journal of Lipid Research, 1999, 40, 2066-2079.	4.2	103
18	Obesity and the risk and prognosis of gallstone disease and pancreatitis. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2014, 28, 623-635.	2.4	98

#	Article	IF	CITATIONS
19	New insights into the molecular mechanisms underlying effects of estrogen on cholesterol gallstone formation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 1037-1047.	2.4	97
20	Liver Steatosis, Gut-Liver Axis, Microbiome and Environmental Factors. A Never-Ending Bidirectional Cross-Talk. Journal of Clinical Medicine, 2020, 9, 2648.	2.4	93
21	Measurement of intestinal cholesterol absorption by plasma and fecal dual-isotope ratio, mass balance, and lymph fistula methods in the mouse: an analysis of direct versus indirect methodologies. Journal of Lipid Research, 2003, 44, 1042-1059.	4.2	89
22	Targeted disruption of the murine cholecystokinin-1 receptor promotes intestinal cholesterol absorption and susceptibility to cholesterol cholelithiasis. Journal of Clinical Investigation, 2004, 114, 521-528.	8.2	88
23	Mitochondria in Chronic Liver Disease. Current Drug Targets, 2011, 12, 879-893.	2.1	87
24	The dangerous link between childhood and adulthood predictors of obesity and metabolic syndrome. Internal and Emergency Medicine, 2016, 11, 175-182.	2.0	87
25	Cholesterol absorption is mainly regulated by the jejunal and ileal ATP-binding cassette sterol efflux transporters Abcg5 and Abcg8 in mice. Journal of Lipid Research, 2004, 45, 1312-1323.	4.2	86
26	Therapeutic uses of animal biles in traditional Chinese medicine: An ethnopharmacological, biophysical chemical and medicinal review. World Journal of Gastroenterology, 2014, 20, 9952.	3.3	81
27	Role of intestinal sterol transporters Abcg5, Abcg8, and Npc1l1 in cholesterol absorption in mice: gender and age effects. American Journal of Physiology - Renal Physiology, 2006, 290, G269-G276.	3.4	78
28	Bile Acids and Cancer: Direct and Environmental-Dependent Effects. Annals of Hepatology, 2017, 16, S87-S105.	1.5	76
29	Genetic factors at the enterocyte level account for variations inintestinal cholesterol absorption efficiency among inbred strains of mice. Journal of Lipid Research, 2001, 42, 1820-1830.	4.2	72
30	Molecular pathophysiology and physical chemistry of cholesterol gallstones. Frontiers in Bioscience - Landmark, 2008, 13, 401.	3.0	71
31	Intestinal Barrier and Permeability in Health, Obesity and NAFLD. Biomedicines, 2022, 10, 83.	3.2	71
32	Estrogen receptor α, but not β, plays a major role in 17β-estradiol-induced murine cholesterol gallstones. Gastroenterology, 2004, 127, 239-249.	1.3	68
33	Quantifying anomalous intestinal sterol uptake, lymphatic transport, and biliary secretion inAbcg8â^'/â^' mice. Hepatology, 2007, 45, 998-1006.	7.3	66
34	The Role of Diet in the Pathogenesis of Cholesterol Gallstones. Current Medicinal Chemistry, 2019, 26, 3620-3638.	2.4	66
35	Genetic analysis of cholesterol gallstone formation: Searching for Lith (gallstone) genes. Current Gastroenterology Reports, 2004, 6, 140-150.	2.5	65
36	Cholesterol cholelithiasis in pregnant women: pathogenesis, prevention and treatment. Annals of Hepatology, 2014, 13, 728-745.	1.5	62

#	Article	IF	CITATIONS
37	Sterol carrier protein 2 participates in hypersecretion of biliary cholesterol during gallstone formation in genetically gallstone-susceptible mice. Biochemical Journal, 1998, 336, 33-37.	3.7	60
38	Nonalcoholic Fatty Liver Disease (NAFLD). Mitochondria as Players and Targets of Therapies?. International Journal of Molecular Sciences, 2021, 22, 5375.	4.1	59
39	Phenotypic characterization of Lith genes that determine susceptibility to cholesterol cholelithiasis in inbred mice: integrated activities of hepatic lipid regulatory enzymes. Journal of Lipid Research, 1999, 40, 2080-2090.	4.2	56
40	Gastrointestinal symptoms and motility disorders in patients with systemic scleroderma. BMC Gastroenterology, 2008, 8, 7.	2.0	55
41	Lith Genes and Genetic Analysis of Cholesterol Gallstone Formation. Gastroenterology Clinics of North America, 2010, 39, 185-207.	2.2	55
