Robert C Malenka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4994729/publications.pdf

Version: 2024-02-01

170 60,760 10 papers citations h-ir

104 168
h-index g-index

188 188 all docs citations

188 times ranked 38927 citing authors

#	Article	IF	CITATIONS
1	LTP and LTD. Neuron, 2004, 44, 5-21.	8.1	3,364
2	NEURAL MECHANISMS OF ADDICTION: The Role of Reward-Related Learning and Memory. Annual Review of Neuroscience, 2006, 29, 565-598.	10.7	2,489
3	AMPA Receptor Trafficking and Synaptic Plasticity. Annual Review of Neuroscience, 2002, 25, 103-126.	10.7	2,275
4	Synaptic scaling mediated by glial TNF-α. Nature, 2006, 440, 1054-1059.	27.8	1,473
5	Synaptic Plasticity: Multiple Forms, Functions, and Mechanisms. Neuropsychopharmacology, 2008, 33, 18-41.	5.4	1,434
6	Synaptic plasticity and addiction. Nature Reviews Neuroscience, 2007, 8, 844-858.	10.2	1,402
7	Drugs of Abuse and Stress Trigger a Common Synaptic Adaptation in Dopamine Neurons. Neuron, 2003, 37, 577-582.	8.1	1,334
8	Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature, 2001, 411, 583-587.	27.8	1,277
9	Synaptic plasticity: LTP and LTD. Current Opinion in Neurobiology, 1994, 4, 389-399.	4.2	1,195
10	Evidence for silent synapses: Implications for the expression of LTP. Neuron, 1995, 15, 427-434.	8.1	1,147
11	Addiction and the brain: The neurobiology of compulsion and its persistence. Nature Reviews Neuroscience, 2001, 2, 695-703.	10.2	1,147
12	Natural Neural Projection Dynamics Underlying Social Behavior. Cell, 2014, 157, 1535-1551.	28.9	1,121
13	An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation. Nature, 1989, 340, 554-557.	27.8	1,079
14	Input-specific control of reward and aversion in the ventral tegmental area. Nature, 2012, 491, 212-217.	27.8	1,062
15	Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus. Neuron, 1992, 9, 967-975.	8.1	1,029
16	Involvement of a calcineurin/ inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature, 1994, 369, 486-488.	27.8	1,018
17	Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature, 2013, 501, 179-184.	27.8	960
18	Drug-Evoked Synaptic Plasticity in Addiction: From Molecular Changes to Circuit Remodeling. Neuron, 2011, 69, 650-663.	8.1	896

#	Article	IF	CITATIONS
19	Striatal Plasticity and Basal Ganglia Circuit Function. Neuron, 2008, 60, 543-554.	8.1	855
20	Differential Regulation of AMPA Receptor and GABA Receptor Trafficking by Tumor Necrosis Factor-Â. Journal of Neuroscience, 2005, 25, 3219-3228.	3.6	834
21	Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature, 1995, 377, 115-118.	27.8	831
22	Dopaminergic Modulation of Neuronal Excitability in the Striatum and Nucleus Accumbens. Annual Review of Neuroscience, 2000, 23, 185-215.	10.7	823
23	NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms. Trends in Neurosciences, 1993, 16, 521-527.	8.6	820
24	Circuit Architecture of VTA Dopamine Neurons Revealed by Systematic Input-Output Mapping. Cell, 2015, 162, 622-634.	28.9	777
25	NMDA Receptor-Dependent Long-Term Potentiation and Long-Term Depression (LTP/LTD). Cold Spring Harbor Perspectives in Biology, 2012, 4, a005710-a005710.	5.5	720
26	Essential functions of synapsins I and II in synaptic vesicle regulation. Nature, 1995, 375, 488-493.	27.8	708
27	Electrical and synaptic integration of glioma into neural circuits. Nature, 2019, 573, 539-545.	27.8	706
28	Potentiation of synaptic transmission in the hippocampus by phorbol esters. Nature, 1986, 321, 175-177.	27.8	668
29	Regulation of AMPA receptor endocytosis by a signaling mechanism shared with LTD. Nature Neuroscience, 2000, 3, 1291-1300.	14.8	660
30	A critical period for long-term potentiation at thalamocortical synapses. Nature, 1995, 375, 325-328.	27.8	644
31	Projection-Specific Modulation of Dopamine Neuron Synapses by Aversive and Rewarding Stimuli. Neuron, 2011, 70, 855-862.	8.1	642
32	Role of AMPA Receptor Cycling in Synaptic Transmission and Plasticity. Neuron, 1999, 24, 649-658.	8.1	641
33	Long-term depression in the nucleus accumbens: a neural correlate of behavioral sensitization to cocaine. Nature Neuroscience, 2001, 4, 1217-1223.	14.8	615
34	Intact-Brain Analyses Reveal Distinct Information Carried by SNc Dopamine Subcircuits. Cell, 2015, 162, 635-647.	28.9	608
35	Reward and aversion in a heterogeneous midbrain dopamine system. Neuropharmacology, 2014, 76, 351-359.	4.1	606
36	Viral-genetic tracing of the input–output organization of a central noradrenaline circuit. Nature, 2015, 524, 88-92.	27.8	601

