Kathryn Haskins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4995784/publications.pdf

Version: 2024-02-01

47 papers

3,347 citations

201674 27 h-index 243625 44 g-index

48 all docs

48 docs citations

48 times ranked

2865 citing authors

#	Article	IF	CITATIONS
1	Tolerogenic Delivery of a Hybrid Insulin Peptide Markedly Prolongs Islet Graft Survival in the NOD Mouse. Diabetes, 2022, 71, 483-496.	0.6	7
2	Induction of Antigen-Specific Tolerance in Autoimmune Diabetes with Nanoparticles Containing Hybrid Insulin Peptides. Biomedicines, 2021, 9, 240.	3.2	1
3	Characterization of Human CD4 T Cells Specific for a C-Peptide/C-Peptide Hybrid Insulin Peptide. Frontiers in Immunology, 2021, 12, 668680.	4.8	16
4	Chromogranin A Deficiency Confers Protection From Autoimmune Diabetes via Multiple Mechanisms. Diabetes, 2021, 70, 2860-2870.	0.6	5
5	Tolerance Induced by Antigen-Loaded PLG Nanoparticles Affects the Phenotype and Trafficking of Transgenic CD4+ and CD8+ T Cells. Cells, 2021, 10, 3445.	4.1	4
6	Hybrid Insulin Peptides Are Recognized by Human T Cells in the Context of DRB1*04:01. Diabetes, 2020, 69, 1492-1502.	0.6	30
7	Endogenous retrovirus Gag antigen and its gene variants are unique autoantigens expressed in the pancreatic islets of non-obese diabetic mice. Immunology Letters, 2020, 223, 62-70.	2.5	4
8	Cluster of Differentiation 4 T Cells and Neoantigens in Autoimmune Diabetes. Critical Reviews in Immunology, 2020, 40, 441-446.	0.5	0
9	Hybrid Insulin Peptides Are Autoantigens in Type 1 Diabetes. Diabetes, 2019, 68, 1830-1840.	0.6	60
10	Nanoparticles Containing an Insulin–ChgA Hybrid Peptide Protect from Transfer of Autoimmune Diabetes by Shifting the Balance between Effector T Cells and Regulatory T Cells. Journal of Immunology, 2019, 203, 48-57.	0.8	53
11	Increased \hat{I}^2 -cell proliferation before immune cell invasion prevents progression of type 1 diabetes. Nature Metabolism, 2019, 1, 509-518.	11.9	38
12	CD11c+ Cells Are Gatekeepers for Lymphocyte Trafficking to Infiltrated Islets During Type 1 Diabetes. Frontiers in Immunology, 2019, 10, 99.	4.8	21
13	Hybrid insulin peptides are neo-epitopes for CD4 T cells in autoimmune diabetes. Current Opinion in Endocrinology, Diabetes and Obesity, 2019, 26, 195-200.	2.3	16
14	Identification of Hybrid Insulin Peptides (HIPs) in Mouse and Human Islets by Mass Spectrometry. Journal of Proteome Research, 2019, 18, 814-825.	3.7	56
15	Tissue Crosstalk in T1D: Is Insulin Special?. Immunity, 2018, 49, 394-396.	14.3	0
16	CD4 T Cells Reactive to Hybrid Insulin Peptides Are Indicators of Disease Activity in the NOD Mouse. Diabetes, 2018, 67, 1836-1846.	0.6	52
17	An insulin-IAPP hybrid peptide is an endogenous antigen for CD4 T cells in the non-obese diabetic mouse. Journal of Autoimmunity, 2017, 78, 11-18.	6.5	75
18	Editorial overview: Autoimmunity. Current Opinion in Immunology, 2016, 43, v-vii.	5.5	1

