Peter N Golyshin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4996911/publications.pdf

Version: 2024-02-01

193 papers 13,069 citations

23567 58 h-index 27406 106 g-index

206 all docs

206 docs citations

206 times ranked 14222 citing authors

#	Article	IF	CITATIONS
1	Calm and Frenzy: marine obligate hydrocarbonoclastic bacteria sustain ocean wellness. Current Opinion in Biotechnology, 2022, 73, 337-345.	6.6	24
2	Identification of an Amylomaltase from the Halophilic Archaeon Haloquadratum walsbyi by Functional Metagenomics: Structural and Functional Insights. Life, 2022, 12, 85.	2.4	2
3	Anaerobic carboxydotrophy in sulfur-respiring haloarchaea from hypersaline lakes. ISME Journal, 2022, 16, 1534-1546.	9.8	5
4	Field response of N2O emissions, microbial communities, soil biochemical processes and winter barley growth to the addition of conventional and biodegradable microplastics. Agriculture, Ecosystems and Environment, 2022, 336, 108023.	5. 3	26
5	A mechanistic understanding of polyethylene biodegradation by the marine bacterium Alcanivorax. Journal of Hazardous Materials, 2022, 436, 129278.	12.4	34
6	Structure and evolutionary trace-assisted screening of a residue swapping the substrate ambiguity and chiral specificity in an esterase. Computational and Structural Biotechnology Journal, 2021, 19, 2307-2317.	4.1	6
7	Land cover and nutrient enrichment regulates lowâ€molecular weight dissolved organic matter turnover in freshwater ecosystems. Limnology and Oceanography, 2021, 66, 2979-2987.	3.1	10
8	Utilization of low-molecular-weight organic compounds by the filterable fraction of a lotic microbiome. FEMS Microbiology Ecology, 2021, 97, .	2.7	0
9	Genetically engineered proteins with two active sites for enhanced biocatalysis and synergistic chemo- and biocatalysis. Nature Catalysis, 2020, 3, 319-328.	34.4	90
10	High Representation of Archaea Across All Depths in Oxic and Low-pH Sediment Layers Underlying an Acidic Stream. Frontiers in Microbiology, 2020, $11,576520$.	3.5	11
11	Symbiosis between nanohaloarchaeon and haloarchaeon is based on utilization of different polysaccharides. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20223-20234.	7.1	49
12	Degradation of Hydrocarbons and Heavy Metal Reduction by Marine Bacteria in Highly Contaminated Sediments. Microorganisms, 2020, 8, 1402.	3.6	34
13	Dissimilatory sulfate reduction in the archaeon †Candidatus Vulcanisaeta moutnovskia†sheds light on the evolution of sulfur metabolism. Nature Microbiology, 2020, 5, 1428-1438.	13.3	27
14	Rapid depletion of dissolved organic sulphur (DOS) in freshwaters. Biogeochemistry, 2020, 149, 105-113.	3.5	10
15	Protein expression in the obligate hydrocarbonâ€degrading psychrophileOleispira antarcticaRBâ€8 during alkane degradation and cold tolerance. Environmental Microbiology, 2020, 22, 1870-1883.	3.8	27
16	Hydrocarbon-Degrading Bacteria Alcanivorax and Marinobacter Associated With Microalgae Pavlova lutheri and Nannochloropsis oculata. Frontiers in Microbiology, 2020, 11, 572931.	3.5	35
17	Proteome Cold-Shock Response in the Extremely Acidophilic Archaeon, Cuniculiplasma divulgatum. Microorganisms, 2020, 8, 759.	3.6	3
18	Microbial uptake kinetics of dissolved organic carbon (DOC) compound groups from river water and sediments. Scientific Reports, 2019, 9, 11229.	3.3	31

