Marisa Helena Gennari de Medeiros

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4999355/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Singlet Molecular Oxygen Reactions with Nucleic Acids, Lipids, and Proteins. Chemical Reviews, 2019, 119, 2043-2086.	23.0	404
2	Mild mitochondrial uncoupling in mice affects energy metabolism, redox balance and longevity. Aging Cell, 2008, 7, 552-560.	3.0	285
3	Singlet Oxygen Induces Oxidation of Cellular DNA. Journal of Biological Chemistry, 2000, 275, 40601-40604.	1.6	260
4	Formation and repair of oxidatively generated damage in cellular DNA. Free Radical Biology and Medicine, 2017, 107, 13-34.	1.3	240
5	Oxidative stress in Perna perna and other bivalves as indicators of environmental stress in the Brazilian marine environment: Antioxidants, lipid peroxidation and DNA damage. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2007, 146, 588-600.	0.8	214
6	Oxidative and alkylating damage in DNA. Mutation Research - Reviews in Mutation Research, 2003, 544, 115-127.	2.4	190
7	Singlet Molecular Oxygen Generated from Lipid Hydroperoxides by the Russell Mechanism:  Studies Using 18O-Labeled Linoleic Acid Hydroperoxide and Monomol Light Emission Measurements. Journal of the American Chemical Society, 2003, 125, 6172-6179.	6.6	189
8	DNA damage by singlet oxygen and cellular protective mechanisms. Mutation Research - Reviews in Mutation Research, 2012, 751, 15-28.	2.4	158
9	Singlet Oxygen Oxidation of Isolated and Cellular DNA: Product Formation and Mechanistic Insights. Photochemistry and Photobiology, 2006, 82, 1219.	1.3	154
10	Protective effect of phospholipid hydroperoxide glutathione peroxidase (PHGPx) against lipid peroxidation in mussels Perna perna exposed to different metals. Marine Pollution Bulletin, 2004, 49, 386-392.	2.3	148
11	Oxidative stress in digestive gland and gill of the brown mussel (Perna perna) exposed to air and re-submersed. Journal of Experimental Marine Biology and Ecology, 2005, 318, 21-30.	0.7	147
12	Singlet molecular oxygen production in the reaction of peroxynitrite with hydrogen peroxide. FEBS Letters, 1994, 355, 287-289.	1.3	142
13	Direct Evidence of Singlet Molecular Oxygen [O2 (1î"g)] Production in the Reaction of Linoleic Acid Hydroperoxide with Peroxynitrite. Journal of the American Chemical Society, 2003, 125, 4510-4517.	6.6	138
14	Oxaluric Acid as the Major Product of Singlet Oxygen-Mediated Oxidation of 8-Oxo-7,8-dihydroguanine in DNA. Journal of the American Chemical Society, 2000, 122, 12622-12628.	6.6	127
15	Protective Effect of Lycopene on Lipid Peroxidation and Oxidative DNA Damage in Cell Culture. Archives of Biochemistry and Biophysics, 2000, 383, 56-59.	1.4	126
16	Linoleic acid hydroperoxide reacts with hypochlorous acid, generating peroxyl radical intermediates and singlet molecular oxygen. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 293-298.	3.3	120
17	Singlet molecular oxygen generated by biological hydroperoxides. Journal of Photochemistry and Photobiology B: Biology, 2014, 139, 24-33.	1.7	120
18	Spermine and spermidine protection of plasmid DNA against single-strand breaks induced by singlet oxygen Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 11428-11430.	3.3	119

#	Article	IF	CITATIONS
19	Tryptophan Oxidation by Singlet Molecular Oxygen [O ₂ (¹ Δ _g)]: Mechanistic Studies Using ¹⁸ O-Labeled Hydroperoxides, Mass Spectrometry, and Light Emission Measurements. Chemical Research in Toxicology, 2008, 21, 1271-1283.	1.7	119
20	Biological hydroperoxides and singlet molecular oxygen generation. IUBMB Life, 2007, 59, 322-331.	1.5	106