#	Article	IF	CITATIONS
37	Synaptic plasticity in the hippocampus: LTP and LTD. Cell, 1994, 78, 535-538.	28.9	596
38	The addicted synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends in Neurosciences, 2010, 33, 267-276.	8.6	566
39	Neuronal Activity Promotes Glioma Growth through Neuroligin-3 Secretion. Cell, 2015, 161, 803-816.	28.9	550
40	Diverging neural pathways assemble a behavioural state from separable features in anxiety. Nature, 2013, 496, 219-223.	27.8	543
41	Acute and Chronic Cocaine-Induced Potentiation of Synaptic Strength in the Ventral Tegmental Area: Electrophysiological and Behavioral Correlates in Individual Rats. Journal of Neuroscience, 2004, 24, 7482-7490.	3.6	523
42	SynGO: An Evidence-Based, Expert-Curated Knowledge Base for the Synapse. Neuron, 2019, 103, 217-234.e4.	8.1	518
43	Kainate receptors mediate a slow postsynaptic current in hippocampal CA3 neurons. Nature, 1997, 388, 182-186.	27.8	504
44	Two Distinct Forms of Long-Term Depression Coexist in CA1 Hippocampal Pyramidal Cells. Neuron, 1997, 18, 969-982.	8.1	490
45	Activity-dependent regulation of dendritic synthesis and trafficking of AMPA receptors. Nature Neuroscience, 2004, 7, 244-253.	14.8	477
46	NMDA application potentiates synaptic transmission in the hippocampus. Nature, 1988, 334, 250-252.	27.8	462
47	Mechanism and Time Course of Cocaine-Induced Long-Term Potentiation in the Ventral Tegmental Area. Journal of Neuroscience, 2008, 28, 9092-9100.	3.6	462
48	Use-dependent increases in glutamate concentration activate presynaptic metabotropic glutamate receptors. Nature, 1997, 385, 630-634.	27.8	436
49	Postsynaptic Membrane Fusion and Long-Term Potentiation. Science, 1998, 279, 399-403.	12.6	416
50	Gating of social reward by oxytocin in the ventral tegmental area. Science, 2017, 357, 1406-1411.	12.6	414
51	Rapid redistribution of glutamate receptors contributes to long-term depression in hippocampal cultures. Nature Neuroscience, 1999, 2, 454-460.	14.8	411
52	Ca2+ Signaling Requirements for Long-Term Depression in the Hippocampus. Neuron, 1996, 16, 825-833.	8.1	403
53	Autism-Associated Neuroligin-3 Mutations Commonly Impair Striatal Circuits to Boost Repetitive Behaviors. Cell, 2014, 158, 198-212.	28.9	397
54	Role of ampa receptor endocytosis in synaptic plasticity. Nature Reviews Neuroscience, 2001, 2, 315-324.	10.2	396