#	Article	IF	CITATIONS
19	Nutrient enrichment induces a shift in dissolved organic carbon (DOC) metabolism in oligotrophic freshwater sediments. Science of the Total Environment, 2019, 690, 1131-1139.	8.0	22
20	Microbial Communities of Polymetallic Deposits' Acidic Ecosystems of Continental Climatic Zone With High Temperature Contrasts. Frontiers in Microbiology, 2019, 10, 1573.	3 . 5	34
21	Archaea dominate the microbial community in an ecosystem with low-to-moderate temperature and extreme acidity. Microbiome, 2019, 7, 11.	11.1	58
22	Cuniculiplasmataceae, their ecogenomic and metabolic patterns, and interactions with â€~ARMAN'. Extremophiles, 2019, 23, 1-7.	2.3	15
23	Diversity of "Ca. Micrarchaeota―in Two Distinct Types of Acidic Environments and Their Associations with Thermoplasmatales. Genes, 2019, 10, 461.	2.4	27
24	Reply to †Evolutionary placement of Methanonatronarchaeia'. Nature Microbiology, 2019, 4, 560-561.	13.3	7
25	Decoding the ocean's microbiological secrets for marine enzyme biodiscovery. FEMS Microbiology Letters, 2019, 366, .	1.8	26
26	Bioprospecting Reveals Class III ω-Transaminases Converting Bulky Ketones and Environmentally Relevant Polyamines. Applied and Environmental Microbiology, 2019, 85, .	3.1	17
27	Marine, Aerobic Hydrocarbon-Degrading Gammaproteobacteria: The Family Alcanivoracaceae. , 2019, , 1-13.		7
28	Aerobic Hydrocarbon-Degrading Gammaproteobacteria: Oleiphilaceae and Relatives., 2019,, 153-166.		1
29	Marine, Aerobic Hydrocarbon-Degrading Gammaproteobacteria: The Family Alcanivoracaceae. , 2019, , 167-179.		10
30	Hydrocarbon-Degrading Microbes as Sources of New Biocatalysts. , 2019, , 353-373.		3
31	Aerobic Hydrocarbon-Degrading Gammaproteobacteria: Oleiphilaceae and Relatives. , 2019, , 1-14.		0
32	Draft Genome Sequence of <i>Monaibacterium marinum</i> C7 ^T , Isolated from Seawater from the Menai Straits, Wales, United Kingdom. Genome Announcements, 2018, 6, .	0.8	1
33	Rational Engineering of Multiple Active Sites in an Ester Hydrolase. Biochemistry, 2018, 57, 2245-2255.	2.5	57
34	Microbiome and infectivity studies reveal complex polyspecies tree disease in Acute Oak Decline. ISME Journal, 2018, 12, 386-399.	9.8	75
35	Determinants and Prediction of Esterase Substrate Promiscuity Patterns. ACS Chemical Biology, 2018, 13, 225-234.	3.4	106
36	Proteogenomic Analysis of Epibacterium Mobile BBCC367, a Relevant Marine Bacterium Isolated From the South Pacific Ocean. Frontiers in Microbiology, 2018, 9, 3125.	3.5	4

3

#	Article	IF	CITATIONS
37	Differential Protein Expression During Growth on Medium Versus Long-Chain Alkanes in the Obligate Marine Hydrocarbon-Degrading Bacterium Thalassolituus oleivorans MIL-1. Frontiers in Microbiology, 2018, 9, 3130.	3.5	36
38	Members of the Uncultured Taxon OP1 ("Acetothermiaâ€) Predominate in the Microbial Community of an Alkaline Hot Spring at East-Tuvinian Upland. Microbiology, 2018, 87, 783-795.	1.2	6
39	Sulfur Respiration in a Group of Facultatively Anaerobic Natronoarchaea Ubiquitous in Hypersaline Soda Lakes. Frontiers in Microbiology, 2018, 9, 2359.	3.5	30
40	Screening and Characterization of Novel Polyesterases from Environmental Metagenomes with High Hydrolytic Activity against Synthetic Polyesters. Environmental Science & Environmental Science & 2018, 52, 12388-12401.	10.0	56
41	Hydrocarbon-Degrading Microbes as Sources of New Biocatalysts. , 2018, , 1-21.		1
42	A metagenomic collection of novel and highly efficient biocatalysts for industrial biotechnology. Impact, 2018, 2018, 82-84.	0.1	5
43	Relationships between Substrate Promiscuity and Chiral Selectivity of Esterases from Phylogenetically and Environmentally Diverse Microorganisms. Catalysts, 2018, 8, 10.	3.5	11
44	Nano-Sized and Filterable Bacteria and Archaea: Biodiversity and Function. Frontiers in Microbiology, 2018, 9, 1971.	3.5	51
45	Discovery of anaerobic lithoheterotrophic haloarchaea, ubiquitous in hypersaline habitats. ISME Journal, 2017, 11, 1245-1260.	9.8	79
46	Activity screening of environmental metagenomic libraries reveals novel carboxylesterase families. Scientific Reports, 2017, 7, 44103.	3.3	67
47	Microbial use of low molecular weight DOM in filtered and unfiltered freshwater: Role of ultra-small microorganisms and implications for water quality monitoring. Science of the Total Environment, 2017, 598, 377-384.	8.0	27
48	Shotgun Metagenomic Sequencing Analysis of Soft-Rot Enterobacteriaceae in Polymicrobial Communities. Methods in Molecular Biology, 2017, 1539, 85-97.	0.9	2
49	Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis. Nature Microbiology, 2017, 2, 17081.	13.3	213
50	Ferrous iron―and ammonium―ich diffuse vents support habitatâ€specific communities in a shallow hydrothermal field off the Basiluzzo Islet (Aeolian Volcanic Archipelago) Geobiology, 2017, 15, 664-677.	2.4	17
51	A communal catalogue reveals Earth's multiscale microbial diversity. Nature, 2017, 551, 457-463.	27.8	1,942
52	Subtle shifts in microbial communities occur alongside the release of carbon induced by drought and rewetting in contrasting peatland ecosystems. Scientific Reports, 2017, 7, 11314.	3.3	20
53	Metabolic and evolutionary patterns in the extremely acidophilic archaeon Ferroplasma acidiphilum YT. Scientific Reports, 2017, 7, 3682.	3.3	21
54	The genome analysis of Oleiphilus messinensis ME102 (DSM 13489 T) reveals backgrounds of its obligate alkane-devouring marine lifestyle. Marine Genomics, 2017, 36, 41-47.	1.1	18

