Alessandra Buonanno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4996956/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Observing Intermediate-mass Black Holes and the Upper Stellar-mass gap with LIGO and Virgo. Astrophysical Journal, 2022, 924, 39.	4.5	32
2	A Detailed Analysis of GW190521 with Phenomenological Waveform Models. Astrophysical Journal, 2022, 924, 79.	4.5	35
3	Conservative and radiative dynamics in classical relativistic scattering and bound systems. Physical Review Research, 2022, 4, .	3.6	34
4	Effective-one-body multipolar waveforms for eccentric binary black holes with nonprecessing spins. Physical Review D, 2022, 105, .	4.7	37
5	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	6.6	20
6	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	4.5	144
7	Diving below the Spin-down Limit: Constraints on Gravitational Waves from the Energetic Young Pulsar PSR J0537-6910. Astrophysical Journal Letters, 2021, 913, L27.	8.3	32
8	Population Properties of Compact Objects from the Second LIGO–Virgo Gravitational-Wave Transient Catalog. Astrophysical Journal Letters, 2021, 913, L7.	8.3	514
9	Observation of Gravitational Waves from Two Neutron Star–Black Hole Coalescences. Astrophysical Journal Letters, 2021, 915, L5.	8.3	453
10	Constraints on Cosmic Strings Using Data from the Third Advanced LIGO–Virgo Observing Run. Physical Review Letters, 2021, 126, 241102.	7.8	87
11	Constraints on quasinormal-mode frequencies with LIGO-Virgo binary–black-hole observations. Physical Review D, 2021, 103, .	4.7	43
12	GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run. Physical Review X, 2021, 11, .	8.9	1,097
13	Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO–Virgo Run O3a. Astrophysical Journal, 2021, 915, 86.	4.5	20
14	Radiation-reaction force and multipolar waveforms for eccentric, spin-aligned binaries in the effective-one-body formalism. Physical Review D, 2021, 104, .	4.7	30
15	Searches for Continuous Gravitational Waves from Young Supernova Remnants in the Early Third Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 921, 80.	4.5	39
16	Constraints from LIGO O3 Data on Gravitational-wave Emission Due to R-modes in the Glitching Pulsar PSR J0537–6910. Astrophysical Journal, 2021, 922, 71.	4.5	29
17	Real-Time Gravitational Wave Science with Neural Posterior Estimation. Physical Review Letters, 2021, 127, 241103.	7.8	61
18	Fast post-adiabatic waveforms in the time domain: Applications to compact binary coalescences in LIGO and Virgo. Physical Review D, 2021, 104, .	4.7	10

#	Article	IF	CITATIONS
19	Search for Lensing Signatures in the Gravitational-Wave Observations from the First Half of LIGO–Virgo's Third Observing Run. Astrophysical Journal, 2021, 923, 14.	4.5	59
20	Aligned-spin neutron-star–black-hole waveform model based on the effective-one-body approach and numerical-relativity simulations. Physical Review D, 2020, 102, .	4.7	51
21	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	26.7	447
22	A Joint Fermi-GBM and LIGO/Virgo Analysis of Compact Binary Mergers from the First and Second Gravitational-wave Observing Runs. Astrophysical Journal, 2020, 893, 100.	4.5	12
23	Quasicircular inspirals and plunges from nonspinning effective-one-body Hamiltonians with gravitational self-force information. Physical Review D, 2020, 101, .	4.7	34
24	Fourth post-Newtonian effective-one-body Hamiltonians with generic spins. Physical Review D, 2020, 101, .	4.7	16
25	GW190521: A Binary Black Hole Merger with a Total Mass of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>150</mml:mn><mml:mtext> </mml:mtext><mml:mtext> stretchy="false">⊙</mml:mtext></mml:mrow></mml:math 	ml ma text>	< กระช ะmsub>
26	Letters, 2020, 125, 101102. GW190412: Observation of a binary-black-hole coalescence with asymmetric masses. Physical Review D, 2020, 102, .	4.7	394
27	Gravitational-wave constraints on an effective-field-theory extension of general relativity. Physical Review D, 2020, 102, .	4.7	39
28	Multipolar effective-one-body waveforms for precessing binary black holes: Construction and validation. Physical Review D, 2020, 102, .	4.7	182
29	Prospects for fundamental physics with LISA. General Relativity and Gravitation, 2020, 52, 1.	2.0	198
30	GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. Astrophysical Journal Letters, 2020, 896, L44.	8.3	1,090
31	GW190425: Observation of a Compact Binary Coalescence with Total MassÂâ^1⁄4Â3.4 M _⊙ . Astrophysical Journal Letters, 2020, 892, L3.	8.3	1,049
32	Properties and Astrophysical Implications of the 150 M _⊙ Binary Black Hole Merger GW190521. Astrophysical Journal Letters, 2020, 900, L13.	8.3	406
33	Gravitational-wave Constraints on the Equatorial Ellipticity of Millisecond Pulsars. Astrophysical Journal Letters, 2020, 902, L21.	8.3	65
34	Spinning-black-hole scattering and the test-black-hole limit at second post-Minkowskian order. Physical Review D, 2019, 99, .	4.7	91
35	Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data. Astrophysical Journal, 2019, 879, 10.	4.5	88
36	Tests of General Relativity with GW170817. Physical Review Letters, 2019, 123, 011102.	7.8	370