#	Article	IF	CITATIONS
55	Cyclic AMP Mediates a Presynaptic Form of LTP at Cerebellar Parallel Fiber Synapses. Neuron, 1996, 16, 797-803.	8.1	382
56	RIM1α is required for presynaptic long-term potentiation. Nature, 2002, 415, 327-330.	27.8	377
57	Cellular Taxonomy of the Mouse Striatum as Revealed by Single-Cell RNA-Seq. Cell Reports, 2016, 16, 1126-1137.	6.4	344
58	Rab3A is essential for mossy fibre long-term potentiation in the hippocampus. Nature, 1997, 388, 590-593.	27.8	336
59	LRRTM2 Functions as a Neurexin Ligand in Promoting Excitatory Synapse Formation. Neuron, 2009, 64, 791-798.	8.1	315
60	Anhedonia requires MC4R-mediated synaptic adaptations in nucleus accumbens. Nature, 2012, 487, 183-189.	27.8	311
61	Postsynaptic TRPV1 triggers cell type–specific long-term depression in the nucleus accumbens. Nature Neuroscience, 2010, 13, 1519-1525.	14.8	302
62	Postsynaptic factors control the duration of synaptic enhancement in area CA1 of the hippocampus. Neuron, 1991, 6, 53-60.	8.1	300
63	CREB modulates excitability of nucleus accumbens neurons. Nature Neuroscience, 2006, 9, 475-477.	14.8	299
64	Synaptic Plasticity and AMPA Receptor Trafficking. Annals of the New York Academy of Sciences, 2003, 1003, 1-11.	3.8	296
65	Autism-linked neuroligin-3 R451C mutation differentially alters hippocampal and cortical synaptic function. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13764-13769.	7.1	296
66	Diversity of Transgenic Mouse Models for Selective Targeting of Midbrain Dopamine Neurons. Neuron, 2015, 85, 429-438.	8.1	285
67	A developmental switch in the signaling cascades for LTP induction. Nature Neuroscience, 2003, 6, 15-16.	14.8	282
68	B-Lymphocyte-Mediated Delayed Cognitive Impairment following Stroke. Journal of Neuroscience, 2015, 35, 2133-2145.	3.6	257
69	A Brainstem-Spinal Cord Inhibitory Circuit for Mechanical Pain Modulation by GABA and Enkephalins. Neuron, 2017, 93, 822-839.e6.	8.1	250
70	Autism-Associated Neuroligin-3 Mutations Commonly Disrupt Tonic Endocannabinoid Signaling. Neuron, 2013, 78, 498-509.	8.1	247
71	Presynaptic Neurexin-3 Alternative Splicing trans-Synaptically Controls Postsynaptic AMPA Receptor Trafficking. Cell, 2013, 154, 75-88.	28.9	246
72	Temporal limits on the rise in postsynaptic calcium required for the induction of long-term potentiation. Neuron, 1992, 9, 121-128.	8.1	241

#	Article	IF	Citations
73	Development of Excitatory Circuitry in the Hippocampus. Journal of Neurophysiology, 1998, 79, 2013-2024.	1.8	238
74	Decreased motivation during chronic pain requires long-term depression in the nucleus accumbens. Science, 2014, 345, 535-542.	12.6	233
75	Phorbol esters block a voltage-sensitive chloride current in hippocampal pyramidal cells. Nature, 1986, 321, 695-697.	27.8	224
76	Regulation of Synaptic Strength by Protein Phosphatase 1. Neuron, 2001, 32, 1133-1148.	8.1	209
77	Alternative N-Terminal Domains of PSD-95 and SAP97 Govern Activity-Dependent Regulation of Synaptic AMPA Receptor Function. Neuron, 2006, 51, 99-111.	8.1	209
78	Behavioral Abnormalities and Circuit Defects in the Basal Ganglia of a Mouse Model of 16p11.2 Deletion Syndrome. Cell Reports, 2014, 7, 1077-1092.	6.4	208
79	Activation of NR2B-containing NMDA receptors is not required for NMDA receptor-dependent long-term depression. Neuropharmacology, 2007, 52, 71-76.	4.1	199
80	Structural foundations of optogenetics: Determinants of channelrhodopsin ion selectivity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 822-829.	7.1	197
81	Simultaneous LTP of non-NMDA- and LTD of NMDA-receptor-mediated responses in the nucleus accumbens. Nature, 1994, 368, 242-246.	27.8	194
82	LTP Requires a Unique Postsynaptic SNARE Fusion Machinery. Neuron, 2013, 77, 542-558.	8.1	192
83	The long-term potential of LTP. Nature Reviews Neuroscience, 2003, 4, 923-926.	10.2	189
84	Parallel circuits from the bed nuclei of stria terminalis to the lateral hypothalamus drive opposing emotional states. Nature Neuroscience, 2018, 21, 1084-1095.	14.8	185
85	Dopamine Depresses Excitatory and Inhibitory Synaptic Transmission by Distinct Mechanisms in the Nucleus Accumbens. Journal of Neuroscience, 1997, 17, 5697-5710.	3.6	184
86	Anterior cingulate inputs to nucleus accumbens control the social transfer of pain and analgesia. Science, 2021, 371, 153-159.	12.6	179
87	Distinct triggering and expression mechanisms underlie LTD of AMPA and NMDA synaptic responses. Nature Neuroscience, 2005, 8, 1043-1050.	14.8	169
88	5-HT release in nucleus accumbens rescues social deficits in mouse autism model. Nature, 2018, 560, 589-594.	27.8	169
89	â^†FosB differentially modulates nucleus accumbens direct and indirect pathway function. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1923-1928.	7.1	167
90	Rabphilin Knock-Out Mice Reveal That Rabphilin Is Not Required for Rab3 Function in Regulating Neurotransmitter Release. Journal of Neuroscience, 1999, 19, 5834-5846.	3.6	162