#	Article	IF	CITATIONS
55	The rumen microbiome: an underexplored resource for novel antimicrobial discovery. Npj Biofilms and Microbiomes, 2017, 3, 33.	6.4	51
56	â€~ARMAN' archaea depend on association with euryarchaeal host in culture and in situ. Nature Communications, 2017, 8, 60.	12.8	116
57	Functionalization and Modification of Hydrocarbon-Like Molecules Guided by Metagenomics: Enzymes Most Requested at the Industrial Scale for Chemical Synthesis as Study Cases., 2017,, 309-329.		0
58	Buwchitin: A Ruminal Peptide with Antimicrobial Potential against Enterococcus faecalis. Frontiers in Chemistry, 2017, 5, 51.	3.6	19
59	Metagenomic Mining of Enzyme Diversity. , 2017, , 245-269.		2
60	Distribution of Hydrocarbon Degradation Pathways in the Sea. , 2017, , 629-651.		0
61	Monaibacterium marinum, gen. nov, sp. nov, a new member of the Alphaproteobacteria isolated from seawater of Menai Straits, Wales, UK. International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 3310-3317.	1.7	18
62	The novel extremely acidophilic, cell-wall-deficient archaeon Cuniculiplasma divulgatum gen. nov., sp. nov. represents a new family, Cuniculiplasmataceae fam. nov., of the order Thermoplasmatales. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 332-340.	1.7	96
63	Combined Whole-Cell High-Throughput Functional Screening for Identification of New Nicotinamidases/Pyrazinamidases in Metagenomic/Polygenomic Libraries. Frontiers in Microbiology, 2016, 7, 1915.	3.5	5
64	Analysis of defence systems and a conjugative IncPâ€1 plasmid in the marine polyaromatic hydrocarbonsâ€degrading bacterium <i>Cycloclasticus</i> sp. 78â€ME. Environmental Microbiology Reports, 2016, 8, 508-519.	2.4	5
65	Biology of archaea from a novel family Cuniculiplasmataceae (Thermoplasmata) ubiquitous in hyperacidic environments. Scientific Reports, 2016, 6, 39034.	3.3	31
66	Estimating the success of enzyme bioprospecting through metagenomics: current status and future trends. Microbial Biotechnology, 2016, 9, 22-34.	4.2	175
67	Biochemical and Structural Insights into Enzymatic Depolymerization of Polylactic Acid and Other Polyesters by Microbial Carboxylesterases. Biomacromolecules, 2016, 17, 2027-2039.	5.4	114
68	Structural and Functional Characterization of a Ruminal \hat{l}^2 -Glycosidase Defines a Novel Subfamily of Glycoside Hydrolase Family 3 with Permuted Domain Topology. Journal of Biological Chemistry, 2016, 291, 24200-24214.	3.4	21
69	Insights into the degradation capacities of Amycolatopsis tucumanensis DSM 45259 guided by microarray data. World Journal of Microbiology and Biotechnology, 2016, 32, 201.	3.6	8
70	Genome sequence of obligate marine polycyclic aromatic hydrocarbons-degrading bacterium Cycloclasticus sp. 78-ME, isolated from petroleum deposits of the sunken tanker Amoco Milford Haven , Mediterranean Sea. Marine Genomics, 2016, 25, 11-13.	1.1	37
71	Elemental sulfur and acetate can support life of a novel strictly anaerobic haloarchaeon. ISME Journal, 2016, 10, 240-252.	9.8	62
72	Functionalization and Modification of Hydrocarbon-Like Molecules Guided by Metagenomics: Enzymes Most Requested at the Industrial Scale for Chemical Synthesis as Study Cases., 2016,, 1-21.		1