42	Prevention of cholesterol gallstones by inhibiting hepatic biosynthesis and intestinal absorption of cholesterol. European Journal of Clinical Investigation, 2013, 43, 413-426.	3.4	55
43	Aging per se is an independent risk factor for cholesterol gallstone formation in gallstone susceptible mice. Journal of Lipid Research, 2002, 43, 1950-1959.	4.2	54
44	High cholesterol absorption efficiency and rapid biliary secretion of chylomicron remnant cholesterol enhance cholelithogenesis in gallstone-susceptible mice. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2005, 1733, 90-99.	2.4	53
45	Overexpression of estrogen receptor $\hat{I}\pm$ increases hepatic cholesterogenesis, leading to biliary hypersecretion in mice. Journal of Lipid Research, 2006, 47, 778-786.	4.2	53
46	Cholic acid aids absorption, biliary secretion, and phase transitions of cholesterol in murine cholelithogenesis. American Journal of Physiology - Renal Physiology, 1999, 276, G751-G760.	3.4	50
47	Effect of β-muricholic acid on the prevention and dissolution of cholesterol gallstones in C57L/J mice. Journal of Lipid Research, 2002, 43, 1960-1968.	4.2	50
48	Targeting mitochondria to oppose the progression of nonalcoholic fatty liver disease. Biochemical Pharmacology, 2019, 160, 34-45.	4.4	50
49	Exercising the hepatobiliaryâ€gut axis. The impact of physical activity performance. European Journal of Clinical Investigation, 2018, 48, e12958.	3.4	48
50	Gallbladder and gastric motility in obese newborns, preâ€adolescents and adults. Journal of Gastroenterology and Hepatology (Australia), 2012, 27, 1298-1305.	2.8	47
51	Novel insights in health-promoting properties of sweet cherries. Journal of Functional Foods, 2020, 69, 103945.	3.4	45
52	Effect of gallbladder hypomotility on cholesterol crystallization and growth in CCK-deficient mice. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2010, 1801, 138-146.	2.4	43
53	Susceptibility to murine cholesterol gallstone formation is not affected by partial disruption of the HDL receptor SR-BI. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2002, 1583, 141-150.	2.4	39
54	Cholecystectomy and risk of metabolic syndrome. European Journal of Internal Medicine, 2018, 53, 3-11.	2.2	39

#	Article	IF	CITATIONS
55	No pathophysiologic relationship of soluble biliary proteins to cholesterol crystallization in human bile. Journal of Lipid Research, 1999, 40, 415-425.	4.2	39
56	A silybin-phospholipids complex counteracts rat fatty liver degeneration and mitochondrial oxidative changes. World Journal of Gastroenterology, 2013, 19, 3007.	3.3	39
57	Estrogen induces two distinct cholesterol crystallization pathways by activating ERÎ \pm and GPR30 in female mice. Journal of Lipid Research, 2015, 56, 1691-1700.	4.2	38
58	Ginsenoside Rb1 increases insulin sensitivity by activating AMP-activated protein kinase in male rats. Physiological Reports, 2015, 3, e12543.	1.7	37
59	Hepatocyte miR-34a is a key regulator in the development and progression of non-alcoholic fatty liver disease. Molecular Metabolism, 2021, 51, 101244.	6.5	35
60	Synthetic human ABCB4 mRNA therapy rescues severe liver disease phenotype in a BALB/c.Abcb4 mouse model of PFIC3. Journal of Hepatology, 2021, 74, 1416-1428.	3.7	34
61	Steatosis in the Liver. , 2013, 3, 1493-1532.		33
62	A Pleiotropic Role for the Orphan Nuclear Receptor Small Heterodimer Partner in Lipid Homeostasis and Metabolic Pathways. Journal of Lipids, 2012, 2012, 1-22.	4.8	32
63	Mouse models of gallstone disease. Current Opinion in Gastroenterology, 2018, 34, 59-70.	2.3	29
64	Bile Acids and GPBAR-1: Dynamic Interaction Involving Genes, Environment and Gut Microbiome. Nutrients, 2020, 12, 3709.	4.1	28
65	Cholesterol cholelithiasis: part of a systemic metabolic disease, prone to primary prevention. Expert Review of Gastroenterology and Hepatology, 2019, 13, 157-171.	3.0	27
66	Regulation of Cholesterol Metabolism by Bioactive Components of Soy Proteins: Novel Translational Evidence. International Journal of Molecular Sciences, 2021, 22, 227.	4.1	27
