
Marc Swisdak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4998025/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Laboratory Observations of Electron Heating and Non-Maxwellian Distributions at the Kinetic Scale during Electron-Only Magnetic Reconnection. Physical Review Letters, 2022, 128, 025002.	7.8	15
2	Flux Rope Merging and the Structure of Switchbacks in the Solar Wind. Astrophysical Journal, 2022, 925, 213.	4.5	11
3	Slow Shock Formation Upstream of Reconnecting Current Sheets. Astrophysical Journal, 2022, 926, 24.	4.5	1
4	Correlated Spatio-temporal Evolution of Extreme-Ultraviolet Ribbons and Hard X-Rays in a Solar Flare. Astrophysical Journal, 2022, 926, 218.	4.5	13
5	Electron-only reconnection and associated electron heating and acceleration in PHASMA. Physics of Plasmas, 2022, 29, .	1.9	7
6	Characteristics of Multi-scale Current Sheets in the Solar Wind at 1 au Associated with Magnetic Reconnection and the Case for a Heliospheric Current Sheet Avalanche. Astrophysical Journal, 2022, 933, 181.	4.5	5
7	Electron Acceleration during Macroscale Magnetic Reconnection. Physical Review Letters, 2021, 126, 135101.	7.8	65
8	Data Mining Reconstruction of Magnetotail Reconnection and Implications for Its First-Principle Modeling. Frontiers in Physics, 2021, 9, .	2.1	19
9	Multiscale Nature of the Magnetotail Reconnection Onset. Geophysical Research Letters, 2021, 48, e2021GL093065.	4.0	11
10	Switchbacks as signatures of magnetic flux ropes generated by interchange reconnection in the corona. Astronomy and Astrophysics, 2021, 650, A2.	5.1	80
11	Particle-In-Cell Simulations of Magnetotail Dipolarizations Guided by Local Plasma Observations and Magnetometer Data Mining. , 2021, , .		0
12	The reversibility of magnetic reconnection. Physics of Plasmas, 2021, 28, .	1.9	3
13	Whistler-regulated Magnetohydrodynamics: Transport Equations for Electron Thermal Conduction in the High-I ² Intracluster Medium of Galaxy Clusters. Astrophysical Journal, 2021, 923, 245.	4.5	19
14	Noise-induced magnetic field saturation in kinetic simulations. Journal of Plasma Physics, 2020, 86, .	2.1	9
15	Estimating Effective Collision Frequency and Kinetic Entropy Uncertainty in Particle-in-Cell Simulations. Journal of Physics: Conference Series, 2020, 1620, 012009.	0.4	5
16	Electron Inflow Velocities and Reconnection Rates at Earth's Magnetopause and Magnetosheath. Geophysical Research Letters, 2020, 47, e2020GL089082.	4.0	23
17	Turbulence and Transport During Guide Field Reconnection at the Magnetopause. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027498.	2.4	7
18	Decomposition of plasma kinetic entropy into position and velocity space and the use of kinetic entropy in particle-in-cell simulations. Physics of Plasmas, 2019, 26, .	1.9	20

#	Article	IF	CITATIONS
19	Particle heating and energy partition in low- <i>\hat{l}^2</i> guide field reconnection with kinetic Riemann simulations. Physics of Plasmas, 2019, 26, .	1.9	16
20	Transition from ion-coupled to electron-only reconnection: Basic physics and implications for plasma turbulence. Physics of Plasmas, 2019, 26, .	1.9	61
21	A computational model for exploring particle acceleration during reconnection in macroscale systems. Physics of Plasmas, 2019, 26, .	1.9	37
22	MMS Measurements of the Vlasov Equation: Probing the Electron Pressure Divergence Within Thin Current Sheets. Geophysical Research Letters, 2019, 46, 7862-7872.	4.0	19