#	Article	IF	Citations
73	Diversity and Physiologies of Acidophilic Archaea. , 2016, , 93-106.		8
74	Metagenomic Mining of Enzyme Diversity. , 2016, , 1-25.		1
75	Distribution of Hydrocarbon Degradation Pathways in the Sea. , 2016, , 1-23.		O
76	Biodiversity for biocatalysis: A review of the \hat{l}_{\pm}/\hat{l}^2 -hydrolase fold superfamily of esterases-lipases discovered in metagenomes. Biocatalysis and Biotransformation, 2015, 33, 235-249.	2.0	48
77	Metaproteomics and metabolomics analyses of chronically petroleumâ€polluted sites reveal the importance of general anaerobic processes uncoupled with degradation. Proteomics, 2015, 15, 3508-3520.	2,2	58
78	Functional Screening of Hydrolytic Activities Reveals an Extremely Thermostable Cellulase from a Deep-Sea Archaeon. Frontiers in Bioengineering and Biotechnology, 2015, 3, 95.	4.1	26
79	Degradation Network Reconstruction in Uric Acid and Ammonium Amendments in Oil-Degrading Marine Microcosms Guided by Metagenomic Data. Frontiers in Microbiology, 2015, 6, 1270.	3. 5	18
80	Metagenomics as a Tool for Enzyme Discovery: Hydrolytic Enzymes from Marine-Related Metagenomes. Advances in Experimental Medicine and Biology, 2015, 883, 1-20.	1.6	35
81	Microbial community of the deepâ€sea brine <scp>L</scp> ake <scp><i>K</i></scp> <i>ryos</i> <seawater–brine <scp="" active="" as="" below="" by="" chaotropicity="" interface="" is="" life="" limit="" of="" recovery="" revealed="" the="">mRNA. Environmental Microbiology, 2015, 17, 364-382.</seawater–brine>	3.8	109
82	Identification and Characterization of Carboxyl Esterases of Gill Chamber-Associated Microbiota in the Deep-Sea Shrimp Rimicaris exoculata by Using Functional Metagenomics. Applied and Environmental Microbiology, 2015, 81, 2125-2136.	3.1	35
83	Pressure adaptation is linked to thermal adaptation in saltâ€saturated marine habitats. Environmental Microbiology, 2015, 17, 332-345.	3.8	40
84	Isolation and characterization of novel lipases/esterases from a bovine rumen metagenome. Applied Microbiology and Biotechnology, 2015, 99, 5475-5485.	3.6	59
85	Bacterial population and biodegradation potential in chronically crude oil-contaminated marine sediments are strongly linked to temperature. Scientific Reports, 2015, 5, 11651.	3.3	91
86	Conversion of Uric Acid into Ammonium in Oil-Degrading Marine Microbial Communities: a Possible Role of Halomonads. Microbial Ecology, 2015, 70, 724-740.	2.8	14
87	The ocean sampling day consortium. GigaScience, 2015, 4, 27.	6.4	185
88	Functional Screening of Metagenomic Libraries: Enzymes Acting on Greasy Molecules as Study Case. Springer Protocols, 2015, , 13-36.	0.3	1
89	Genomic Analysis of Pure Cultures and Communities. Springer Protocols, 2015, , 5-27.	0.3	16
90	Diversity of hydrolases from hydrothermal vent sediments of the Levante Bay, Vulcano Island (Aeolian) Tj ETQq0 esterases and an arabinopyranosidase. Applied Microbiology and Biotechnology, 2015, 99, 10031-10046.	0 0 rgBT / 3.6	Overlock 10 T 36

esterases and an arabinopyranosidase. Applied Microbiology and Biotechnology, 2015, 99, 10031-10046.

