
Clifford W Cunningham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4997609/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature, 2010, 463, 1079-1083.	27.8	858
2	Combining data in phylogenetic analysis. Trends in Ecology and Evolution, 1996, 11, 152-158.	8.7	772
3	Reconstructing ancestral character states: a critical reappraisal. Trends in Ecology and Evolution, 1998, 13, 361-366.	8.7	484
4	PHYLOGEOGRAPHY AND HISTORICAL ECOLOGY OF THE NORTH ATLANTIC INTERTIDAL. Evolution; International Journal of Organic Evolution, 2001, 55, 2455-2469.	2.3	394
5	Is Congruence between Data Partitions a Reliable Predictor of Phylogenetic Accuracy? Empirically Testing an Iterative Procedure for Choosing among Phylogenetic Methods. Systematic Biology, 1997, 46, 464-478.	5.6	294
6	DIVERSITY IN THE WEAPONS OF SEXUAL SELECTION: HORN EVOLUTION IN THE BEETLE GENUS ONTHOPHAGUS (COLEOPTERA: SCARABAEIDAE). Evolution; International Journal of Organic Evolution, 2005, 59, 1060-1084.	2.3	239
7	INVITED REVIEW: Local adaptation and species segregation in two mussel (Mytilus edulisÂ×ÂMytilus) Tj ETQq1	1 0.78431 3.9	l4 rgBT /Ov∈ 222
8	A COMPARATIVE STUDY OF ASYMMETRIC MIGRATION EVENTS ACROSS A MARINE BIOGEOGRAPHIC BOUNDARY. Evolution; International Journal of Organic Evolution, 2001, 55, 295-306.	2.3	197
9	Resolving Arthropod Phylogeny: Exploring Phylogenetic Signal within 41 kb of Protein-Coding Nuclear Gene Sequence. Systematic Biology, 2008, 57, 920-938.	5.6	178
10	Molecular evidence for multiple episodes of paedomorphosis in the family Hydractiniidae. Biochemical Systematics and Ecology, 1993, 21, 57-69.	1.3	171
11	Some Limitations of Ancestral Character-State Reconstruction When Testing Evolutionary Hypotheses. Systematic Biology, 1999, 48, 665-674.	5.6	163
12	INDEPENDENT CONTRASTS SUCCEED WHERE ANCESTOR RECONSTRUCTION FAILS IN A KNOWN BACTERIOPHAGE PHYLOGENY. Evolution; International Journal of Organic Evolution, 2000, 54, 397-405.	2.3	155
13	Molecular phylogenetic evidence for the independent evolutionary origin of an arthropod compound eye. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1426-1430.	7.1	119
14	Ice-age survival of Atlantic cod: agreement between palaeoecology models and genetics. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 163-173.	2.6	105
15	From Offshore to Onshore: Multiple Origins of Shallow-Water Corals from Deep-Sea Ancestors. PLoS ONE, 2008, 3, e2429.	2.5	98
16	CONTRASTING QUATERNARY HISTORIES IN AN ECOLOGICALLY DIVERGENT SISTER PAIR OF LOW-DISPERSING INTERTIDAL FISH (XIPHISTER) REVEALED BY MULTILOCUS DNA ANALYSIS. Evolution; International Journal of Organic Evolution, 2005, 59, 344-360.	2.3	94
17	Progressive island colonization and ancient origin of Hawaiian <i>Metrosideros</i> (Myrtaceae). Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 1479-1490.	2.6	89
18	Using DNA to assess errors in tropical tree identifications: How often are ecologists wrong and when does it matter?. Ecological Monographs, 2010, 80, 267-286.	5.4	77

#	Article	IF	CITATIONS
19	Historical effects on beta diversity and community assembly in Amazonian trees. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7787-7792.	7.1	62
20	DIFFERENTIAL PATTERNS OF MALE AND FEMALE MTDNA EXCHANGE ACROSS THE ATLANTIC OCEAN IN THE BLUE MUSSEL, MYTILUS EDULIS. Evolution; International Journal of Organic Evolution, 2004, 58, 2438-2451.	2.3	55
21	Recruitment and Postrecruitment Interactions in a Colonial Hydroid. Ecology, 1987, 68, 971-982.	3.2	51
22	Refuting a controversial case of a human-mediated marine species introduction. Ecology Letters, 2002, 5, 577-584.	6.4	51
23	Reconciling genealogical and morphological species in a worldwide study of the Family Hydractiniidae (Cnidaria, Hydrozoa). Zoologica Scripta, 2009, 38, 403-430.	1.7	50
24	EVOLUTION OF LIFE CYCLE, COLONY MORPHOLOGY, AND HOST SPECIFICITY IN THE FAMILY HYDRACTINIIDAE (HYDROZOA, CNIDARIA). Evolution; International Journal of Organic Evolution, 2012, 66, 3876-3901.	2.3	35
25	How to Use Genetic Data to Distinguish Between Natural and Human-Mediated Introduction of Littorina littorea to North America. Biological Invasions, 2008, 10, 1-6.	2.4	32
26	Diversification Before the Most Recent Glaciation in Balanus glandula. Biological Bulletin, 2005, 208, 60-68.	1.8	29
27	Molecular phylogeny of the mud lobsters and mud shrimps (Crustacea : Decapoda : Thalassinidea) using nuclear 18S rDNA and mitochondrial 16S rDNA. Invertebrate Systematics, 2002, 16, 839.	1.3	26
28	Nearshore fish (Pholis gunnellus) persists across the North Atlantic through multiple glacial episodes. Molecular Ecology, 2006, 15, 4095-4107.	3.9	25
29	Evolution of Calcium-carbonate Skeletons in the Hydractiniidae. Integrative and Comparative Biology, 2010, 50, 428-435.	2.0	20
30	INDEPENDENT CONTRASTS SUCCEED WHERE ANCESTOR RECONSTRUCTION FAILS IN A KNOWN BACTERIOPHAGE PHYLOGENY. Evolution; International Journal of Organic Evolution, 2000, 54, 397.	2.3	16
31	Reply from J.P. Huelsenbeck, J.J. Bull and C.W. Cunningham. Trends in Ecology and Evolution, 1996, 11, 335.	8.7	12
32	Hybridization in postglacial marine habitats. Molecular Ecology, 2007, 16, 3971-3972.	3.9	10
33	Gene flow between Atlantic and Pacific Ocean basins in three lineages of deep-sea clams (Bivalvia:) Tj ETQq1 1 0. Part II: Topical Studies in Oceanography, 2017, 137, 307-317.	784314 rg 1.4	gBT /Overlock 10
34	Lessons Learned from Coordinating Research on the North Atlantic (CORONA)1. Ecology, 2008, 89, S1-S2.	3.2	1