#	Article	IF	CITATIONS
37	Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs. Astrophysical Journal, 2019, 883, 149.	4.5	72
38	Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. Physical Review D, 2019, 100, .	4.7	52
39	Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO's Second Observing Run. Physical Review Letters, 2019, 123, 161102.	7.8	119
40	Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. Astrophysical Journal Letters, 2019, 882, L24.	8.3	566
41	GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Physical Review X, 2019, 9, .	8.9	2,022
42	Energetics of two-body Hamiltonians in post-Minkowskian gravity. Physical Review D, 2019, 99, .	4.7	107
43	A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run. Astrophysical Journal, 2019, 871, 90.	4.5	30
44	Searches for Continuous Gravitational Waves from 15 Supernova Remnants and Fomalhaut b with Advanced LIGO [*] . Astrophysical Journal, 2019, 875, 122.	4.5	61
45	Search for Gravitational Waves from a Long-lived Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal, 2019, 875, 160.	4.5	97
46	First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814. Astrophysical Journal Letters, 2019, 876, L7.	8.3	179
47	Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run. Astrophysical Journal, 2019, 875, 161.	4.5	71
48	Gravitational waveforms for high spin and high mass-ratio binary black holes: A synergistic use of numerical-relativity codes. Physical Review D, 2019, 99, .	4.7	7
49	Search for Transient Gravitational-wave Signals Associated with Magnetar Bursts during Advanced LIGO's Second Observing Run. Astrophysical Journal, 2019, 874, 163.	4.5	26
50	Constraining the <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>p</mml:mi></mml:math> -Mode– <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>g</mml:mi> -Mode Tidal Instability with CW170817_Physical Review Letters_2019_122_061104</mml:math 	7.8	36
51	Gravitational waveforms from spectral Einstein code simulations: Neutron star-neutron star and low-mass black hole-neutron star binaries. Physical Review D, 2019, 99, .	4.7	41
52	Theory-agnostic framework for dynamical scalarization of compact binaries. Physical Review D, 2019, 100, .	4.7	18
53	Search for Gravitational-wave Signals Associated with Gamma-Ray Bursts during the Second Observing Run of Advanced LIGO and Advanced Virgo. Astrophysical Journal, 2019, 886, 75.	4.5	29
54	GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences. Physical Review Letters, 2018, 120, 091101.	7.8	166

#	Article	IF	CITATIONS
55	Hairy binary black holes in Einstein-Maxwell-dilaton theory and their effective-one-body description. Physical Review D, 2018, 98, .	4.7	31
56	Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run. Physical Review Letters, 2018, 121, 231103.	7.8	77
57	GW170817: Measurements of Neutron Star Radii and Equation of State. Physical Review Letters, 2018, 121, 161101.	7.8	1,473
58	Enriching the symphony of gravitational waves from binary black holes by tuning higher harmonics. Physical Review D, 2018, 98, .	4.7	175
59	Black-hole spectroscopy by making full use of gravitational-wave modeling. Physical Review D, 2018, 98, .	4.7	85
60	Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. Physical Review Letters, 2018, 120, 201102.	7.8	85
61	Effects of waveform model systematics on the interpretation of GW150914. Classical and Quantum Gravity, 2017, 34, 104002.	4.0	98
62	Improved effective-one-body model of spinning, nonprecessing binary black holes for the era of gravitational-wave astrophysics with advanced detectors. Physical Review D, 2017, 95, .	4.7	401
63	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121101.	7.8	194
64	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121102.	7.8	84
65	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. Astrophysical Journal, 2017, 839, 12.	4.5	131
66	Validating the effective-one-body model of spinning, precessing binary black holes against numerical relativity. Physical Review D, 2017, 95, .	4.7	169
67	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	2.4	69
68	Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data. Astrophysical Journal, 2017, 847, 47.	4.5	46
69	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 2017, 119, 161101.	7.8	6,413
70	Multi-messenger Observations of a Binary Neutron Star Merger [*] . Astrophysical Journal Letters, 2017, 848, L12.	8.3	2,805
71	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophysical Journal Letters, 2017, 848, L13.	8.3	2,314
72	Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO. Physical Review D, 2017, 96, .	4.7	73