21	Synthesis of a Naphthalene Endoperoxide as a Source of18O-labeled Singlet Oxygen for Mechanistic Studies. Journal of the American Chemical Society, 2000, 122, 10212-10213.	6.6	105
22	Alterations in lipid metabolism of spinal cord linked to amyotrophic lateral sclerosis. Scientific Reports, 2019, 9, 11642.	1.6	98
23	Lycopene Inhibits DNA Damage and Liver Necrosis in Rats Treated with Ferric Nitrilotriacetate. Archives of Biochemistry and Biophysics, 2001, 396, 171-177.	1.4	92
24	Melanin Photosensitization and the Effect of Visible Light on Epithelial Cells. PLoS ONE, 2014, 9, e113266.	1.1	92
25	Inhibition of 5-aminolevulinic acid-induced DNA damage by melatonin, N1-acetyl-N2-formyl-5-methoxykynuramine, quercetin or resveratrol. Journal of Pineal Research, 2005, 38, 107-115.	3.4	83
26	trans,trans-2,4-Decadienal-Induced 1,N2-Etheno-2â€~-deoxyguanosine Adduct Formation. Chemical Research in Toxicology, 2000, 13, 601-609.	1.7	81
27	Oxidation of melatonin by singlet molecular oxygen (O2(1Deltag)) produces N1-acetyl-N2-formyl-5-methoxykynurenine. Journal of Pineal Research, 2003, 35, 131-137.	3.4	73
28	Hydroxyl radicals are involved in the oxidation of isolated and cellular DNA bases by 5-aminolevulinic acid. FEBS Letters, 1998, 428, 93-96.	1.3	72
29	Singlet oxygen-mediated damage to cellular DNA determined by the comet assay associated with DNA repair enzymes. Biological Chemistry, 2004, 385, 17-20.	1.2	72
30	Singlet Molecular Oxygen Generation by Light-Activated DHN-Melanin of the Fungal Pathogen Mycosphaerella fijiensis in Black Sigatoka Disease of Bananas. PLoS ONE, 2014, 9, e91616.	1.1	71
31	Mechanistic aspects of the oxidation of DNA constituents mediated by singlet molecular oxygen. Archives of Biochemistry and Biophysics, 2004, 423, 23-30.	1.4	70
32	Unveiling Benznidazole's mechanism of action through overexpression of DNA repair proteins in <i>Trypanosoma cruzi</i> . Environmental and Molecular Mutagenesis, 2014, 55, 309-321.	0.9	70
33	Supramolecular Cationic Tetraruthenated Porphyrin Induces Singleâ€Strand Breaks and 8â€Oxoâ€7,8â€dihydroâ€2′â€deoxyguanosine Formation in DNA in the Presence of Light. Photochemistry and Photobiology, 1996, 63, 272-277.	1.3	69
34	Characterization of O2 (1Δg)-derived oxidation products of tryptophan: A combination of tandem mass spectrometry analyses and isotopic labeling studies. Journal of the American Society for Mass Spectrometry, 2009, 20, 188-197.	1.2	68
35	Increased SOD1 association with chromatin, DNA damage, p53 activation, and apoptosis in a cellular model of SOD1-linked ALS. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 462-471.	1.8	68
36	[180]-Labeled Singlet Oxygen as a Tool for Mechanistic Studies of 8-Oxo-7,8-Dihydroguanine Oxidative Damage: Detection of Spiroiminodihydantoin, Imidazolone and Oxazolone Derivatives. Biological Chemistry, 2002, 383, 607-17.	1.2	66

#	Article	IF	CITATIONS
37	[¹³ C ₂]- Acetaldehyde Promotes Unequivocal Formation of 1, <i>N</i> ² -Propano-2′-deoxyguanosine in Human Cells. Journal of the American Chemical Society, 2011, 133, 9140-9143.	6.6	62
38	Antioxidantes dietéticos: controvérsias e perspectivas. Quimica Nova, 2007, 30, 441-449.	0.3	61
39	Nitrogen acquisition in Agave tequilana from degradation of endophytic bacteria. Scientific Reports, 2014, 4, 6938.	1.6	61
40	Mitochondrial and nuclear DNA damage induced by 5-aminolevulinic acid. Archives of Biochemistry and Biophysics, 2004, 432, 178-187.	1.4	60
41	Generation of Cholesterol Carboxyaldehyde by the Reaction of Singlet Molecular Oxygen [O ₂ (¹ 1" _g)] as Well as Ozone with Cholesterol. Chemical Research in Toxicology, 2009, 22, 875-884.	1.7	60