23	Large-scale parallel electric fields and return currents in a global simulation model. Physics of Plasmas, 2019, 26, .	1.9	15
24	Scattering of Energetic Electrons by Heat-flux-driven Whistlers in Flares. Astrophysical Journal, 2019, 887, 190.	4.5	22
25	Instabilities and turbulence in low- <i>β</i> guide field reconnection exhausts with kinetic Riemann simulations. Physics of Plasmas, 2019, 26, .	1.9	6
26	Magnetic Reconnection in Three Dimensions: Modeling and Analysis of Electromagnetic Drift Waves in the Adjacent Current Sheet. Journal of Geophysical Research: Space Physics, 2019, 124, 10085-10103.	2.4	18
27	Suppression of Electron Thermal Conduction by Whistler Turbulence in a Sustained Thermal Gradient. Physical Review Letters, 2018, 120, 035101.	7.8	44
28	Localized Oscillatory Energy Conversion in Magnetopause Reconnection. Geophysical Research Letters, 2018, 45, 1237-1245.	4.0	41
29	Characterizing Ion Flows Across a Magnetotail Dipolarization Jet. Journal of Geophysical Research: Space Physics, 2018, 123, 6326-6334.	2.4	4
30	Wave Generation and Heat Flux Suppression in Astrophysical Plasma Systems. Astrophysical Journal, 2018, 867, 154.	4.5	33
31	Localized and Intense Energy Conversion in the Diffusion Region of Asymmetric Magnetic Reconnection. Geophysical Research Letters, 2018, 45, 5260-5267.	4.0	26
32	Kinetic Dissipation Around a Dipolarization Front. Geophysical Research Letters, 2018, 45, 4639-4647.	4.0	42
33	The Twist of the Draped Interstellar Magnetic Field Ahead of the Heliopause: A Magnetic Reconnection Driven Rotational Discontinuity. Astrophysical Journal Letters, 2017, 839, L12.	8.3	26
34	Drift waves, intense parallel electric fields, and turbulence associated with asymmetric magnetic reconnection at the magnetopause. Geophysical Research Letters, 2017, 44, 2978-2986.	4.0	46
35	The Formation of Magnetic Depletions and Flux Annihilation Due to Reconnection in the Heliosheath. Astrophysical Journal, 2017, 837, 159.	4.5	15
36	Distinctive features of internally driven magnetotail reconnection. Geophysical Research Letters, 2017, 44, 3028-3037.	4.0	21

#	Article	IF	CITATIONS
37	Turbulence in Threeâ€Dimensional Simulations of Magnetopause Reconnection. Journal of Geophysical Research: Space Physics, 2017, 122, 11,086.	2.4	37
38	The role of three-dimensional transport in driving enhanced electron acceleration during magnetic reconnection. Physics of Plasmas, 2017, 24, 092110.	1.9	92
39	The Effect of a Guide Field on Local Energy Conversion During Asymmetric Magnetic Reconnection: Particleâ€inâ€Cell Simulations. Journal of Geophysical Research: Space Physics, 2017, 122, 11,523.	2.4	27
40	SUPPRESSION OF ELECTRON THERMAL CONDUCTION IN THE HIGH $\hat{1}^2$ INTRACLUSTER MEDIUM OF GALAXY CLUSTERS. Astrophysical Journal Letters, 2016, 830, L9.	8.3	54
41	Magnetized jets driven by the Sun: The structure of the heliosphere revisited—Updates. Physics of Plasmas, 2016, 23, .	1.9	13
42	Quantifying gyrotropy in magnetic reconnection. Geophysical Research Letters, 2016, 43, 43-49.	4.0	103
43	Parallel electric fields are inefficient drivers of energetic electrons in magnetic reconnection. Physics of Plasmas, 2016, 23, .	1.9	68
44	Particle-in-cell simulation study of the scaling of asymmetric magnetic reconnection with in-plane flow shear. Physics of Plasmas, 2016, 23, 082107.	1.9	8
45	MMS observations of large guide field symmetric reconnection between colliding reconnection jets at the center of a magnetic flux rope at the magnetopause. Geophysical Research Letters, 2016, 43, 5536-5544.	4.0	84