6

#	Article	IF	CITATIONS
91	The intergenic transcribed spacer region 1 as a molecular marker for identification and discrimination of $\langle i \rangle$ Enterobacteriaceae $\langle i \rangle$ associated with acute oak decline. Journal of Applied Microbiology, 2015, 118, 193-201.	3.1	2
92	The environment shapes microbial enzymes: five cold-active and salt-resistant carboxylesterases from marine metagenomes. Applied Microbiology and Biotechnology, 2015, 99, 2165-2178.	3.6	83
93	Metagenomics of Deep Hypersaline Anoxic Basins. , 2015, , 341-348.		0
94	Terrestrial Invertebrate Animal Metagenomics, Lumbricidae., 2015,, 622-631.		0
95	Enzymes from Extreme Environments. , 2014, , 43-61.		1
96	<scp><i>H</i></scp> <i>alorhabdus tiamatea:</i> proteogenomics and glycosidase activity measurements identify the first cultivated euryarchaeon from a deepâ€sea anoxic brine lake as potential polysaccharide degrader. Environmental Microbiology, 2014, 16, 2525-2537.	3.8	41
97	The gill chamber epibiosis of deepâ€sea shrimp <scp><i>R</i></scp> <i>imicarisexoculata</i> : an inâ€depth metagenomic investigation and discovery of <scp><i>Z</i></scp> <i>etaproteobacteria</i> . Environmental Microbiology, 2014, 16, 2723-2738.	3.8	93
98	Effective bioremediation strategy for rapid in situ cleanup of anoxic marine sediments in mesocosm oil spill simulation. Frontiers in Microbiology, 2014, 5, 162.	3.5	62
99	Alcanivorax borkumensis produces an extracellular siderophore in iron-limitation condition maintaining the hydrocarbon-degradation efficiency. Marine Genomics, 2014, 17, 43-52.	1.1	27
100	Heterotrophic bicarbonate assimilation is the main process of <i>de novo</i> organic carbon synthesis in hadal zone of the <scp>H</scp> ellenic <scp>T</scp> rench, the deepest part of <scp>M</scp> editerranean <scp>S</scp> ea. Environmental Microbiology Reports, 2014, 6, 709-722.	2.4	23
101	The Family Oleiphilaceae. , 2014, , 529-533.		5
102	Metagenomic analysis of hadopelagic microbial assemblages thriving at the deepest part of Mediterranean Sea, Matapanâ€Vavilov Deep. Environmental Microbiology, 2013, 15, 167-182.	3.8	64
103	Genome sequence and functional genomic analysis of the oil-degrading bacterium Oleispira antarctica. Nature Communications, 2013, 4, 2156.	12.8	115
104	Single residues dictate the co-evolution of dual esterases: MCP hydrolases from the $\hat{l}\pm/\hat{l}^2$ hydrolase family. Biochemical Journal, 2013, 454, 157-166.	3.7	34
105	Bioremediation of Southern Mediterranean oil polluted sites comes of age. New Biotechnology, 2013, 30, 743-748.	4.4	32
106	Bioreduction of Sheep Carcasses Effectively Contains and Reduces Pathogen Levels under Operational and Simulated Breakdown Conditions. Environmental Science & Environmental Science & 2013, 47, 5267-5275.	10.0	4
107	Microbial life in the Lake Medee, the largest deep-sea salt-saturated formation. Scientific Reports, 2013, 3, 3554.	3.3	78
108	Metagenomics of Deep Hypersaline Anoxic Basins. , 2013, , 1-9.		2

#	Article	IF	Citations
109	Genome Sequence of Thalassolituus oleivorans MIL-1 (DSM 14913 ^T). Genome Announcements, 2013, 1, e0014113.	0.8	20
110	ULIXES, unravelling and exploiting Mediterranean Sea microbial diversity and ecology for xenobiotics' and pollutants' clean up. Reviews in Environmental Science and Biotechnology, 2012, 11, 207-211.	8.1	12
111	Fate of pathogens in a simulated bioreduction system for livestock carcasses. Waste Management, 2012, 32, 933-938.	7.4	14
112	Methylorosula polaris gen. nov., sp. nov., an aerobic, facultatively methylotrophic psychrotolerant bacterium from tundra wetland soil. International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 638-646.	1.7	21
113	Microbial \hat{l}^2 -glucosidases from cow rumen metagenome enhance the saccharification of lignocellulose in combination with commercial cellulase cocktail. Biotechnology for Biofuels, 2012, 5, 73.	6.2	78
114	Temperature and water controls on vegetation emergence, microbial dynamics, and soil carbon and nitrogen fluxes in a high Arctic tundra ecosystem. Functional Ecology, 2012, 26, 1366-1380.	3.6	33
115	Structure and activity of the cold-active and anion-activated carboxyl esterase OLEI01171 from the oil-degrading marine bacterium <i>Oleispira antarctica</i>). Biochemical Journal, 2012, 445, 193-203.	3.7	31
116	Functional Metagenomics Unveils a Multifunctional Glycosyl Hydrolase from the Family 43 Catalysing the Breakdown of Plant Polymers in the Calf Rumen. PLoS ONE, 2012, 7, e38134.	2.5	83
117	Unveiling microbial life in the new deepâ€sea hypersaline Lake <i>Thetis</i> . Part II: a metagenomic study. Environmental Microbiology, 2012, 14, 268-281.	3.8	50
118	Composition and dynamics of biostimulated indigenous oil-degrading microbial consortia from the Irish, North and Mediterranean Seas: a mesocosm study. FEMS Microbiology Ecology, 2012, 81, 520-536.	2.7	29
119	Mineralization of low molecular weight carbon substrates in soil solution under laboratory and field conditions. Soil Biology and Biochemistry, 2012, 48, 88-95.	8.8	66
120	Gene Sets for Utilization of Primary and Secondary Nutrition Supplies in the Distal Gut of Endangered Iberian Lynx. PLoS ONE, 2012, 7, e51521.	2.5	23
121	The environmental and biosecurity characteristics of livestock carcass disposal methods: A review. Waste Management, 2011, 31, 767-778.	7.4	143
122	Unveiling microbial life in new deepâ€sea hypersaline Lake <i>Thetis</i> . Part I: Prokaryotes and environmental settings. Environmental Microbiology, 2011, 13, 2250-2268.	3.8	86
123	A novel plateletâ€activating factor acetylhydrolase discovered in a metagenome from the earthwormâ€associated microbial community. Environmental Microbiology, 2011, 13, 3036-3046.	3.8	8
124	Transcriptional profiling of the marine oil-degrading bacterium Alcanivorax borkumensis during growth on n-alkanes. FEMS Microbiology Letters, 2011, 319, 160-168.	1.8	65
125	Contribution of crenarchaeal autotrophic ammonia oxidizers to the dark primary production in Tyrrhenian deep waters (Central Mediterranean Sea). ISME Journal, 2011, 5, 945-961.	9.8	109
126	Molecular Methods to Study Complex Microbial Communities. Methods in Molecular Biology, 2010, 668, 1-37.	0.9	10