42	DNA Alkylation by 4,5-Dioxovaleric Acid, the Final Oxidation Product of 5-Aminolevulinic Acid. Chemical Research in Toxicology, 1998, 11, 150-157.	1.7	58
43	Singlet oxygen oxidation of 2′-deoxyguanosine. Formation and mechanistic insights. Tetrahedron, 2006, 62, 10709-10715.	1.0	57
44	Long-term intermittent feeding, but not caloric restriction, leads to redox imbalance, insulin receptor nitration, and glucose intolerance. Free Radical Biology and Medicine, 2011, 51, 1454-1460.	1.3	57
45	Intermittent Fasting Results in Tissue-Specific Changes in Bioenergetics and Redox State. PLoS ONE, 2015, 10, e0120413.	1.1	57
46	Exocyclic DNA Adducts as Biomarkers of Lipid Oxidation and Predictors of Disease. Challenges in Developing Sensitive and Specific Methods for Clinical Studies. Chemical Research in Toxicology, 2009, 22, 419-425.	1.7	56
47	Lipid hydroperoxide-induced and hemoglobin-enhanced oxidative damage to colon cancer cells. Free Radical Biology and Medicine, 2011, 51, 503-515.	1.3	56
48	 Lycopene and ß-carotene protect in vivo iron-induced oxidative stress damage in rat prostate. Brazilian Journal of Medical and Biological Research, 2006, 39, 203-210.	0.7	55
49	Superoxide dismutase, catalase, and glutathione peroxidase activities in muscle and lymphoid organs of sedentary and exercise-trained rats. Physiology and Behavior, 1994, 56, 1095-1099.	1.0	52
50	Excited singlet molecular O2 (1Δg) is generated enzymatically from excited carbonyls in the dark. Scientific Reports, 2014, 4, 5938.	1.6	52
51	Direct evidence of singlet molecular oxygen generation from peroxynitrate, a decomposition product of peroxynitrite. Dalton Transactions, 2009, , 5720.	1.6	50
52	Novel 1,N6-Etheno-2â€~-deoxyadenosine Adducts from Lipid Peroxidation Products. Chemical Research in Toxicology, 2000, 13, 397-405.	1.7	46
53	Development of an On-Line Liquid Chromatography-Electrospray Tandem Mass Spectrometry Assay to Quantitatively Determine 1,N2-Etheno-2â€~-deoxyguanosine in DNA. Chemical Research in Toxicology, 2002, 15, 1302-1308.	1.7	46
54	DNA Damage by 5-Aminolevulinic and 4,5-Dioxovaleric Acids in the Presence of Ferritin. Archives of Biochemistry and Biophysics, 2000, 373, 368-374.	1.4	44

#	Article	IF	CITATIONS
55	5-Aminolevulinic acid induces single-strand breaks in plasmid pBR322 DNA in the presence of Fe2+ ions. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1994, 1225, 259-263.	1.8	43
56	Zinc tetraruthenated porphyrin binding and photoinduced oxidation of calf-thymus DNA. Journal of Inorganic Biochemistry, 2000, 78, 269-273.	1.5	42
57	Iron Deficiency Generates Oxidative Stress and Activation of the SOS Response in Caulobacter crescentus. Frontiers in Microbiology, 2018, 9, 2014.	1.5	38
58	The Development of a Specific and Sensitive LC-MS-Based Method for the Detection and Quantification of Hydroperoxy- and Hydroxydocosahexaenoic Acids as a Tool for Lipidomic Analysis. PLoS ONE, 2013, 8, e77561.	1.1	38
59	Measurement of Melatonin and its Metabolites: Importance for the Evaluation of Their Biological Roles. Endocrine, 2005, 27, 111-118.	2.2	37
60	Cardioprotection induced by a brief exposure to acetaldehyde: role of aldehyde dehydrogenase 2. Cardiovascular Research, 2018, 114, 1006-1015.	1.8	36
61	2â€~-Deoxyguanosine, 2â€~-Deoxycytidine, and 2â€~-Deoxyadenosine Adducts Resulting from the Reaction of Tetrahydrofuran with DNA Bases. Chemical Research in Toxicology, 2006, 19, 927-936.	1.7	35
62	Caloric restriction protects livers from ischemia/reperfusion damage by preventing Ca2+-induced mitochondrial permeability transition. Free Radical Biology and Medicine, 2017, 110, 219-227.	1.3	35