#	Article	IF	CITATIONS
73	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	4.5	52
74	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 851, L16.	8.3	189
75	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated withÂGW170817. Astrophysical Journal Letters, 2017, 850, L39.	8.3	156
76	Constraining Nonperturbative Strong-Field Effects in Scalar-Tensor Gravity by Combining Pulsar Timing and Laser-Interferometer Gravitational-Wave Detectors. Physical Review X, 2017, 7, .	8.9	72
77	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 2017, 118, 221101.	7.8	1,987
78	Distinguishing boson stars from black holes and neutron stars from tidal interactions in inspiraling binary systems. Physical Review D, 2017, 96, .	4.7	119
79	On the Progenitor of Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 850, L40.	8.3	73
80	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. Astrophysical Journal Letters, 2017, 851, L35.	8.3	968
81	THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. Astrophysical Journal Letters, 2016, 833, L1.	8.3	230
82	Gravitational waveforms in scalar-tensor gravity at 2PN relative order. Physical Review D, 2016, 94, .	4.7	61
83	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR–BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN. Astrophysical Journal Letters, 2016, 832, L21.	8.3	146
84	Modeling dynamical scalarization with a resummed post-Newtonian expansion. Physical Review D, 2016, 93, .	4.7	39
85	Implementing a search for gravitational waves from binary black holes with nonprecessing spin. Physical Review D, 2016, 93, .	4.7	52
86	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. Physical Review Letters, 2016, 116, 131102.	7.8	269
87	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Physical Review Letters, 2016, 116, 131103.	7.8	466
88	Effects of Neutron-Star Dynamic Tides on Gravitational Waveforms within the Effective-One-Body Approach. Physical Review Letters, 2016, 116, 181101.	7.8	204
89	SUPPLEMENT: "LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914―(2016, ApJL, 826, L13). Astrophysical Journal, Supplement Series, 2016, 225, 8.	7.7	44
90	Tests of General Relativity with GW150914. Physical Review Letters, 2016, 116, 221101.	7.8	1,224

Alessandra Buonanno

#	Article	IF	CITATIONS
91	Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 2016, 116, 241102.	7.8	673
92	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 2016, 116, 241103.	7.8	2,701
93	Dynamical tides in general relativity: Effective action and effective-one-body Hamiltonian. Physical Review D, 2016, 94, .	4.7	151
94	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. Astrophysical Journal Letters, 2016, 818, L22.	8.3	633
95	Approaching the Post-Newtonian Regime with Numerical Relativity: A Compact-Object Binary Simulation Spanning 350 Gravitational-Wave Cycles. Physical Review Letters, 2015, 115, 031102.	7.8	68
96	Missing Link: Bayesian detection and measurement of intermediate-mass black-hole binaries. Physical Review D, 2015, 92, .	4.7	81
97	Sources of Gravitational Waves: Theory and Observations. , 2015, , 287-346.		15
98	Quasiequilibrium sequences of binary neutron stars undergoing dynamical scalarization. Physical Review D, 2015, 91, .	4.7	43
99	Characterization of the LIGO detectors during their sixth science run. Classical and Quantum Gravity, 2015, 32, 115012.	4.0	1,029
100	SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS. Astrophysical Journal, 2015, 813, 39.	4.5	66
101	FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS. Astrophysical Journal, Supplement Series, 2014, 211, 7.	7.7	57
102	Stability of nonspinning effective-one-body model in approximating two-body dynamics and gravitational-wave emission. Physical Review D, 2014, 89, .	4.7	27
103	Effective-one-body model for black-hole binaries with generic mass ratios and spins. Physical Review D, 2014, 89, .	4.7	360
104	Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors. Physical Review Letters, 2014, 112, 131101.	7.8	68
105	Improved Upper Limits on the Stochastic Gravitational-Wave Background from 2009–2010 LIGO and Virgo Data. Physical Review Letters, 2014, 113, 231101.	7.8	86
106	Inspiral-merger-ringdown waveforms of spinning, precessing black-hole binaries in the effective-one-body formalism. Physical Review D, 2014, 89, .	4.7	265
107	Coalescence of binary neutron stars in a scalar-tensor theory of gravity. Physical Review D, 2014, 89, .	4.7	136
108	THE FORMATION AND GRAVITATIONAL-WAVE DETECTION OF MASSIVE STELLAR BLACK HOLE BINARIES. Astrophysical Journal, 2014, 789, 120.	4.5	98

