
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4996864/publications.pdf Version: 2024-02-01

MIKE HURBADD

#	Article	lF	CITATIONS
1	On target with a new mechanism for the regulation of protein phosphorylation. Trends in Biochemical Sciences, 1993, 18, 172-177.	7.5	918
2	Functional domain structure of calcineurin A: mapping by limited proteolysis. Biochemistry, 1989, 28, 1868-1874.	2.5	200
3	Regulation of protein phosphatase-1G from rabbit/skeletal muscle. 1. Phosphorylation by cAMP-dependent protein kinase at site 2 releases catalytic subunit from the glycogen-bound holoenzyme. FEBS Journal, 1989, 186, 701-709.	0.2	118
4	Parasexual genetic analysis of Candida albicans by spheroplast fusion. Journal of Bacteriology, 1981, 146, 833-840.	2.2	115
5	Mitochondrial ATP synthase F1-β-subunit is a calcium-binding protein. FEBS Letters, 1996, 391, 323-329.	2.8	113
6	Calcium Transport Across the Dental Enamel Epithelium. Critical Reviews in Oral Biology and Medicine, 2000, 11, 437-466.	4.4	101
7	Regulation of protein phosphatase-1G from rabbit skeletal muscle. 2. Catalytic subunit translocation is a mechanism for reversible inhibition of activity toward glycogen-bound substrates. FEBS Journal, 1989, 186, 711-716.	0.2	99
8	Identification of novel candidate genes involved in mineralization of dental enamel by genomeâ€wide transcript profiling. Journal of Cellular Physiology, 2012, 227, 2264-2275.	4.1	94
9	Surface Integrity Governs the Proteome of Hypomineralized Enamel. Journal of Dental Research, 2010, 89, 1160-1165.	5.2	90
10	The glycogen-binding subunit of protein phosphatase-1g from rabbit skeletal muscle. Further characterisation of its structure and glycogen-binding properties. FEBS Journal, 1989, 180, 457-465.	0.2	80
11	Calbindin28kDa and Calmodulin are Hyperabundant in Rat Dental Enamel Cells. Identification of the Protein Phosphatase Calcineurin as a Principal Calmodulin Target and of a Secretion-Related Role for Calbindin28kDa. FEBS Journal, 1995, 230, 68-79.	0.2	76
12	ERp29 Restricts Connexin43 Oligomerization in the Endoplasmic Reticulum. Molecular Biology of the Cell, 2009, 20, 2593-2604.	2.1	75
13	Multisite phosphorylation of the glycogen-binding subunit of protein phosphatase-1G by cyclic AMP-dependent protein kinase and glycogen synthase kinase-3. FEBS Letters, 1989, 248, 67-72.	2.8	70
14	Molecular cloning of ERp29, a novel and widely expressed resident of the endoplasmic reticulum. FEBS Letters, 1997, 402, 145-150.	2.8	70
15	Targetting of protein phosphatase 1 to the sarcoplasmic reticulum of rabbit skeletal muscle by a protein that is very similar or identical to the G subunit that directs the enzyme to glycogen. FEBS Journal, 1990, 189, 243-249.	0.2	69
16	New Paradigms on the Transport Functions of Maturation-stage Ameloblasts. Journal of Dental Research, 2013, 92, 122-129.	5.2	64
17	Abundant Calcium Homeostasis Machinery in Rat Dental Enamel Cells. FEBS Journal, 1996, 239, 611-623.	0.2	62
18	Isolation of ERp29, a novel endoplasmic reticulum protein, from rat enamel cells. FEBS Journal, 2000, 267, 1945-1957.	0.2	55