#	Article	IF	CITATIONS
127	Effect of the Earthworms Lumbricus terrestris and Aporrectodea caliginosa on Bacterial Diversity in Soil. Microbial Ecology, 2010, 59, 574-587.	2.8	92
128	A Mesocosm Study of the Changes in Marine Flagellate and Ciliate Communities in a Crude Oil Bioremediation Trial. Microbial Ecology, 2010, 60, 180-191.	2.8	23
129	Fate of prions in soil: Degradation of recombinant prion in aqueous extracts from soil and casts of two earthworm species. Soil Biology and Biochemistry, 2010, 42, 1168-1171.	8.8	10
130	Interâ€conversion of catalytic abilities in a bifunctional carboxyl/feruloylâ€esterase from earthworm gut metagenome. Microbial Biotechnology, 2010, 3, 48-58.	4.2	15
131	Genomic signatures of fifth autotrophic carbon assimilation pathway in bathypelagic <i>Crenarchaeota</i> . Microbial Biotechnology, 2010, 3, 595-606.	4.2	19
132	Novel Hybrid Esteraseâ€Haloacid Dehalogenase Enzyme. ChemBioChem, 2010, 11, 1975-1978.	2.6	16
133	Systems approaches to microbial communities and their functioning. Current Opinion in Biotechnology, 2010, 21, 532-538.	6.6	69
134	Diversity of Glycosyl Hydrolases from Cellulose-Depleting Communities Enriched from Casts of Two Earthworm Species. Applied and Environmental Microbiology, 2010, 76, 5934-5946.	3.1	65
135	Screening Metagenomic Libraries for Laccase Activities. Methods in Molecular Biology, 2010, 668, 189-202.	0.9	18
136	Metagenomics for Mining New Genetic Resources of Microbial Communities. Journal of Molecular Microbiology and Biotechnology, 2009, 16 , $109-123$.	1.0	209
137	Acidiplasma aeolicum gen. nov., sp. nov., a euryarchaeon of the family Ferroplasmaceae isolated from a hydrothermal pool, and transfer of Ferroplasma cupricumulans to Acidiplasma cupricumulans comb. nov International Journal of Systematic and Evolutionary Microbiology, 2009, 59, 2815-2823.	1.7	93
138	Metagenomics as a new technological tool to gain scientific knowledge. World Journal of Microbiology and Biotechnology, 2009, 25, 945-954.	3.6	25
139	Bacterial consortium proteomics under 4â€chlorosalicylate carbonâ€limiting conditions. Proteomics, 2009, 9, 2273-2285.	2.2	14
140	Metagenomics approaches in systems microbiology. FEMS Microbiology Reviews, 2009, 33, 236-255.	8.6	130
141	Microbial consortia in mesocosm bioremediation trial using oil sorbents, slow-release fertilizer and bioaugmentation. FEMS Microbiology Ecology, 2009, 69, 288-300.	2.7	44
142	â€~ <i>Candidatus</i> Lumbricincola', a novel lineage of uncultured <i>Mollicutes</i> from earthworms of family <i>Lumbricidae</i> Environmental Microbiology, 2009, 11, 1016-1026.	3.8	57
143	Reactome Array: Forging a Link Between Metabolome and Genome. Science, 2009, 326, 252-257.	12.6	39
144	Rare Metabolic Conversionsâ€"Harvesting Diversity through Nature. , 2009, , .		0