#	Article	IF	Citations
91	NMDAR EPSC kinetics do not regulate the critical period for LTP at thalamocortical synapses. Nature Neuroscience, 2001, 4, 235-236.	14.8	162
92	Molecular Dissociation of the Role of PSD-95 in Regulating Synaptic Strength and LTD. Neuron, 2008, 57, 248-262.	8.1	161
93	A critical role for PSD-95/AKAP interactions in endocytosis of synaptic AMPA receptors. Nature Neuroscience, 2009, 12, 172-181.	14.8	160
94	Postsynaptic synaptotagmins mediate AMPA receptor exocytosis during LTP. Nature, 2017, 544, 316-321.	27.8	153
95	Long-Term Potentiation in Cultures of Single Hippocampal Granule Cells: A Presynaptic Form of Plasticity. Neuron, 1996, 16, 1147-1157.	8.1	145
96	Deep posteromedial cortical rhythm in dissociation. Nature, 2020, 586, 87-94.	27.8	145
97	Single-Cell mRNA Profiling Reveals Cell-Type-Specific Expression of Neurexin Isoforms. Neuron, 2015, 87, 326-340.	8.1	144
98	Modulation of Synaptic Transmission by Dopamine and Norepinephrine in Ventral but not Dorsal Striatum. Journal of Neurophysiology, 1998, 79, 1768-1776.	1.8	143
99	NEUROSCIENCE: Learning Mechanisms: The Case for CaM-KII. Science, 1997, 276, 2001-2002.	12.6	130
100	Independent mechanisms for long-term depression of AMPA and NMDA responses. Neuron, 1995, 15, 417-426.	8.1	125
101	The neurexin ligands, neuroligins and leucine-rich repeat transmembrane proteins, perform convergent and divergent synaptic functions in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16502-16509.	7.1	124
102	\hat{l}^2 -Neurexins Control Neural Circuits by Regulating Synaptic Endocannabinoid Signaling. Cell, 2015, 162, 593-606.	28.9	123
103	Optogenetics: 10 years after ChR2 in neuronsâ€"views from the community. Nature Neuroscience, 2015, 18, 1202-1212.	14.8	122
104	Postsynaptic Complexin Controls AMPA Receptor Exocytosis during LTP. Neuron, 2012, 73, 260-267.	8.1	118
105	Role of intercellular interactions in heterosynaptic long-term depression. Nature, 1996, 380, 446-450.	27.8	112
106	Synaptic plasticity in the mesolimbic dopamine system. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 815-819.	4.0	110
107	Input- and Output-Specific Regulation of Serial Order Performance by Corticostriatal Circuits. Neuron, 2015, 88, 345-356.	8.1	108
108	Calcium Binding to PICK1 Is Essential for the Intracellular Retention of AMPA Receptors Underlying Long-Term Depression. Journal of Neuroscience, 2010, 30, 16437-16452.	3.6	105