Alessandra Buonanno

#	Article	IF	CITATIONS
109	Small mass plunging into a Kerr black hole: Anatomy of the inspiral-merger-ringdown waveforms. Physical Review D, 2014, 90, .	4.7	52
110	Implementation of an \$mathcal{F}\$-statistic all-sky search for continuous gravitational waves in Virgo VSR1 data. Classical and Quantum Gravity, 2014, 31, 165014.	4.0	34
111	GRAVITATIONAL WAVES FROM KNOWN PULSARS: RESULTS FROM THE INITIAL DETECTOR ERA. Astrophysical Journal, 2014, 785, 119.	4.5	125
112	The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations. Classical and Quantum Gravity, 2014, 31, 115004.	4.0	42
113	Periastron advance in spinning black hole binaries: comparing effective-one-body and numerical relativity. Physical Review D, 2013, 88, .	4.7	50
114	Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nature Photonics, 2013, 7, 613-619.	31.4	825
115	Spin effects on gravitational waves from inspiraling compact binaries at second post-Newtonian order. Physical Review D, 2013, 87, .	4.7	75
116	First law of mechanics for black hole binaries with spins. Physical Review D, 2013, 87, .	4.7	47
117	Modeling the horizon-absorbed gravitational flux for equatorial-circular orbits in Kerr spacetime. Physical Review D, 2013, 88, .	4.7	42
118	Periastron advance in spinning black hole binaries: Gravitational self-force from numerical relativity. Physical Review D, 2013, 88, .	4.7	54
119	Systematic biases in parameter estimation of binary black-hole mergers. Physical Review D, 2013, 87, .	4.7	54
120	SWIFT FOLLOW-UP OBSERVATIONS OF CANDIDATE GRAVITATIONAL-WAVE TRANSIENT EVENTS. Astrophysical Journal, Supplement Series, 2012, 203, 28.	7.7	62
121	The characterization of Virgo data and its impact on gravitational-wave searches. Classical and Quantum Gravity, 2012, 29, 155002.	4.0	73
122	Modeling multipolar gravitational-wave emission from small mass-ratio mergers. Physical Review D, 2012, 85, .	4.7	63
123	Prototype effective-one-body model for nonprecessing spinning inspiral-merger-ringdown waveforms. Physical Review D, 2012, 86, .	4.7	192
124	SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3. Astrophysical Journal, 2012, 760, 12.	4.5	104
125	IMPLICATIONS FOR THE ORIGIN OF GRB 051103 FROM LIGO OBSERVATIONS. Astrophysical Journal, 2012, 755, 2.	4.5	60
126	Complete nonspinning effective-one-body metric at linear order in the mass ratio. Physical Review D, 2012, 85, .	4.7	108