63	Exercise and β-alanine supplementation on carnosine-acrolein adduct in skeletal muscle. Redox Biology, 2018, 18, 222-228.	3.9	35
64	Synthesis of a hydrophilic and non-ionic anthracene derivative, the N,N′-di-(2,3-dihydroxypropyl)-9,10-anthracenedipropanamide as a chemical trap for singlet molecular oxygen detection in biological systems. Tetrahedron, 2006, 62, 10762-10770.	1.0	34
65	Thymine hydroperoxide as a potential source of singlet molecular oxygen in DNA. Free Radical Biology and Medicine, 2009, 47, 401-409.	1.3	33
66	Evaluation of Chemical Constituents and Antioxidant Activity of Coconut Water (Cocus nucifera L.) and Caffeic Acid in Cell Culture. Anais Da Academia Brasileira De Ciencias, 2013, 85, 1235-1247.	0.3	33
67	Cytochrome c-promoted cardiolipin oxidation generates singlet molecular oxygen. Photochemical and Photobiological Sciences, 2012, 11, 1536-1546.	1.6	32
68	Oxygen Toxicity and Hemoglobinemia in Subjects from a Highly Polluted Town. Archives of Environmental Health, 1983, 38, 11-16.	0.4	31
69	Effects of trace metal and exposure to air on serotonin and dopamine levels in tissues of the mussel Perna perna. Marine Pollution Bulletin, 2003, 46, 1485-1490.	2.3	31
70	Trypanosoma cruzi MSH2: Functional analyses on different parasite strains provide evidences for a role on the oxidative stress response. Molecular and Biochemical Parasitology, 2011, 176, 8-16.	0.5	31
71	Energy Transfer between Singlet (1Δg) and Triplet (3Σg-) Molecular Oxygen in Aqueous Solution. Journal of the American Chemical Society, 2004, 126, 3056-3057.	6.6	30
72	DNA damage and 2′-deoxyguanosine oxidation induced by S(IV) autoxidation catalyzed by copper(II) tetraglycine complexes: Synergistic effect of a second metal ion. Journal of Inorganic Biochemistry, 2007, 101, 866-875.	1.5	30

#	Article	IF	CITATIONS
73	Spiroiminodihydantoin nucleoside formation from 2′â€deoxyguanosine oxidation by [¹⁸ Oâ€labeled] singlet molecular oxygen in aqueous solution. Journal of Mass Spectrometry, 2007, 42, 1326-1332.	0.7	29
74	Consequences of acute oxidative stress in Leishmania amazonensis : From telomere shortening to the selection of the fittest parasites. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 138-150.	1.9	27
75	Synthesis of internal labeled standards of melatonin and its metabolite N1-acetyl-N2-formyl-5-methoxykynuramine for their quantification using an on-line liquid chromatography-electrospray tandem mass spectrometry system. Journal of Pineal Research, 2004, 36, 64-71.	3.4	26
76	Singlet molecular oxygen trapping by the fluorescent probe diethyl-3,3′-(9,10-anthracenediyl)bisacrylate synthesized by the Heck reaction. Photochemical and Photobiological Sciences, 2011, 10, 1546-1555.	1.6	26
77	DNA Damage by 3,6-Dihydropyrazine-2,5-Dipropanoic Acid, the Cyclic Dimerization Product of 5-Aminolevulinic Acid. Biological Chemistry, 2001, 382, 913-8.	1.2	25
78	Ultrasensitive Simultaneous Quantification of 1, <i>N</i> ² -Etheno-2′-deoxyguanosine and 1, <i>N</i> ² -Propano-2′-deoxyguanosine in DNA by an Online Liquid Chromatographyâ^'Electrospray Tandem Mass Spectrometry Assay. Chemical Research in Toxicology, 2010, 23, 1245-1255.	1.7	25
79	Mechanism of dioxindolylalanine formation by singlet molecular oxygen-mediated oxidation of tryptophan residues. Photochemical and Photobiological Sciences, 2011, 10, 1727-1730.	1.6	25
80	Structural Elucidation of a Carnosine-Acrolein Adduct and its Quantification in Human Urine Samples. Scientific Reports, 2016, 6, 19348.	1.6	25
