Stephen A Whelan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5000068/publications.pdf

Version: 2024-02-01

43 papers

1,932 citations

394421 19 h-index 377865 34 g-index

45 all docs

45 docs citations

45 times ranked

3277 citing authors

#	Article	IF	Citations
1	Tryptophan metabolites suppress the Wnt pathway and promote adverse limb events in chronic kidney disease. Journal of Clinical Investigation, 2022, 132 , .	8.2	23
2	Regulation of Liver Regeneration by Hepatocyte O-GlcNAcylation in Mice. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 1510-1529.	4.5	18
3	Implications for an Imidazole-2-yl Carbene Intermediate in the Rhodanase-Catalyzed C–S Bond Formation Reaction of Anaerobic Ergothioneine Biosynthesis. ACS Catalysis, 2021, 11, 3319-3334.	11.2	12
4	Tryptophan, kynurenine pathway, and diabetic ketoacidosis in type 1 diabetes. PLoS ONE, 2021, 16, e0254116.	2.5	13
5	Programmable gene regulation for metabolic engineering using decoy transcription factor binding sites. Nucleic Acids Research, 2021, 49, 1163-1172.	14.5	29
6	Indoleamine 2,3-dioxygenase-1, a Novel Therapeutic Target for Post-Vascular Injury Thrombosis in CKD. Journal of the American Society of Nephrology: JASN, 2021, 32, 2834-2850.	6.1	6
7	Temporal and tissue-specific activation of aryl hydrocarbon receptor in discrete mouse models of kidney disease. Kidney International, 2020, 97, 538-550.	5.2	16
8	Single-Step Replacement of an Unreactive Câ€"H Bond by a Câ€"S Bond Using Polysulfide as the Direct Sulfur Source in the Anaerobic Ergothioneine Biosynthesis. ACS Catalysis, 2020, 10, 8981-8994.	11,2	15
9	Metabolites in a mouse cancer model enhance venous thrombogenicity through the aryl hydrocarbon receptor–tissue factor axis. Blood, 2019, 134, 2399-2413.	1.4	28
10	Human Regulatory Protein Ki- $1/57$ Is a Target of SUMOylation and Affects PML Nuclear Body Formation. Journal of Proteome Research, 2017, 16, 3147-3157.	3.7	9
11	Hydrophobic Fractionation Enhances Novel Protein Detection by Mass Spectrometry in Triple Negative Breast Cancer. Journal of Proteomics and Bioinformatics, 2017, 03, 1-10.	0.4	9
12	O-Linked N-Acetylglucosamine (O-GlcNAc) Transferase and O-GlcNAcase Interact with Mi2Î ² Protein at the AÎ ³ -Globin Promoter. Journal of Biological Chemistry, 2016, 291, 15628-15640.	3.4	21
13	Comparative Proteomics Reveals Dysregulated Mitochondrial O-GlcNAcylation in Diabetic Hearts. Journal of Proteome Research, 2016, 15, 2254-2264.	3.7	68
14	Epithelial Mesenchymal Transition Induces Aberrant Glycosylation through Hexosamine Biosynthetic Pathway Activation. Journal of Biological Chemistry, 2016, 291, 12917-12929.	3.4	93
15	Biosynthetic Machinery Involved in Aberrant Glycosylation: Promising Targets for Developing of Drugs Against Cancer. Frontiers in Oncology, 2015, 5, 138.	2.8	113
16	Overexpression of Catalase Diminishes Oxidative Cysteine Modifications of Cardiac Proteins. PLoS ONE, 2015, 10, e0144025.	2.5	31
17	Proteomic Mapping of Mitotic Oâ€GlcNAc Sites. FASEB Journal, 2015, 29, 570.20.	0.5	0
18	Western Diet Alters Phosphorylation and Oâ€GlcNAcylation of Proteins Involved in Mouse Heart Metabolic Disease. FASEB Journal, 2015, 29, 570.21.	0.5	1