#	Article	IF	CITATIONS
127	Gravitational Self-Force Correction to the Binding Energy of Compact Binary Systems. Physical Review Letters, 2012, 108, 131103.	7.8	107
128	Reducing orbital eccentricity of precessing black-hole binaries. Physical Review D, 2011, 83, .	4.7	82
129	Extreme mass-ratio inspirals in the effective-one-body approach: Quasicircular, equatorial orbits around a spinning black hole. Physical Review D, 2011, 83, .	4.7	75
130	Inspiral-merger-ringdown multipolar waveforms of nonspinning black-hole binaries using the effective-one-body formalism. Physical Review D, 2011, 84, .	4.7	209
131	Tail-induced spin-orbit effect in the gravitational radiation of compact binaries. Physical Review D, 2011, 84, .	4.7	70
132	Periastron Advance in Black-Hole Binaries. Physical Review Letters, 2011, 107, 141101.	7.8	110
133	SEARCH FOR GRAVITATIONAL WAVE BURSTS FROM SIX MAGNETARS. Astrophysical Journal Letters, 2011, 734, L35.	8.3	55
134	BEATING THE SPIN-DOWN LIMIT ON GRAVITATIONAL WAVE EMISSION FROM THE VELA PULSAR. Astrophysical Journal, 2011, 737, 93.	4.5	89
135	Post-Newtonian factorized multipolar waveforms for spinning, nonprecessing black-hole binaries. Physical Review D, 2011, 83, .	4.7	108
136	Directional Limits on Persistent Gravitational Waves Using LIGO S5 Science Data. Physical Review Letters, 2011, 107, 271102.	7.8	94
137	SEARCH FOR GRAVITATIONAL-WAVE BURSTS ASSOCIATED WITH GAMMA-RAY BURSTS USING DATA FROM LIGO SCIENCE RUN 5 AND VIRGO SCIENCE RUN 1. Astrophysical Journal, 2010, 715, 1438-1452.	4.5	60
138	FIRST SEARCH FOR GRAVITATIONAL WAVES FROM THE YOUNGEST KNOWN NEUTRON STAR. Astrophysical Journal, 2010, 722, 1504-1513.	4.5	104
139	SEARCHES FOR GRAVITATIONAL WAVES FROM KNOWN PULSARS WITH SCIENCE RUN 5 LIGO DATA. Astrophysical Journal, 2010, 713, 671-685.	4.5	155
140	Effective-one-body waveforms calibrated to numerical relativity simulations: Coalescence of nonprecessing, spinning, equal-mass black holes. Physical Review D, 2010, 81, .	4.7	123
141	Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Classical and Quantum Gravity, 2010, 27, 173001.	4.0	956
142	SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN. Astrophysical Journal, 2010, 715, 1453-1461.	4.5	90
143	All-Sky LIGO Search for Periodic Gravitational Waves in the Early Fifth-Science-Run Data. Physical Review Letters, 2009, 102, 111102.	7.8	83
144	Testing gravitational-wave searches with numerical relativity waveforms: results from the first Numerical INJection Analysis (NINJA) project. Classical and Quantum Gravity, 2009, 26, 165008.	4.0	110

#	Article	IF	CITATIONS
145	Status of NINJA: the Numerical INJection Analysis project. Classical and Quantum Gravity, 2009, 26, 114008.	4.0	39
146	An upper limit on the stochastic gravitational-wave background of cosmological origin. Nature, 2009, 460, 990-994.	27.8	303
147	Higher-order spin effects in the amplitude and phase of gravitational waveforms emitted by inspiraling compact binaries: Ready-to-use gravitational waveforms. Physical Review D, 2009, 79, .	4.7	264
148	Effective-one-body waveforms calibrated to numerical relativity simulations: Coalescence of nonspinning, equal-mass black holes. Physical Review D, 2009, 79, .	4.7	149
149	Recoil velocity at second post-Newtonian order for spinning black hole binaries. Physical Review D, 2009, 80, .	4.7	63
150	Comparison of post-Newtonian templates for compact binary inspiral signals in gravitational-wave detectors. Physical Review D, 2009, 80, .	4.7	450
151	STACKED SEARCH FOR GRAVITATIONAL WAVES FROM THE 2006 SGR 1900+14 STORM. Astrophysical Journal, 2009, 701, L68-L74.	4.5	45
152	Data-analysis driven comparison of analytic and numerical coalescing binary waveforms: Nonspinning case. Physical Review D, 2008, 77, .	4.7	120
153	High-accuracy numerical simulation of black-hole binaries: Computation of the gravitational-wave energy flux and comparisons with post-Newtonian approximants. Physical Review D, 2008, 78, .	4.7	115
154	Estimating the final spin of a binary black hole coalescence. Physical Review D, 2008, 77, .	4.7	152
155	Binary Black Hole Coalescence. AIP Conference Proceedings, 2008, , .	0.4	5
156	Summary of session B3: analytic approximations, perturbation methods and their applications. Classical and Quantum Gravity, 2008, 25, 114020.	4.0	3
157	Astrophysically triggered searches for gravitational waves: status and prospects. Classical and Quantum Gravity, 2008, 25, 114051.	4.0	26
158	First joint search for gravitational-wave bursts in LIGO and GEO 600 data. Classical and Quantum Gravity, 2008, 25, 245008.	4.0	22
159	Anatomy of the binary black hole recoil: A multipolar analysis. Physical Review D, 2008, 77, .	4.7	100
160	Relating gravitational wave constraints from primordial nucleosynthesis, pulsar timing, laser interferometers, and the CMB: Implications for the early universe. Physical Review D, 2008, 78, .	4.7	118
161	Search for Gravitational-Wave Bursts from Soft Gamma Repeaters. Physical Review Letters, 2008, 101, 211102.	7.8	69
162	Implications for the Origin of GRB 070201 from LIGO Observations. Astrophysical Journal, 2008, 681, 1419-1430.	4.5	143