81	Cholesterol Hydroperoxides Generate Singlet Molecular Oxygen [O ₂ (¹ Δ _g]: Near-IR Emission, ¹⁸ O-Labeled Hydroperoxides, and Mass Spectrometry. Chemical Research in Toxicology, 2011, 24, 887-895.	1.7	23
82	Formation of 1,N6-Etheno-2â€~-deoxyadenosine Adducts bytrans,trans-2,4-Decadienal. Chemical Research in Toxicology, 1998, 11, 1042-1047.	1.7	22
83	DNA damage in digestive gland and mantle tissue of the mussel Perna perna. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2003, 135, 295-303.	1.3	22
84	Endophytic bacteria and rare earth elements; promising candidates for nutrient use efficiency in plants. , 2017, , 285-306.		22
85	Antioxidantes na manutenção do equilÃbrio redox cutâneo: uso e avaliação de sua eficácia. Quimica Nova, 2007, 30, 206-213.	0.3	21
86	Direct participation of DNA in the formation of singlet oxygen and base damage under UVA irradiation. Free Radical Biology and Medicine, 2017, 108, 86-93.	1.3	21
87	Direct evidence of singlet molecular oxygen [O2(1Δg)] production in the reaction of acetonitrile with hydrogen peroxide in alkaline solutions. Analytica Chimica Acta, 2003, 482, 99-104.	2.6	20
88	Induction of 1,N 2 -etheno-2′-deoxyguanosine in DNA exposed to β-carotene oxidation products. FEBS Letters, 2004, 560, 125-130.	1.3	20
89	Flow Injection Amperometric Detection of 2†-Deoxyguanosine at a Ruthenium Oxide Hexacyanoferrate Modified Electrode. Analytical Chemistry, 2007, 79, 5392-5398.	3.2	20
90	Chemiluminescent aerobic oxidation of protein adducts with glycolaldehyde catalyzed by horseradish peroxidase. Archives of Biochemistry and Biophysics, 1986, 248, 435-439.	1.4	18

#	Article	IF	CITATIONS
91	Generation of excited species catalyzed by horseradish peroxidase or hemin in the presence of reduced glutathione and H2O2. Free Radical Biology and Medicine, 1987, 3, 107-110.	1.3	18
92	Oxidative DNA damage induced by autoxidation of microquantities of S(iv) in the presence of Ni(ii)–Gly-Gly-His. Dalton Transactions, 2005, , 3738.	1.6	18
93	Formação de adutos exocÃelicos com bases de DNA: implicações em mutagênese e carcinogênese. Quimica Nova, 2002, 25, 777-793.	0.3	17
94	DNA damage by sulfite autoxidation catalyzed by cobalt complexes. Dalton Transactions, 2008, , 5636.	1.6	17
95	Singlet molecular oxygen: Düsseldorf – São Paulo, the Brazilian connection. Archives of Biochemistry and Biophysics, 2016, 595, 161-175.	1.4	17
96	Identification of the main oxidation products of 8-methoxy-2′-deoxyguanosine by singlet molecular oxygen. Free Radical Biology and Medicine, 2005, 38, 1491-1500.	1.3	16
97	DNA damage induced by sulfite autoxidation catalyzed by copper(ii) tetraglycine complexes. Dalton Transactions, 2005, , 1101-1107.	1.6	16
98	Covalent Modification of Cytochrome <i>c</i> Exposed to <i>trans</i> , <i>trans</i> -2,4-Decadienal. Chemical Research in Toxicology, 2007, 20, 1099-1110.	1.7	16
99	Detection and Characterization of Cholesterol-Oxidized Products Using HPLC Coupled to Dopant Assisted Atmospheric Pressure Photoionization Tandem Mass Spectrometry. Analytical Chemistry, 2010, 82, 7293-7301.	3.2	16
100	DNA Adduct Formation in the Lungs and Brain of Rats Exposed to Low Concentrations of [¹³ C ₂]-Acetaldehyde. Chemical Research in Toxicology, 2018, 31, 332-339.	1.7	16
101	Is 5-aminolevulinic acid involved in the hepatocellular carcinogenesis of acute intermittent porphyria?. Cellular and Molecular Biology, 2002, 48, 17-26.	0.3	16
102	DNA and Lipid Damage in the Brown Mussel Perna perna from a Contaminated Site. Bulletin of Environmental Contamination and Toxicology, 2003, 71, 270-275.	1.3	15