46	The effects of turbulence on threeâ€dimensional magnetic reconnection at the magnetopause. Geophysical Research Letters, 2016, 43, 6020-6027.	4.0	80
47	Kinetic signatures of the region surrounding the <i>X</i> line in asymmetric (magnetopause) reconnection. Geophysical Research Letters, 2016, 43, 4145-4154.	4.0	106
48	Electron acceleration in three-dimensional magnetic reconnection with a guide field. Physics of Plasmas, 2015, 22, .	1.9	83
49	A MODEL OF THE HELIOSPHERE WITH JETS. Astrophysical Journal Letters, 2015, 808, L44.	8.3	43
50	Fast magnetic reconnection due to anisotropic electron pressure. Physics of Plasmas, 2015, 22, .	1.9	24
51	Magnetic reconnection, buoyancy, and flapping motions in magnetotail explosions. Journal of Geophysical Research: Space Physics, 2014, 119, 7151-7168.	2.4	64
52	DYNAMICS OF DOUBLE LAYERS, ION ACCELERATION, AND HEAT FLUX SUPPRESSION DURING SOLAR FLARES. Astrophysical Journal, 2014, 793, 7.	4.5	19
53	Electron heating during magnetic reconnection: A simulation scaling study. Physics of Plasmas, 2014, 21, .	1.9	74
54	The mechanisms of electron heating and acceleration during magnetic reconnection. Physics of Plasmas, 2014, 21, .	1.9	172

#	Article	IF	CITATIONS
55	The onset of ion heating during magnetic reconnection with a strong guide field. Physics of Plasmas, 2014, 21, .	1.9	31
56	On the 3â€D structure and dissipation of reconnectionâ€driven flow bursts. Geophysical Research Letters, 2014, 41, 3710-3716.	4.0	50
57	A POROUS, LAYERED HELIOPAUSE. Astrophysical Journal Letters, 2013, 774, L8.	8.3	44
58	von KÃįrmÃįn Energy Decay and Heating of Protons and Electrons in a Kinetic Turbulent Plasma. Physical Review Letters, 2013, 111, 121105.	7.8	57
59	Spontaneous formation of dipolarization fronts and reconnection onset in the magnetotail. Geophysical Research Letters, 2013, 40, 22-27.	4.0	87
60	The adiabatic phase mixing and heating of electrons in Buneman turbulence. Physics of Plasmas, 2013, 20, .	1.9	18
61	The generation of random variates from a relativistic Maxwellian distribution. Physics of Plasmas, 2013, 20, .	1.9	13
62	Influence of asymmetries and guide fields on the magnetic reconnection diffusion region in collisionless space plasmas. Plasma Physics and Controlled Fusion, 2013, 55, 124001.	2.1	43
63	CORONAL ELECTRON CONFINEMENT BY DOUBLE LAYERS. Astrophysical Journal, 2013, 778, 144.	4.5	14
64	THE POWER-LAW SPECTRA OF ENERGETIC PARTICLES DURING MULTI-ISLAND MAGNETIC RECONNECTION. Astrophysical Journal Letters, 2013, 763, L5.	8.3	130
65	THE ROLE OF PRESSURE ANISOTROPY ON PARTICLE ACCELERATION DURING MAGNETIC RECONNECTION. Astrophysical Journal, 2013, 764, 126.	4.5	15
66	Axis and velocity determination for quasi twoâ€dimensional plasma/field structures from Faraday's law: A second look. Journal of Geophysical Research: Space Physics, 2013, 118, 2073-2086.	2.4	8
67	SCALING OF THE GROWTH RATE OF MAGNETIC ISLANDS IN THE HELIOSHEATH. Astrophysical Journal Letters, 2012, 750, L30.	8.3	7
68	Ion Heating and Acceleration During Magnetic Reconnection Relevant to the Corona. Space Science Reviews, 2012, 172, 227-240.	8.1	33
69	Test of Shi et al. method to infer the magnetic reconnection geometry from spacecraft data: MHD simulation with guide field and antiparallel kinetic simulation. Journal of Geophysical Research, 2012, 117, .	3.3	17
70	The structure of the magnetic reconnection exhaust boundary. Physics of Plasmas, 2012, 19, .	1.9	67