#	Article	IF	CITATIONS
19	The metabolite \hat{l}_{\pm} -ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. Nature, 2014, 510, 397-401.	27.8	485
20	Does reversible cysteine oxidation link the Western diet to cardiac dysfunction?. FASEB Journal, 2014, 28, 1975-1987.	0.5	32
21	Characterization of the Human NEK7 Interactome Suggests Catalytic and Regulatory Properties Distinct from Those of NEK6. Journal of Proteome Research, 2014, 13, 4074-4090.	3.7	32
22	Alterations to Oâ€GlcNAc cycling disrupt mitotic phosphorylation (555.16). FASEB Journal, 2014, 28, 555.16.	0.5	0
23	STRAP PTM: Software Tool for Rapid Annotation and Differential Comparison of Protein Postâ€Translational Modifications. Current Protocols in Bioinformatics, 2013, 44, 13.22.1-36.	25.8	7
24	Quantitative Proteomics to Profile Postâ€translational Modifications During M Phase: Interplay Between Oâ€GlcNAcylation and Phosphorylation. FASEB Journal, 2013, 27, 555.4.	0.5	0
25	Quantitative redox proteomic analysis of reversible cysteine oxidation in hearts from mice fed a Western diet: implications for metabolic cardiovascular disease. FASEB Journal, 2013, 27, 558.3.	0.5	0
26	Metabolic Disorder in a Mouse Model on an American Diet: Proteomic Analysis of Cardiovascular Disease. FASEB Journal, 2013, 27, 794.17.	0.5	0
27	Characterization of Postâ€₹ranslational Modifications Related to Cardiovascular Disease. FASEB Journal, 2013, 27, 663.10.	0.5	0
28	Identification Of Protein and Post Translational Modification Markers Of Pulmonary Vasculopathy In Sickle Cell Disease. Blood, 2013, 122, 2233-2233.	1.4	2
29	Mass Spectrometry (LC–MS/MS) Identified Proteomic Biosignatures of Breast Cancer in Proximal Fluid. Journal of Proteome Research, 2012, 11, 5034-5045.	3.7	43
30	Proteomic-Based Biosignatures in Breast Cancer Classification and Prediction of Therapeutic Response. International Journal of Proteomics, 2011, 2011, 1-16.	2.0	26
31	In vitro hemocompatibility of thin film nitinol in stenotic flow conditions. Biomaterials, 2010, 31, 8864-8871.	11.4	26
32	Hydrophobic Proteome Analysis of Triple Negative and Hormone-Receptor-Positive-Her2-Negative Breast Cancer by Mass Spectrometer. Clinical Proteomics, 2010, 6, 93-103.	2.1	11
33	Regulation of Insulin Receptor Substrate 1 (IRS-1)/AKT Kinase-mediated Insulin Signaling by O-Linked β-N-Acetylglucosamine in 3T3-L1 Adipocytes. Journal of Biological Chemistry, 2010, 285, 5204-5211.	3.4	140
34	Mass Spectrometry (LC-MS/MS) Site-Mapping of N-Glycosylated Membrane Proteins for Breast Cancer Biomarkers. Journal of Proteome Research, 2009, 8, 4151-4160.	3.7	82
35	Twoâ€dimensional gelâ€based approaches for the assessment of Nâ€Linked and Oâ€GlcNAc glycosylation in human and simian immunodeficiency viruses. Proteomics, 2008, 8, 4919-4930.	2,2	19
36	Regulation of the O-Linked \hat{I}^2 -N-Acetylglucosamine Transferase by Insulin Signaling. Journal of Biological Chemistry, 2008, 283, 21411-21417.	3.4	148

#	Article	IF	Citations
37	Reciprocal keratin 18 Ser48 O-GlcNAcylation and Ser52 phosphorylation using peptide analysis. Biochemical and Biophysical Research Communications, 2006, 351, 708-712.	2.1	13
38	Identification of Oâ€GlcNAc Sites on Proteins. Methods in Enzymology, 2006, 415, 113-133.	1.0	36
39	Insulin increases tyrosine phosphorylation and activity of Oâ€GlcNAc Transferase (OGT). FASEB Journal, 2006, 20, A955.	0.5	0
40	O-linkedN-acetylglucosamine (O-GlcNAc). , 2005, , .		0
41	O-GlcNAc: a regulatory post-translational modification. Biochemical and Biophysical Research Communications, 2003, 302, 435-441.	2.1	180
42	Proteomic Approaches to Analyze the Dynamic Relationships Between Nucleocytoplasmic Protein Glycosylation and Phosphorylation. Circulation Research, 2003, 93, 1047-1058.	4.5	115
43	Human glioma PKC-ι and PKC-βII phosphorylate cyclin-dependent kinase activating kinase during the cell cycle. Cell Proliferation, 2002, 35, 23-36.	5.3	28