103	Structural Characterization of Diastereoisomeric Ethano Adducts Derived from the Reaction of 2â€~-Deoxyguanosine withtrans,trans-2,4-Decadienal. Chemical Research in Toxicology, 2004, 17, 641-649.	1.7	15
104	Quenching of singlet molecular oxygen by natural furan diterpenes. Journal of Photochemistry and Photobiology B: Biology, 1997, 38, 169-173.	1.7	14
105	Elevated α-Methyl-γ-hydroxy-1, <i>N</i> ^{<i>2</i>} -propano-2′-deoxyguanosine Levels in Urinary Samples from Individuals Exposed to Urban Air Pollution. Chemical Research in Toxicology, 2013, 26, 1602-1604.	1.7	14
106	Agave Seed Endophytes: Ecology and Impacts on Root Architecture, Nutrient Acquisition, and Cold Stress Tolerance. , 2019, , 139-170.		14
107	Lipid aldehyde hydrophobicity affects apo-SOD1 modification and aggregation. Free Radical Biology and Medicine, 2020, 156, 157-167.	1.3	14
108	Sustained kidney biochemical derangement in treated experimental diabetes: a clue to metabolic memory. Scientific Reports, 2017, 7, 40544.	1.6	13

#	Article	IF	CITATIONS
109	[37] Reaction of peroxynitrite and hydrogen peroxide to produce singlet molecular oxygen (1î"g). Methods in Enzymology, 1996, 269, 395-400.	0.4	11
110	Supramolecular Cationic Tetraruthenated Porphyrin and Lightâ€Induced Decomposition of 2â€Deoxyguanosine Predominantly Via a Singlet Oxygenâ€Mediated Mechanism. Photochemistry and Photobiology, 1998, 68, 698-702.	1.3	11
111	Structural Characterization of an Etheno-2â€ [~] -deoxyguanosine Adduct Modified by Tetrahydrofuran. Chemical Research in Toxicology, 2005, 18, 290-299.	1.7	11
112	Continuous monitoring of ascorbate transport through neuroblastoma cells with a ruthenium oxide hexacyanoferrate modified microelectrode. Analyst, The, 2008, 133, 1605.	1.7	11
113	Horseradish Peroxidase-Catalyzed Conjugation of Eugenol with Basic Amino Acids. Free Radical Research, 1996, 25, 5-12.	1.5	10
114	trans,trans-2,4-decadienal induces mitochondrial dysfunction and oxidative stress. Journal of Bioenergetics and Biomembranes, 2008, 40, 103-109.	1.0	10
115	Luminescent threat: toxicity of light stick attractors used in pelagic fishery. Scientific Reports, 2015, 4, 5359.	1.6	10
116	Lysozyme oxidation by singlet molecular oxygen: Peptide characterization using [¹⁸ O]â€labeling oxygen and nLCâ€MS/MS. Journal of Mass Spectrometry, 2017, 52, 739-751.	0.7	10
117	Genotoxicity of 5-aminolevulinic and 4,5-dioxovaleric acids in the salmonella/microsuspension mutagenicity assay and SOS chromotest. Environmental and Molecular Mutagenesis, 2002, 40, 63-70.	0.9	9
118	Utilização de endoperóxidos de derivados de naftaleno como fontes quÃmicas de oxigênio singlete em sistemas biológicos. Quimica Nova, 2000, 23, 686-689.	0.3	9
119	DNA strand breaks and base modifications induced by cholesterol hydroperoxides. Free Radical Research, 2011, 45, 266-275.	1.5	8
120	DNA Damage by Endogenous and Exogenous Aldehydes. Journal of the Brazilian Chemical Society, 0, , .	0.6	8
121	Insulin does not stimulate β-alanine transport into human skeletal muscle. American Journal of Physiology - Cell Physiology, 2020, 318, C777-C786.	2.1	8
122	¹⁸ O‣abeled lipid hydroperoxides and HPLC coupled to mass spectrometry as valuable tools for studying the generation of singlet oxygen in biological system. BioFactors, 2004, 22, 333-339.	2.6	7
123	Singlet oxygenâ€induced protein aggregation: Lysozyme crosslink formation and nLCâ€MS/MS characterization. Journal of Mass Spectrometry, 2019, 54, 894-905.	0.7	7
124	Heck reaction synthesis of anthracene and naphthalene derivatives as traps and clean chemical sources of singlet molecular oxygen in biological systems. Photochemical and Photobiological Sciences, 2020, 19, 1590-1602.	1.6	7