#	Article	IF	CITATIONS
19	Isolation and morphological characterization of a mycelial mutant of Candida albicans. Journal of Bacteriology, 1986, 165, 61-65.	2.2	54
20	Partial structure and hormonal regulation of rabbit liver inhibitor-1; distribution of inhibitor-1 and inhibitor-2 in rabbit and rat tissues. Biochimica Et Biophysica Acta - Molecular Cell Research, 1989, 1010, 218-226.	4.1	51
21	ERp29 Is a Ubiquitous Resident of the Endoplasmic Reticulum with a Distinct Role in Secretory Protein Production. Journal of Histochemistry and Cytochemistry, 2002, 50, 557-566.	2.5	48
22	Calbindin28kDa and calbindin30kDa (calretinin) are substantially localised in the particulate fraction of rat brain. FEBS Letters, 1995, 374, 333-337.	2.8	47
23	Dental enamel cells express functional SOCE channels. Scientific Reports, 2015, 5, 15803.	3.3	42
24	Geneâ€expression analysis of early―and lateâ€maturationâ€stage rat enamel organ. European Journal of Oral Sciences, 2011, 119, 149-157.	1.5	41
25	Triplex Profiling of Functionally Distinct Chaperones (ERp29/PDI/BiP) Reveals Marked Heterogeneity of the Endoplasmic Reticulum Proteome in Cancer. Journal of Proteome Research, 2008, 7, 3364-3372.	3.7	39
26	Human ERp29: Isolation, primary structural characterisation and two-dimensional gel mapping. Electrophoresis, 2000, 21, 3785-3796.	2.4	35
27	The isolation of plasma membrane and characterisation of the plasma membrane ATPase from the yeast Candida albicans. FEBS Journal, 1986, 154, 375-381.	0.2	32
28	Pancreatic Beta Cells Are Highly Susceptible to Oxidative and ER Stresses during the Development of Diabetes. Journal of Proteome Research, 2015, 14, 688-699.	3.7	30
29	ERp29 Regulates ΔF508 and Wild-type Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Trafficking to the Plasma Membrane in Cystic Fibrosis (CF) and Non-CF Epithelial Cells. Journal of Biological Chemistry, 2011, 286, 21239-21253.	3.4	29
30	A prominent role of PDIA6 in processing of misfolded proinsulin. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 715-723.	2.3	28
31	Lysozyme and α-lactalbumin from the milk of a marsupial, the common brush-tailed possum (Trichosurus vulpecula)1Genbank accession numbers: α-lactalbumin U34288; lysozyme, U40664.1. Biochimica Et Biophysica Acta - General Subjects, 1997, 1336, 235-242.	2.4	27
32	Proteomic analysis of dental tissues. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2002, 771, 211-220.	2.3	27
33	Calbindin Independence of Calcium Transport in Developing Teeth Contradicts the Calcium Ferry Dogma. Journal of Biological Chemistry, 2004, 279, 55850-55854.	3.4	27
34	Morphological studies of <i>N</i> -acetylglucosamine induced germ tube formation by <i>Candida albicans</i> . Canadian Journal of Microbiology, 1985, 31, 696-701.	1.7	25
35	ERp29, a general endoplasmic reticulum marker, is highly expressed throughout the brain. Journal of Comparative Neurology, 2004, 477, 29-42.	1.6	25
36	Molar Hypomineralisation: A Call to Arms for Enamel Researchers. Frontiers in Physiology, 2017, 8, 546.	2.8	25