#	Article	IF	CITATIONS
19	Analysis of self-antigen specificity of islet-infiltrating T cells from human donors with type 1 diabetes. Nature Medicine, 2016, 22, 1482-1487.	30.7	232
20	Pathogenic CD4 T cells in type 1 diabetes recognize epitopes formed by peptide fusion. Science, 2016, 351, 711-714.	12.6	407
21	Cutting Edge: Nonobese Diabetic Mice Deficient in Chromogranin A Are Protected from Autoimmune Diabetes. Journal of Immunology, 2016, 196, 39-43.	0.8	35
22	Antigen Recognition in the Islets Changes with Progression of Autoimmune Islet Infiltration. Journal of Immunology, 2015, 194, 522-530.	0.8	56
23	Chromogranin A is a T cell antigen in human type 1 diabetes. Journal of Autoimmunity, 2014, 50, 38-41.	6.5	61
24	Novel autoantigens for diabetogenic CD4 T cells in autoimmune diabetes. Immunologic Research, 2013, 55, 167-172.	2.9	16
25	Cutting Edge: CD4 T Cells Reactive to an Islet Amyloid Polypeptide Peptide Accumulate in the Pancreas and Contribute to Disease Pathogenesis in Nonobese Diabetic Mice. Journal of Immunology, 2013, 191, 3990-3994.	0.8	29
26	Diabetogenic T-Cell Clones Recognize an Altered Peptide of Chromogranin A. Diabetes, 2012, 61, 3239-3246.	0.6	90
27	T cells interact with T cells via CD40â€CD154 to promote autoimmunity in type 1 diabetes. European Journal of Immunology, 2012, 42, 672-680.	2.9	16
28	CD4 T cells and their antigens in the pathogenesis of autoimmune diabetes. Current Opinion in Immunology, 2011, 23, 739-745.	5 . 5	69
29	Islet Amyloid Polypeptide Is a Target Antigen for Diabetogenic CD4+ T Cells. Diabetes, 2011, 60, 2325-2330.	0.6	49
30	Chromogranin A is an autoantigen in type 1 diabetes. Nature Immunology, 2010, 11, 225-231.	14.5	303
31	CD40 on NOD CD4 T cells contributes to their activation and pathogenicity. Journal of Autoimmunity, 2008, 31, 385-392.	6.5	47
32	On the Pathogenicity of Autoantigen-Specific T-Cell Receptors. Diabetes, 2008, 57, 1321-1330.	0.6	89
33	Regulatory T Cells Prevent Transfer of Type 1 Diabetes in NOD Mice Only When Their Antigen Is Present In Vivo. Journal of Immunology, 2008, 181, 4516-4522.	0.8	59
34	Recruitment and Activation of Macrophages by Pathogenic CD4 T Cells in Type 1 Diabetes: Evidence for Involvement of CCR8 and CCL1. Journal of Immunology, 2007, 179, 5760-5767.	0.8	79
35	Effector Function of Diabetogenic CD4 Th1 T Cell Clones: A Central Role for TNF- $\hat{l}\pm$. Journal of Immunology, 2005, 175, 7738-7745.	0.8	46
36	Pathogenic Tâ€Cell Clones in Autoimmune Diabetes: More Lessons from the NOD Mouse. Advances in Immunology, 2005, 87, 123-162.	2.2	69

3

#	Article	IF	CITATIONS
37	T-Cell Receptor Transgenic Response to an Endogenous Polymorphic Autoantigen Determines Susceptibility to Diabetes. Diabetes, 2004, 53, 978-988.	0.6	36
38	T-cell receptor transgenic (TCR-Tg) mice from two diabetogenic CD4+ islet-antigen-specific T-cell clones. Journal of Autoimmunity, 2004, 22, 107-109.	6.5	6
39	Role for Oxidative Stress in the Regeneration of Islet Beta Cells?. Journal of Investigative Medicine, 2004, 52, 45-49.	1.6	16
40	Oxidative Stress in Type 1 Diabetes. Annals of the New York Academy of Sciences, 2003, 1005, 43-54.	3.8	158
41	Susceptible MHC alleles, not background genes, select an autoimmune T cell reactivity. Journal of Clinical Investigation, 2003, 112, 902-914.	8.2	82
42	Expression of CD40 identifies a unique pathogenic T cell population in type 1 diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 3782-3787.	7.1	101
43	Subsets of Macrophages and Dendritic Cells in Nonobese Diabetic Mouse Pancreatic Inflammatory Infiltrates: Correlation with the Development of Diabetes. Laboratory Investigation, 2000, 80, 23-30.	3.7	58
44	Biochemical Characterization of a Beta Cell Membrane Fraction Antigenic for Autoreactive T Cell Clones. Journal of Autoimmunity, 2000, 14, 343-351.	6.5	18
45	T Cell Receptor Gene Usage in Autoimmune Diabetes. International Reviews of Immunology, 1999, 18, 61-81.	3.3	3
46	Triggering a Second T Cell Receptor on Diabetogenic T Cells Can Prevent Induction of Diabetes. Journal of Experimental Medicine, 1999, 190, 577-584.	8.5	24
47	Following a diabetogenic T cell from genesis through pathogenesis. Cell, 1993, 74, 1089-1100.	28.9	654