71	The importance of plasma <i>β</i> conditions for magnetic reconnection at Saturn's magnetopause. Geophysical Research Letters, 2012, 39, .	4.0	102
72	Correction to "Onset of collisionless magnetic reconnection in two-dimensional current sheets and formation of dipolarization fronts― Journal of Geophysical Research, 2012, 117, n/a-n/a.	3.3	0

#	Article	IF	CITATIONS
73	SUPPRESSION OF ENERGETIC ELECTRON TRANSPORT IN FLARES BY DOUBLE LAYERS. Astrophysical Journal, 2012, 757, 20.	4.5	24
74	Secondary Magnetic Islands Generated by the Kelvin-Helmholtz Instability in a Reconnecting Current Sheet. Physical Review Letters, 2012, 108, 255005.	7.8	63
75	lon Heating and Acceleration During Magnetic Reconnection Relevant to the Corona. Space Sciences Series of ISSI, 2012, , 227-240.	0.0	0
76	THE EFFECTS OF PLASMA BETA AND ANISOTROPY INSTABILITIES ON THE DYNAMICS OF RECONNECTING MAGNETIC FIELDS IN THE HELIOSHEATH. Astrophysical Journal, 2011, 743, 70.	4.5	38
77	The effects of strong temperature anisotropy on the kinetic structure of collisionless slow shocks and reconnection exhausts. II. Theory. Physics of Plasmas, 2011, 18, .	1.9	23
78	Comparison of a statistical model for magnetic islands in large current layers with Hall MHD simulations and Cluster FTE observations. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	42
79	Onset of collisionless magnetic reconnection in two-dimensional current sheets and formation of dipolarization fronts. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	71
80	A current filamentation mechanism for breaking magnetic field lines during reconnection. Nature, 2011, 474, 184-187.	27.8	137
81	The effects of strong temperature anisotropy on the kinetic structure of collisionless slow shocks and reconnection exhausts. I. Particle-in-cell simulations. Physics of Plasmas, 2011, 18, .	1.9	25
82	THE ACCELERATION OF IONS IN SOLAR FLARES DURING MAGNETIC RECONNECTION. Astrophysical Journal Letters, 2011, 743, L35.	8.3	49
83	IS THE MAGNETIC FIELD IN THE HELIOSHEATH LAMINAR OR A TURBULENT SEA OF BUBBLES?. Astrophysical Journal, 2011, 734, 71.	4.5	71
84	A MAGNETIC RECONNECTION MECHANISM FOR THE GENERATION OF ANOMALOUS COSMIC RAYS. Astrophysical Journal, 2010, 709, 963-974.	4.5	239
85	THE VECTOR DIRECTION OF THE INTERSTELLAR MAGNETIC FIELD OUTSIDE THE HELIOSPHERE. Astrophysical Journal, 2010, 710, 1769-1775.	4.5	131
86	Three-dimensional simulations of the orientation and structure of reconnection X-lines. Physics of Plasmas, 2010, 17, .	1.9	21
87	A statistical model of magnetic islands in a current layer. Physics of Plasmas, 2010, 17, .	1.9	73
88	Electron holes and heating in the reconnection dissipation region. Geophysical Research Letters, 2010, 37, .	4.0	69
89	A simple MHD model for the formation of multiple dipolarization fronts. Geophysical Research Letters, 2010, 37, .	4.0	52
90	Test of methods to infer the magnetic reconnection geometry from spacecraft data. Journal of Geophysical Research, 2010, 115, .	3.3	22

#	Article	IF	CITATIONS
91	The Weibel instability inside the electron-positron Harris sheet. Physics of Plasmas, 2009, 16, 042101.	1.9	9
92	Nonlinear Development of Streaming Instabilities in Strongly Magnetized Plasma. Physical Review Letters, 2009, 102, 145004.	7.8	47
93	Ion heating resulting from pickup in magnetic reconnection exhausts. Journal of Geophysical Research, 2009, 114, .	3.3	151
94	Dipolarization fronts as a signature of transient reconnection in the magnetotail. Journal of Geophysical Research, 2009, 114, .	3.3	272