125	1,N 6-Etheno-2'-Deoxyadenosine Adducts from Trans, Trans-2,4-Decadienal and Trans-2-Octenal. Advances in Experimental Medicine and Biology, 2001, 500, 229-232.	0.8	7
126	Catabolism of 5-Aminolevulinic Acid to CO2 by Rat Liver Mitochondria. Archives of Biochemistry and Biophysics, 1994, 310, 205-209.	1.4	6

#	Article	IF	CITATIONS
127	Danos ao DNA promovidos por ácido 5-aminolevulÃnico: possÃvel associação com o desenvolvimento de carcinoma hepatocelular em portadores de porfiria aguda intermitente. Quimica Nova, 2002, 25, 594-608.	0.3	5
128	DNA oxidation, strand-breaks and etheno-adducts formation promoted by Cu, Zn-superoxide dismutase–H2O2 in the presence and absence of bicarbonate. Dalton Transactions, 2009, , 1450.	1.6	5
129	Generation of Singlet Molecular Oxygen by Lipid Hydroperoxides and Nitronium Ionâ€. Photochemistry and Photobiology, 2020, 96, 560-569.	1.3	5
130	Chemiluminescent oxidation of ribose catalyzed by horseradish peroxidase in presence of hydrogen peroxide. Free Radical Biology and Medicine, 1989, 6, 565-571.	1.3	4
131	Measurement of 4,5-dioxovaleric acid by high-performance liquid chromatography and fluorescence detection. Biomedical Applications, 1999, 729, 237-243.	1.7	4
132	Site-specific incorporation of the 1-hexanol-1,N6-etheno-2′-deoxyadenosine adduct into oligodeoxyribonucleotides. Bioorganic and Medicinal Chemistry, 2003, 11, 2445-2452.	1.4	4
133	Contribution of GO System Glycosylases to Mutation Prevention inCaulobacter crescentus. Environmental and Molecular Mutagenesis, 2020, 61, 246-255.	0.9	4
134	Detection of DNA Adduct Formation in Rat Lungs by a Micro-HPLC/MS/MS Approach. Methods in Molecular Biology, 2021, 2279, 225-239.	0.4	3
135	The role of chronic muscle (in)activity on carnosine homeostasis: a study with spinal cord-injured athletes. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 320, R824-R832.	0.9	3
136	Supramolecular Cationic Tetraruthenated Porphyrin and Light-Induced Decomposition of 2′-Deoxyguanosine Predominantly Via a Singlet Oxygen-Mediated Mechanism. Photochemistry and Photobiology, 1998, 68, 698.	1.3	3
137	Lesões em DNA induzidas pela autoxidação de S(IV) na presença de Ãons metálicos de transição. Quimio Nova, 2006, 29, 1086-1093.	^{ca} 0.3	2
138	Oxidation of 1-N 2-etheno-2′-deoxyguanosine by singlet molecular oxygen results in 2′-deoxyguanosine: a pathway to remove exocyclic DNA damage?. Biological Chemistry, 2018, 399, 859-867.	1.2	2
139	The molecular structure of \hat{I}^2 -alanine is resistant to sterilising doses of gamma radiation. PLoS ONE, 2019, 14, e0210713.	1.1	2
140	Singlet molecular oxygen generated in dark biological process. Free Radical Biology and Medicine, 2014, 75, S28-S29.	1.3	1
141	Quantification of three DNA Lesions by Mass Spectrometry and Assessment of Their Levels in Tissues of Mice Exposed to Ambient Fine Particulate Matter. Journal of Visualized Experiments, 2019, , .	0.2	1
142	Where do we aspire to publish? A position paper on scientific communication in biochemistry and molecular biology. Brazilian Journal of Medical and Biological Research, 2019, 52, e8935.	0.7	1
143	PREVENTION OF SINGLET OXYGEN DAMAGE IN 2'-DEOXYGUANOSINE BY LYCOPENE ENTRAPPED IN HUMAN ALBUMIN. , 1999, , 234-237.		0
144	Singlet Molecular Oxygen Generation by the Reaction of Ozone with 8-Oxo-7,8-Dihydro-2′-Deoxyguanosine and Formation of Spiroiminodihydantoin Nucleoside. Free Radical Biology and Medicine, 2010, 49, S213.	1.3	0

#	Article	IF	CITATIONS
145	Generation of Singlet Molecular Oxygen From Nitroperoxy Lipids. Free Radical Biology and Medicine, 2011, 51, S149.	1.3	0