#	Article	IF	Citations
145	Niche-specificity factors of a marine oil-degrading bacterium (i) Alcanivorax borkumensis (i) SK2. FEMS Microbiology Letters, 2008, 285, 89-96.	1.8	36
146	Recent trends in industrial microbiology. Current Opinion in Microbiology, 2008, 11, 240-248.	5.1	58
147	A purple acidophilic di-ferric DNA ligase from <i>Ferroplasma</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8878-8883.	7.1	27
148	Mining enzymes from extreme environments. Current Opinion in Microbiology, 2007, 10, 207-214.	5.1	213
149	Catalytic role of conserved HQGE motif in the CE6 carbohydrate esterase family. FEBS Letters, 2007, 581, 4657-4662.	2.8	18
150	Analysis of Storage Lipid Accumulation in <i>Alcanivorax borkumensis</i> Triacylglycerol Biosynthesis Routes in Bacteria. Journal of Bacteriology, 2007, 189, 918-928.	2.2	133
151	Microbial metagenomes: moving forward industrial biotechnology. Journal of Chemical Technology and Biotechnology, 2007, 82, 421-423.	3.2	8
152	Obligate oil-degrading marine bacteria. Current Opinion in Biotechnology, 2007, 18, 257-266.	6.6	769
153	Primary producing prokaryotic communities of brine, interface and seawater above the halocline of deep anoxic lake L'Atalante, Eastern Mediterranean Sea. ISME Journal, 2007, 1, 743-755.	9.8	99
154	The cellular machinery of Ferroplasma acidiphilum is iron-protein-dominated. Nature, 2007, 445, 91-94.	27.8	88
155	Limits of life in MgCl ₂ â€containing environments: chaotropicity defines the window. Environmental Microbiology, 2007, 9, 801-813.	3.8	254
156	Biochemical and structural features of a novel cyclodextrinase from cow rumen metagenome. Biotechnology Journal, 2007, 2, 207-213.	3.5	39
157	Characterization of a chitinolytic enzyme from Serratia sp. KCK isolated from kimchi juice. Applied Microbiology and Biotechnology, 2007, 75, 1275-1283.	3.6	32
158	Microbial Community of a Hydrothermal Mud Vent Underneath the Deep-Sea Anoxic Brine Lake Urania (Eastern Mediterranean). Origins of Life and Evolution of Biospheres, 2007, 37, 177-188.	1.9	47
159	Characterization and role of a metalloprotease induced by chitin in Serratia sp. KCK. Journal of Industrial Microbiology and Biotechnology, 2007, 34, 715-721.	3.0	10
160	Proteomic Insights into Metabolic Adaptations in Alcanivorax borkumensis Induced by Alkane Utilization. Journal of Bacteriology, 2006, 188, 3763-3773.	2,2	139
161	Novel Polyphenol Oxidase Mined from a Metagenome Expression Library of Bovine Rumen. Journal of Biological Chemistry, 2006, 281, 22933-22942.	3.4	168
162	Low temperature-induced systems failure in Escherichia coli: Insights from rescue by cold-adapted chaperones. Proteomics, 2006, 6, 193-206.	2,2	73