#	Article	IF	Citations
109	Cav1.3 channels control D2-autoreceptor responses via NCS-1 in substantia nigra dopamine neurons. Brain, 2014, 137, 2287-2302.	7.6	103
110	Rabies screen reveals GPe control of cocaine-triggered plasticity. Nature, 2017, 549, 345-350.	27.8	94
111	A calcineurin/AKAP complex is required for NMDA receptor–dependent long-term depression. Nature Neuroscience, 2010, 13, 1053-1055.	14.8	92
112	Continuous and Discrete Neuron Types of the Adult Murine Striatum. Neuron, 2020, 105, 688-699.e8.	8.1	92
113	The best way forward. Nature, 2014, 515, 200-201.	27.8	90
114	Neuroligins/LRRTMs prevent activity- and Ca2+/calmodulin-dependent synapse elimination in cultured neurons. Journal of Cell Biology, 2011, 194, 323-334.	5.2	88
115	Excitatory transmission at thalamo-striatal synapses mediates susceptibility to social stress. Nature Neuroscience, 2015, 18, 962-964.	14.8	86
116	Postsynaptic adhesion GPCR latrophilin-2 mediates target recognition in entorhinal-hippocampal synapse assembly. Journal of Cell Biology, 2017, 216, 3831-3846.	5.2	86
117	Topological Organization of Ventral Tegmental Area Connectivity Revealed by Viral-Genetic Dissection of Input-Output Relations. Cell Reports, 2019, 26, 159-167.e6.	6.4	81
118	Closing the loop on impulsivity via nucleus accumbens delta-band activity in mice and man. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 192-197.	7.1	80
119	Illuminating circuitry relevant to psychiatric disorders with optogenetics. Current Opinion in Neurobiology, 2015, 30, 9-16.	4.2	76
120	The Retromer Supports AMPA Receptor Trafficking During LTP. Neuron, 2017, 94, 74-82.e5.	8.1	74
121	Retinoic Acid and LTP Recruit Postsynaptic AMPA Receptors Using Distinct SNARE-Dependent Mechanisms. Neuron, 2015, 86, 442-456.	8.1	72
122	Modulation of excitation on parvalbumin interneurons by neuroligin-3 regulates the hippocampal network. Nature Neuroscience, 2017, 20, 219-229.	14.8	71
123	Synaptotagmin-1 and -7 Are Redundantly Essential for Maintaining the Capacity of the Readily-Releasable Pool of Synaptic Vesicles. PLoS Biology, 2015, 13, e1002267.	5.6	71
124	Amygdala-Midbrain Connections Modulate Appetitive and Aversive Learning. Neuron, 2020, 106, 1026-1043.e9.	8.1	70
125	Nucleus Accumbens Modulation in Reward and Aversion. Cold Spring Harbor Symposia on Quantitative Biology, 2018, 83, 119-129.	1.1	67
126	Neuroligin-1 Signaling Controls LTP and NMDA Receptors by Distinct Molecular Pathways. Neuron, 2019, 102, 621-635.e3.	8.1	67

#	Article	IF	CITATIONS
127	Leucine-Rich Repeat Transmembrane Proteins Are Essential for Maintenance of Long-Term Potentiation. Neuron, 2013, 79, 439-446.	8.1	66
128	Distinct neural mechanisms for the prosocial and rewarding properties of MDMA. Science Translational Medicine, 2019, 11, .	12.4	56
129	A Comparison of Striatal-Dependent Behaviors in Wild-Type and Hemizygous Drd1a and Drd2 BAC Transgenic Mice. Journal of Neuroscience, 2012, 32, 9119-9123.	3.6	52
130	Deletion of <i>LRRTM1 and LRRTM2</i> in adult mice impairs basal AMPA receptor transmission and LTP in hippocampal CA1 pyramidal neurons. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5382-E5389.	7.1	51
131	Cocaine-Induced Structural Plasticity in Input Regions to Distinct Cell Types in Nucleus Accumbens. Biological Psychiatry, 2018, 84, 893-904.	1.3	47
132	5-HT modulation of a medial septal circuit tunes social memory stability. Nature, 2021, 599, 96-101.	27.8	47
133	Spike Timing-Dependent Long-Term Potentiation in Ventral Tegmental Area Dopamine Cells Requires PKC. Journal of Neurophysiology, 2008, 100, 533-538.	1.8	44
134	A Molecular Calcium Integrator Reveals a Striatal Cell Type Driving Aversion. Cell, 2020, 183, 2003-2019.e16.	28.9	40
135	Optogenetics and the Circuit Dynamics of Psychiatric Disease. JAMA - Journal of the American Medical Association, 2015, 313, 2019.	7.4	39
136	Substrate Localization Creates Specificity in Calcium/Calmodulin-dependent Protein Kinase II Signaling at Synapses. Journal of Biological Chemistry, 2006, 281, 13794-13804.	3.4	38
137	The Emerging Role of Nucleus Accumbens Oxytocin in Social Cognition. Biological Psychiatry, 2014, 76, 354-355.	1.3	38
138	Input-specific modulation of murine nucleus accumbens differentially regulates hedonic feeding. Nature Communications, 2021, 12, 2135.	12.8	35
139	Complementary Genetic Targeting and Monosynaptic Input Mapping Reveal Recruitment and Refinement of Distributed Corticostriatal Ensembles by Cocaine. Neuron, 2019, 104, 916-930.e5.	8.1	34
140	Loss of the neural-specific BAF subunit ACTL6B relieves repression of early response genes and causes recessive autism. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10055-10066.	7.1	34
141	Never fear, LTP is hear. Nature, 1997, 390, 552-553.	27.8	32
142	MDMA as a Probe and Treatment for Social Behaviors. Cell, 2016, 166, 269-272.	28.9	32
143	Long-term potentiation is independent of the C-tail of the GluA1 AMPA receptor subunit. ELife, 2020, 9, .	6.0	25
144	LTP: AMPA receptors trading places. Nature Neuroscience, 2006, 9, 593-594.	14.8	23