95	A MAGNETIC RECONNECTION MECHANISM FOR ION ACCELERATION AND ABUNDANCE ENHANCEMENTS IN IMPULSIVE FLARES. Astrophysical Journal, 2009, 700, L16-L20.	4.5	153
96	Ultracold Plasma Expansion in a Magnetic Field. Physical Review Letters, 2008, 100, 235002.	7.8	39
97	The Hall fields and fast magnetic reconnection. Physics of Plasmas, 2008, 15, .	1.9	168
98	Development of a Turbulent Outflow During Electronâ€Positron Magnetic Reconnection. Astrophysical Journal, 2008, 680, 999-1008.	4.5	38
99	Two-Scale Structure of the Electron Dissipation Region during Collisionless Magnetic Reconnection. Physical Review Letters, 2007, 99, 155002.	7.8	275
100	Reconnection onset in the magnetotail: Particle simulations with open boundary conditions. Geophysical Research Letters, 2007, 34, .	4.0	38
101	Atypical current sheets and plasma bubbles: A selfâ€consistent kinetic model. Geophysical Research Letters, 2007, 34, .	4.0	11
102	Orientation of the reconnection X-line. Geophysical Research Letters, 2007, 34, .	4.0	82
103	Simulation study of a positive ionospheric storm phase observed at Millstone Hill. Geophysical Research Letters, 2006, 33, .	4.0	16
104	Structure and dynamics of a new class of thin current sheets. Journal of Geophysical Research, 2006, 111, .	3.3	85
105	An interhemispheric model of artificial ionospheric ducts. Radio Science, 2006, 41, n/a-n/a.	1.6	23
106	Formation of secondary islands during magnetic reconnection. Geophysical Research Letters, 2006, 33,	4.0	221
107	Electron acceleration from contracting magnetic islands during reconnection. Nature, 2006, 443, 553-556.	27.8	793
108	Hemispheric daytime ionospheric response to intense solar wind forcing. Geophysical Monograph Series, 2005, , 261-275.	0.1	8

#	Article	IF	CITATIONS
109	Production of Energetic Electrons during Magnetic Reconnection. Physical Review Letters, 2005, 94, 095001.	7.8	190
110	Shay and Swisdak Reply:. Physical Review Letters, 2005, 95, .	7.8	0
111	Cluster observations of electron holes in association with magnetotail reconnection and comparison to simulations. Journal of Geophysical Research, 2005, 110, .	3.3	251
112	Transition from antiparallel to component magnetic reconnection. Journal of Geophysical Research, 2005, 110, .	3.3	76
113	On the formation of a plasma bubble. Geophysical Research Letters, 2005, 32, .	4.0	17
114	The scaling of embedded collisionless reconnection. Physics of Plasmas, 2004, 11, 2199-2213.	1.9	126
115	Three-Species Collisionless Reconnection: Effect ofO+on Magnetotail Reconnection. Physical Review Letters, 2004, 93, 175001.	7.8	92
116	A model of the bifurcated current sheet: 2. Flapping motions. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	36
117	Inherently three dimensional magnetic reconnection: A mechanism for bursty bulk flows?. Geophysical Research Letters, 2003, 30, .	4.0	84
118	Diamagnetic suppression of component magnetic reconnection at the magnetopause. Journal of Geophysical Research, 2003, 108, .	3.3	220
119	A model of the bifurcated current sheet. Geophysical Research Letters, 2003, 30, .	4.0	87
120	Formation of Electron Holes and Particle Energization During Magnetic Reconnection. Science, 2003, 299, 873-877.	12.6	374
121	Comment on "Creation of Magnetic Energy in the Solar Atmosphere― Physical Review Letters, 2001, 86, 1662-1662.	7.8	2
122	Effects of Large cale Convection onpâ€Mode Frequencies. Astrophysical Journal, 1999, 512, 442-453.	4.5	14