#	Article	IF	Citations
163	The 'pH optimum anomaly' of intracellular enzymes of Ferroplasma acidiphilum. Environmental Microbiology, 2006, 8, 416-425.	3.8	48
164	Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis. Nature Biotechnology, 2006, 24, 997-1004.	17.5	417
165	Stratified prokaryote network in the oxic–anoxic transition of a deep-sea halocline. Nature, 2006, 440, 203-207.	27.8	215
166	Mutation in a " tesB -Like―Hydroxyacyl-Coenzyme A-Specific Thioesterase Gene Causes Hyperproduction of Extracellular Polyhydroxyalkanoates by Alcanivorax borkumensis SK2. Journal of Bacteriology, 2006, 188, 8452-8459.	2.2	79
167	A novel \hat{l} ±-glucosidase from the acidophilic archaeon Ferroplasma acidiphilum strain Y with high transglycosylation activity and an unusual catalytic nucleophile. Biochemical Journal, 2005, 391, 269-276.	3.7	41
168	Microbial Enzymes Mined from the Urania Deep-Sea Hypersaline Anoxic Basin. Chemistry and Biology, 2005, 12, 895-904.	6.0	142
169	Mining genomes and â€~metagenomes' for novel catalysts. Current Opinion in Biotechnology, 2005, 16, 588-593.	6.6	146
170	Chemical biotechnology: what's new, what's next?. Current Opinion in Biotechnology, 2005, 16, 585-587.	6.6	2
171	Novel hydrolase diversity retrieved from a metagenome library of bovine rumen microflora. Environmental Microbiology, 2005, 7, 1996-2010.	3.8	258
172	Natural microbial diversity in superficial sediments of Milazzo Harbor (Sicily) and community successions during microcosm enrichment with various hydrocarbons. Environmental Microbiology, 2005, 7, 1426-1441.	3.8	194
173	Conversion of a Carboxylesterase into a Triacylglycerol Lipase by a Random Mutation. Angewandte Chemie - International Edition, 2005, 44, 7553-7557.	13.8	32
174	Expression of a Temperature-Sensitive Esterase in a Novel Chaperone-Based Escherichia coli Strain. Applied and Environmental Microbiology, 2004, 70, 4499-4504.	3.1	71
175	Thalassolituus oleivorans gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. International Journal of Systematic and Evolutionary Microbiology, 2004, 54, 141-148.	1.7	160
176	Functional consequences of single:double ring transitions in chaperonins: life in the cold. Molecular Microbiology, 2004, 53, 167-182.	2.5	42
177	Crude oil-induced structural shift of coastal bacterial communities of rod bay (Terra Nova Bay, Ross) Tj ETQq1 1 (Microbiology Ecology, 2004, 49, 419-432.	0.784314 i 2.7	rgBT /Overlo 109
178	Genomic and mechanistic insights into the biodegradation of organic pollutants. Current Opinion in Biotechnology, 2004, 15, 215-224.	6.6	113
179	Crude oil-induced structural shift of coastal bacterial communities of rod bay (Terra Nova Bay, Ross) Tj ETQq1 1 (Microbiology Ecology, 2004, 49, 419-419.	0.784314 i 2.7	rgBT /Overlo 2
180	New tools for elucidating the ecology of micro-organisms in aquatic environments. FEMS Microbiology Ecology, 2003, 46, 231-231.	2.7	0

#	Article	IF	CITATIONS
181	Chaperonins govern growth of Escherichia coli at low temperatures. Nature Biotechnology, 2003, 21, 1267-1267.	17.5	7
182	Genome sequence completed of Alcanivorax borkumensis, a hydrocarbon-degrading bacterium that plays a global role in oil removal from marine systems. Journal of Biotechnology, 2003, 106, 215-220.	3.8	126
183	Oleispira antarctica gen. nov., sp. nov., a novel hydrocarbonoclastic marine bacterium isolated from Antarctic coastal sea water. International Journal of Systematic and Evolutionary Microbiology, 2003, 53, 779-785.	1.7	259
184	Chaperonins govern growth of Escherichia coli at low temperatures. Nature Biotechnology, 2003, 21, 1266-1267.	17.5	228
185	Thermoleophilum album and Thermoleophilum minutum are culturable representatives of group 2 of the Rubrobacteridae (Actinobacteria). International Journal of Systematic and Evolutionary Microbiology, 2003, 53, 377-380.	1.7	35
186	Polychlorinated biphenyl-degrading microbial communities in soils and sediments. Current Opinion in Microbiology, 2002, 5, 246-253.	5.1	263
187	The aerobic dechlorination activities of two bacterial species isolated from a refuse dumpsite in Nigeria. International Microbiology, 2002, 5, 21-24.	2.4	6
188	Microbial community of a saline mud volcano at San Biagio-Belpasso, Mt. Etna (Italy). Environmental Microbiology, 2002, 4, 249-256.	3.8	64
189	Oleiphilaceae fam. nov., to include Oleiphilus messinensis gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons International Journal of Systematic and Evolutionary Microbiology, 2002, 52, 901-911.	1.7	118
190	Upstream-independent ribosomal RNA amplification analysis (URA): a new approach to characterizing the diversity of natural microbial communities. Environmental Microbiology, 2001, 3, 662-666.	3.8	8
191	Structural characterization of lichenysin A components by fast atom bombardment tandem mass spectrometry. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 1999, 1438, 273-280.	2.4	59
192	A putative lichenysin A synthetase operon in Bacillus licheniformis: initial characterization. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1998, 1399, 141-153.	2.4	39
193	ComA-Dependent Transcriptional Activation of Lichenysin A Synthetase Promoter in Bacillus subtilis cells. Biotechnology Progress, 1997, 13, 757-761.	2.6	23