#	Article	IF	Citations
145	Selective filtering of excitatory inputs to nucleus accumbens by dopamine and serotonin. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	23
146	Neural circuits regulating prosocial behaviors. Neuropsychopharmacology, 2023, 48, 79-89.	5.4	23
147	Synaptic Function of Rab11Fip5: Selective Requirement for Hippocampal Long-Term Depression. Journal of Neuroscience, 2015, 35, 7460-7474.	3.6	21
148	Systemic enhancement of serotonin signaling reverses social deficits in multiple mouse models for ASD. Neuropsychopharmacology, 2021, 46, 2000-2010.	5.4	21
149	Disruptive Psychopharmacology. JAMA Psychiatry, 2019, 76, 775.	11.0	20
150	Recollection of lost memories. Nature, 2011, 469, 44-45.	27.8	19
151	Brain-Responsive Neurostimulation for Loss of Control Eating: Early Feasibility Study. Neurosurgery, 2020, 87, 1277-1288.	1.1	16
152	Dissecting neural mechanisms of prosocial behaviors. Current Opinion in Neurobiology, 2021, 68, 9-14.	4.2	15
153	Mucking up movements. Nature, 1994, 372, 218-219.	27.8	12
154	Local accumbens inÂvivo imaging during deep brain stimulation reveals a strategy-dependent amelioration of hedonic feeding. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	10
155	Long-distance long-term depression. Nature, 1997, 388, 427-428.	27.8	9
156	Accumbens coordinated reset stimulation in mice exhibits ameliorating aftereffects on binge alcohol drinking. Brain Stimulation, 2021, 14, 330-334.	1.6	9
157	Somatodendritic Release of Cholecystokinin Potentiates GABAergic Synapses Onto Ventral Tegmental Area Dopamine Cells. Biological Psychiatry, 2023, 93, 197-208.	1.3	9
158	NIH Workshop Report. Neuron, 2002, 36, 29-30.	8.1	8
159	Mechanisms Underlying Dedepression of Synaptic NMDA Receptors in the Hippocampus. Journal of Neurophysiology, 2008, 99, 254-263.	1.8	8
160	Long-term depression with a flash. Nature Neuroscience, 1998, 1, 89-90.	14.8	7
161	Is bigger better?. Nature, 1998, 396, 414-415.	27.8	6
162	An Immunocytochemical Assay for Activity-Dependent Redistribution of Glutamate Receptors from the Postsynaptic Plasma Membrane. Annals of the New York Academy of Sciences, 1999, 868, 550-553.	3.8	6

#	Article	IF	CITATIONS
163	Delivering the goods to synapses. Nature Neuroscience, 2000, 3, 1064-1066.	14.8	6
164	The role of synaptic plasticity in addiction. Clinical Neuroscience Research, 2005, 5, 141-146.	0.8	6
165	From Synapses to Behavior: What Rodent Models Can Tell Us About Neuropsychiatric Disease. Biological Psychiatry, 2016, 79, 4-6.	1.3	6
166	Better living through chemistry: MDMA's prosocial mechanism as a starting point for improved therapeutics. Neuropsychopharmacology, 2021, 46, 261-261.	5.4	6
167	Aberrant impulse control circuitry in obesity. Molecular Psychiatry, 2022, 27, 3374-3384.	7.9	6
168	Optogenetic Approaches to Neural Circuit Analysis in the Mammalian Brain., 2016,, 221-231.		2
169	Rapid Release Revealed: Honoring the Synapse. Cell, 2013, 154, 1171-1174.	28.9	1
170	æ²»ç™,法改å−"ã®ã¥ã,ñ®æœ€å−"ã®æ^¦ç•¥ã•ã•̃. Nature Digest, 2015, 12, 28-30.	0.0	0