67	Estradiol Increases the Anorectic Effect of Central Apolipoprotein A-IV. Endocrinology, 2010, 151, 3163-3168.	2.8	24
68	Evidence that the adenosine triphosphateâ€binding cassette G5/G8â€independent pathway plays a determinant role in cholesterol gallstone formation in mice. Hepatology, 2016, 64, 853-864.	7.3	21
69	The mechanism of dysbiosis in alcoholic liver disease leading to liver cancer. Hepatoma Research, 2020, 2020, .	1.5	21
70	Physical chemistry of intestinal absorption of biliary cholesterol in mice. Hepatology, 2008, 48, 177-185.	7.3	20
71	Apolipoprotein E reduces food intake via PI3K/Akt signaling pathway in the hypothalamus. Physiology and Behavior, 2011, 105, 124-128.	2.1	20
72	Transintestinal cholesterol excretion: A secondary, nonbiliary pathway contributing to reverse cholesterol transport. Hepatology, 2017, 66, 1337-1340.	7.3	19

#	Article	IF	CITATIONS
73	Therapeutic Reflections in Cholesterol Homeostasis and Gallstone Disease: A Review. Current Medicinal Chemistry, 2014, 21, 1435-1447.	2.4	19
74	Cholesterol cholelithiasis in pregnant women: pathogenesis, prevention and treatment. Annals of Hepatology, 2014, 13, 728-45.	1.5	19
75	Cholecystectomy: a way forward and back to metabolic syndrome?. Laboratory Investigation, 2018, 98, 4-6.	3.7	18
76	Critical Care Aspects of Gallstone Disease. The Journal of Critical Care Medicine, 2019, 5, 6-18.	0.7	18
77	Mitochondria Matter: Systemic Aspects of Nonalcoholic Fatty Liver Disease (NAFLD) and Diagnostic Assessment of Liver Function by Stable Isotope Dynamic Breath Tests. International Journal of Molecular Sciences, 2021, 22, 7702.	4.1	18
78	Transgenic overexpression of <i>Abcb11</i> enhances biliary bile salt outputs, but does not affect cholesterol cholelithogenesis in mice. European Journal of Clinical Investigation, 2010, 40, 541-551.	3.4	16
79	New insights into the role of Lith genes in the formation of cholesterol-supersaturated bile. Liver Research, 2017, 1, 42-53.	1.4	16
80	Cross-Talk Between Bile Acids and Gastro-Intestinal and Thermogenic Hormones: Clues from Bariatric Surgery. Annals of Hepatology, 2017, 16, S68-S82.	1.5	16
81	Gut Microbiota between Environment and Genetic Background in Familial Mediterranean Fever (FMF). Genes, 2020, 11, 1041.	2.4	16
82	Update on the Molecular Mechanisms Underlying the Effect of Cholecystokinin and Cholecystokinin-1 Receptor on the Formation of Cholesterol Gallstones. Current Medicinal Chemistry, 2019, 26, 3407-3423.	2.4	16
83	G Protein-Coupled Estrogen Receptor, GPER1, Offers a Novel Target for the Treatment of Digestive Diseases. Frontiers in Endocrinology, 2020, 11, 578536.	3.5	15
84	Gastrointestinal defects in gallstone and cholecystectomized patients. European Journal of Clinical Investigation, 2019, 49, e13066.	3.4	14
85	Activation of Estrogen Receptor G Protein–Coupled Receptor 30 Enhances Cholesterol Cholelithogenesis in Female Mice. Hepatology, 2020, 72, 2077-2089.	7.3	14
86	Recent Advances in the Critical Role of the Sterol Efflux Transporters ABCG5/G8 in Health and Disease. Advances in Experimental Medicine and Biology, 2020, 1276, 105-136.	1.6	14
87	A novel GPER antagonist protects against the formation of estrogen-induced cholesterol gallstones in female mice. Journal of Lipid Research, 2020, 61, 767-777.	4.2	13
88	Impaired intestinal cholecystokinin secretion, a fascinating but overlooked link between coeliac disease and cholesterol gallstone disease. European Journal of Clinical Investigation, 2017, 47, 328-333.	3.4	12
89	The deletion of the estrogen receptor α gene reduces susceptibility to estrogen-induced cholesterol cholelithiasis in female mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 2161-2169.	3.8	11
90	The cholecystokininâ€1 receptor antagonist devazepide increases cholesterol cholelithogenesis in mice. European Journal of Clinical Investigation, 2016, 46, 158-169.	3.4	11