#	Article	IF	CITATIONS
37	[36] Targeting subunits for protein phosphatases. Methods in Enzymology, 1991, 201, 414-427.	1.0	22
38	Proteomic profiling of facial development in chick embryos. Proteomics, 2005, 5, 2542-2550.	2.2	22
39	Calmodulin-like activity in a mineralising tissue: The rat molar tooth germ. Calcified Tissue International, 1981, 33, 545-548.	3.1	21
40	Proteomic analysis of enamel cells from developing rat teeth: Big returns from a small tissue. Electrophoresis, 1998, 19, 1891-1900.	2.4	21
41	Biophysical Characterization of ERp29. Journal of Biological Chemistry, 2005, 280, 13529-13537.	3.4	21
42	Evidence That Calcium Entry Into Calcium-Transporting Dental Enamel Cells Is Regulated by Cholecystokinin, Acetylcholine and ATP. Frontiers in Physiology, 2018, 9, 801.	2.8	20
43	Enamel Cell Biology Towards a Comprehensive Biochemical Understanding. Connective Tissue Research, 1998, 38, 17-32.	2.3	19
44	Molar hypomineralization. Journal of the American Dental Association, 2018, 149, 329-330.	1.5	17
45	Calbindin 28kDa is specifically associated with extranuclear constituents of the dense particulate fraction. Cell and Tissue Research, 2000, 302, 171-180.	2.9	16
46	Pathogenesis of Molar Hypomineralisation: Aged Albumin Demarcates Chalky Regions of Hypomineralised Enamel. Frontiers in Physiology, 2020, 11, 579015.	2.8	16
47	Characterization of a tetraploid derivative of Candida albicans ATCC 10261. Journal of Bacteriology, 1985, 161, 781-783.	2.2	15
48	Exclusion of all three calbindins from a calciumâ€ferry role in rat enamel cells. European Journal of Oral Sciences, 2011, 119, 112-119.	1.5	14
49	ToothPrint, a proteomic database for dental tissues. Proteomics, 2001, 1, 132-135.	2.2	13
50	Correlated Light and Scanning Electron Microscopy of Artificial Carious Lesions. Journal of Dental Research, 1982, 61, 14-19.	5.2	12
51	Characterization of a high-affinity monoclonal antibody to calcineurin whose epitope defines a new structural domain of calcineurin A. FEBS Journal, 1989, 185, 411-418.	0.2	12
52	Towards second-generation proteome analysis of murine enamel-forming cells. European Journal of Oral Sciences, 2006, 114, 259-265.	1.5	12
53	Pathogenesis of Molar Hypomineralisation: Hypomineralised 6-Year Molars Contain Traces of Fetal Serum Albumin. Frontiers in Physiology, 2020, 11, 619.	2.8	12
54	Rapid purification and direct microassay of calbindin9kDa utilizing its solubility in perchloric acid. Biochemical Journal, 1993, 293, 223-227.	3.7	11

#	Article	IF	CITATIONS
55	Enamel Research: Priorities and Future Directions. Frontiers in Physiology, 2017, 8, 513.	2.8	11
56	Direct evidence that KLK4 is a hydroxyapatite-binding protein. Biochemical and Biophysical Research Communications, 2018, 495, 1896-1900.	2.1	11
57	Rapid dissection of rodent molar-tooth germs. Laboratory Animals, 1981, 15, 371-373.	1.0	10
58	Enamel Proteomics and Protein Interactions. European Journal of Oral Sciences, 2006, 114, 285-286.	1.5	10
59	A Breakthrough in Understanding the Pathogenesis of Molar Hypomineralisation: The Mineralisation-Poisoning Model. Frontiers in Physiology, 2021, 12, 802833.	2.8	10
60	Proteomic Analysis of Dental Tissue Microsamples. Methods in Molecular Biology, 2010, 666, 309-325.	0.9	7
61	Differential feeding-related regulation of ubiquitin and calbindin9kDa, in rat duodenum. Biochimica Et Biophysica Acta - General Subjects, 1994, 1200, 191-196.	2.4	6
62	Scanning Electron Microscopy of Trypsin-Treated Enamel from Fluorosed Rat Molars. Advances in Dental Research, 1989, 3, 183-187.	3.6	2
63	Chalky teeth 100 years on. Journal of the American Dental Association, 2020, 151, 803-805.	1.5	2
64	Hierarchical Protein Identifications and Assignments. Journal of Proteome Research, 2006, 5, 733-733.	3.7	1
65	Proteomic Analysis of Dental Tissue Microsamples. Methods in Molecular Biology, 2017, 1537, 461-479.	0.9	1