#	Article	IF	CITATIONS
163	Beating the Spin-Down Limit on Gravitational Wave Emission from the Crab Pulsar. Astrophysical Journal, 2008, 683, L45-L49.	4.5	160
164	ANALYTICAL MODELING OF BINARY BLACK HOLE COALESCENCE. , 2008, , .		0
165	Search for gravitational-wave bursts in LIGO data from the fourth science run. Classical and Quantum Gravity, 2007, 24, 5343-5369.	4.0	78
166	Approaching faithful templates for nonspinning binary black holes using the effective-one-body approach. Physical Review D, 2007, 76, .	4.7	231
167	Searching for a Stochastic Background of Gravitational Waves with the Laser Interferometer Gravitational-Wave Observatory. Astrophysical Journal, 2007, 659, 918-930.	4.5	120
168	The Distribution of Recoil Velocities from Merging Black Holes. Astrophysical Journal, 2007, 662, L63-L66.	4.5	108
169	Inspiral, merger, and ring-down of equal-mass black-hole binaries. Physical Review D, 2007, 75, .	4.7	338
170	Higher-order spin effects in the dynamics of compact binaries. II. Radiation field. Physical Review D, 2006, 74, .	4.7	206
171	Higher-order spin effects in the dynamics of compact binaries. I. Equations of motion. Physical Review D, 2006, 74, .	4.7	227
172	Search for gravitational-wave bursts in LIGO's third science run. Classical and Quantum Gravity, 2006, 23, S29-S39.	4.0	40
173	Gravitational Waves from Compact Objects Accreting onto Active Galactic Nuclei. AIP Conference Proceedings, 2006, , .	0.4	1
174	Testing general relativity and probing the merger history of massive black holes with LISA. Classical and Quantum Gravity, 2005, 22, S943-S954.	4.0	84
175	Limits on Gravitational-Wave Emission from Selected Pulsars Using LIGO Data. Physical Review Letters, 2005, 94, 181103.	7.8	130
176	Upper Limits on a Stochastic Background of Gravitational Waves. Physical Review Letters, 2005, 95, 221101.	7.8	89
177	Upper limits on the strength of periodic gravitational waves from PSR J1939+2134. Classical and Quantum Gravity, 2004, 21, S671-S676.	4.0	4
178	Detecting gravitational waves from precessing binaries of spinning compact objects: Adiabatic limit. Physical Review D, 2003, 67, .	4.7	223
179	Gravitational waves from inspiralling binary black holes. Classical and Quantum Gravity, 2002, 19, 1267-1278.	4.0	6
180	Laser-interferometer gravitational-wave optical-spring detectors. Classical and Quantum Gravity, 2002, 19, 1569-1574.	4.0	18

#	Article	IF	CITATIONS
181	Optical noise correlations and beating the standard quantum limit in advanced gravitational-wave detectors. Classical and Quantum Gravity, 2001, 18, L95-L101.	4.0	46
182	Classical inhomogeneities in string cosmology. Physical Review D, 1998, 57, 2543-2556.	4.7	44
183	Expanding and contracting universes in third quantized string cosmology. Classical and Quantum Gravity, 1997, 14, L97-L103.	4.0	23
184	Spectrum of relic gravitational waves in string cosmology. Physical Review D, 1997, 55, 3330-3336.	4.7	68
185	A Class of Non-Singular Gravi–Dilaton Backgrounds. Modern Physics Letters A, 1997, 12, 1883-1889.	1.2	3
186	Lattice energy-momentum tensor with Symanzik improved actions. Physical Review D, 1995, 51, 4494-4502.	4.7	2
187	Swendsen-Wang update algorithm for the Symanzik improved σ model. Physical Review D, 1995, 51, 5865-5869.	4.7	2
188	Post-Newtonian factorized multipolar waveforms for spinning, nonprecessing black-hole binaries. , 0,		1