#	Article	IF	CITATIONS
91	Protocols for Mitochondria as the Target of Pharmacological Therapy in the Context of Nonalcoholic Fatty Liver Disease (NAFLD). Methods in Molecular Biology, 2021, 2310, 201-246.	0.9	11
92	BDNF/TrkB signaling mediates the anorectic action of estradiol in the nucleus tractus solitarius. Oncotarget, 2017, 8, 84028-84038.	1.8	11
93	An Update on the Lithogenic Mechanisms of Cholecystokinin a Receptor (CCKAR), an Important Gallstone Gene for Lith13. Genes, 2020, 11, 1438.	2.4	10
94	New concepts of mechanisms of intestinal cholesterol absorption. Annals of Hepatology, 2003, 2, 113-21.	1.5	10
95	Genetic Analysis of ABCB4 Mutations and Variants Related to the Pathogenesis and Pathophysiology of Low Phospholipid-Associated Cholelithiasis. Genes, 2022, 13, 1047.	2.4	10
96	Estradiol Stimulates Apolipoprotein A-IV Gene Expression in the Nucleus of the Solitary Tract Through Estrogen Receptor-α. Endocrinology, 2014, 155, 3882-3890.	2.8	9
97	Effect of Inhibition of Intestinal Cholesterol Absorption on the Prevention of Cholesterol Gallstone Formation. Medicinal Chemistry, 2017, 13, 421-429.	1.5	9
98	The Biliary System. Colloquium Series on Integrated Systems Physiology From Molecule To Function, 2012, 4, 1-148.	0.3	8
99	Apolipoprotein A-V is present in bile and its secretion increases with lipid absorption in Sprague-Dawley rats. American Journal of Physiology - Renal Physiology, 2015, 309, G918-G925.	3.4	8
100	Similarities and differences between biliary sludge and microlithiasis: Their clinical and pathophysiological significances. Liver Research, 2018, 2, 186-199.	1.4	8
101	Physical Activity Modulating Lipid Metabolism in Gallbladder Diseases. Journal of Gastrointestinal and Liver Diseases, 2020, 29, 99-110.	0.9	8
102	The Biliary System, Second Edition. Colloquium Series on Integrated Systems Physiology From Molecule To Function, 2016, 8, i-178.	0.3	7
103	Silencing steroid receptor coactivator-1 in the nucleus of the solitary tract reduces estrogenic effects on feeding and apolipoprotein A-IV expression. Journal of Biological Chemistry, 2018, 293, 2091-2101.	3.4	7
104	Sexual dimorphism in intestinal absorption and lymphatic transport of dietary lipids. Journal of Physiology, 2021, 599, 5015-5030.	2.9	7
105	The physical presence of gallstone modulates <i>ex vivo</i> cholesterol crystallization pathways of human bile. Gastroenterology Report, 2019, 7, 32-41.	1.3	6
106	Interactions between Bile Acids and Nuclear Receptors and Their Effects on Lipid Metabolism and Liver Diseases. Journal of Lipids, 2012, 2012, 1-2.	4.8	5
107	Bile Formation and Pathophysiology of Gallstones. , 2020, , 287-306.		5
108	Estradiol Enhances Anorectic Effect of Apolipoprotein A-IV through ERα-PI3K Pathway in the Nucleus Tractus Solitarius. Genes, 2020, 11, 1494.	2.4	3

#	Article	IF	CITATIONS
109	Gut vagal afferents are necessary for the eating-suppressive effect of intraperitoneally administered ginsenoside Rb1 in rats. Physiology and Behavior, 2015, 152, 62-67.	2.1	2
110	Differential Effect of Four-Week Feeding of Different Dietary Fats on the Accumulation of Fat and the Cholesterol and Triglyceride Contents in the Different Fat Depots. Nutrients, 2020, 12, 3241.	4.1	1
111	Overcoming Ductal Block: Emergency ERCP and Sphincterotomy Plus Common Bile Duct Stenting Improves Therapeutic Outcomes in Severe Gallstone Pancreatitis. Digestive Diseases and Sciences, 2022, 67, 11-13.	2.3	1
112	Emerging Trends in Deciphering the Pathogenesis of Human Diseases through Genetic Analysis. Genes, 2021, 12, 96.	2.4	1
113	Impact of Sequential Lipid Meals on Lymphatic Lipid Absorption and Transport in Rats. Genes, 2022, 13, 277.	2.4	1
114	New Exploration of Chinese Herbal Medicines in Hepatology. Evidence-based Complementary and Alternative Medicine, 2016, 2016, 1-5.	1.2	0
115	Effect of ezetimibe on the response of incretin secretion to intestine lipid ingestion. FASEB Journal, 2010, 24, 1009.3.	0.5	0
116	Insights into the pharmacology of GPER/GPR30 and its involvement in gallstone formation. FASEB Journal, 2019, 33, 821.1.	0.5	0