
Sheldon Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4994228/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	[Creatinine] can change in an unexpected direction due to the volume change rate that interacts with kinetic GFR: Potentially positive paradox. Physiological Reports, 2022, 10, e15172.	1.7	0
2	Hemoconcentration of Creatinine Minimally Contributes to Changes in Creatinine during the Treatment of Decompensated Heart Failure. Kidney360, 2022, 3, 1003-1010.	2.1	3
3	Improving on the Adrogué–Madias Formula. Kidney360, 2021, 2, 365-370.	2.1	7
4	In creatinine kinetics, the glomerular filtration rate always moves the serum creatinine in the opposite direction. Physiological Reports, 2021, 9, e14957.	1.7	5
5	Pathophysiology of Diabetic Nephropathy. , 2020, , 279-296.		7
6	Acute kidney injury incidence, pathogenesis, and outcomes. , 2020, , 269-274.e3.		0
7	Perspectives From an Onconephrology Interest Group: Conference Report. Canadian Journal of Kidney Health and Disease, 2020, 7, 205435812096258.	1.1	1
8	Estimating Creatinine Clearance in the Nonsteady State: The Determination and Role of the True Average Creatinine Concentration. Kidney Medicine, 2019, 1, 207-216.	2.0	7
9	Hyponatremia in cancer patients: Strategy for safe correction in the hospital. Journal of Onco-Nephrology, 2019, 3, 144-150.	0.6	3
10	Evolution of the kidney–cancer connection. Journal of Onco-Nephrology, 2019, 3, 88-91.	0.6	0
11	The value of kinetic glomerular filtration rate estimation on medication dosing in acute kidney injury. PLoS ONE, 2019, 14, e0225601.	2.5	18
12	Nephrotoxicity of immune checkpoint inhibitors beyond tubulointerstitial nephritis: single-center experience. , 2019, 7, 2.		213
13	Kinetic Glomerular Filtration Rate in Routine Clinical Practice—Applications and Possibilities. Advances in Chronic Kidney Disease, 2018, 25, 105-114.	1.4	20
14	Kinetic glomerular filtration rate equation can accommodate a changing body volume: Derivation and usage of the formula. Mathematical Biosciences, 2018, 306, 97-106.	1.9	13
15	Response to "Kinetic sodium equation― Journal of Onco-Nephrology, 2018, 2, 33-34.	0.6	4
16	Kinetic Sodium Equation with Built-In Rate of Correction: Aid to Prescribing Therapy for Hyponatremia or Hypernatremia. Journal of Onco-Nephrology, 2017, 1, 204-212.	0.6	10
17	Renal Lipotoxicity-Associated Inflammation and Insulin Resistance Affects Actin Cytoskeleton Organization in Podocytes. PLoS ONE, 2015, 10, e0142291.	2.5	65
18	Effects of Tumor Necrosis Factor-α on Podocyte Expression of Monocyte Chemoattractant Protein-1 and in Diabetic Nephropathy. Nephron Extra, 2015, 5, 1-18.	1.1	36

#	Article	IF	CITATIONS
19	Pathophysiology of Diabetic Nephropathy. , 2015, , 151-162.		1
20	Physiologic Principles in the Clinical Evaluation of Electrolyte, Water, and Acid–Base Disorders. , 2013, , 2477-2511.		1
21	Pathophysiology and Pathogenesis of Diabetic Nephropathy. , 2013, , 2605-2632.		4
22	Blockade of CCL2/CCR2 signalling ameliorates diabetic nephropathy in db/db mice. Nephrology Dialysis Transplantation, 2013, 28, 1700-1710.	0.7	90
23	Retooling the Creatinine Clearance Equation to Estimate Kinetic GFR when the Plasma Creatinine Is Changing Acutely. Journal of the American Society of Nephrology: JASN, 2013, 24, 877-888.	6.1	169
24	Visualizing the mouse podocyte with multiphoton microscopy. Biochemical and Biophysical Research Communications, 2012, 427, 525-530.	2.1	15
25	A Glimpse of Various Pathogenetic Mechanisms of Diabetic Nephropathy. Annual Review of Pathology: Mechanisms of Disease, 2011, 6, 395-423.	22.4	575
26	Abnormalities in signaling pathways in diabetic nephropathy. Expert Review of Endocrinology and Metabolism, 2010, 5, 51-64.	2.4	88
27	The monocyte chemoattractant protein-1/CCR2 loop, inducible by TCF-β, increases podocyte motility and albumin permeability. American Journal of Physiology - Renal Physiology, 2009, 297, F85-F94.	2.7	121
28	Vascular endothelial growth factor and diabetic nephropathy. Current Diabetes Reports, 2008, 8, 470-476.	4.2	52
29	Diabetic Nephropathy: Mechanisms of Renal Disease Progression. Experimental Biology and Medicine, 2008, 233, 4-11.	2.4	502
30	Interference with TGF-β signaling by Smad3-knockout in mice limits diabetic glomerulosclerosis without affecting albuminuria. American Journal of Physiology - Renal Physiology, 2007, 293, F1657-F1665.	2.7	110
31	Inhibiting albumin glycation attenuates dysregulation of VEGFR-1 and collagen IV subchain production and the development of renal insufficiency. American Journal of Physiology - Renal Physiology, 2007, 292, F789-F795.	2.7	25
32	Evaluation and management of hyponatremia: an emerging role for vasopressin receptor antagonists. Nature Clinical Practice Nephrology, 2007, 3, 82-95.	2.0	29
33	Transforming Growth Factor- \hat{l}^2 Signal Transduction in the Pathogenesis of Diabetic Nephropathy. , 2006, , 201-221.		1
34	Amadori-modified glycated serum proteins and accelerated atherosclerosis in diabetes: Pathogenic and therapeutic implications. Translational Research, 2006, 147, 211-219.	2.3	68
35	HMG-CoA reductase inhibitor simvastatin mitigates VEGF-induced "inside-out―signaling to extracellular matrix by preventing RhoA activation. American Journal of Physiology - Renal Physiology, 2006, 291, F995-F1004.	2.7	32
36	Blockade of Vascular Endothelial Growth Factor Signaling Ameliorates Diabetic Albuminuria in Mice. Journal of the American Society of Nephrology: JASN, 2006, 17, 3093-3104.	6.1	179

#	Article	IF	CITATIONS
37	ACE and ACE2 Activity in Diabetic Mice. Diabetes, 2006, 55, 2132-2139.	0.6	270
38	Angiotensin II stimulates α3(IV) collagen production in mouse podocytes via TGF-β and VEGF signalling: implications for diabetic glomerulopathy. Nephrology Dialysis Transplantation, 2005, 20, 1320-1328.	0.7	98
39	Evidence linking glycated albumin to altered glomerular nephrin and VEGF expression, proteinuria, and diabetic nephropathy. Kidney International, 2005, 68, 1554-1561.	5.2	56
40	From the Periphery of the Glomerular Capillary Wall Toward the Center of Disease. Diabetes, 2005, 54, 1626-1634.	0.6	521
41	Podocyte-Derived Vascular Endothelial Growth Factor Mediates the Stimulation of $\hat{I}\pm 3$ (IV) Collagen Production by Transforming Growth Factor- \hat{I}^21 in Mouse Podocytes. Diabetes, 2004, 53, 2939-2949.	0.6	101
42	Cultured tubule cells from TGF-β1 null mice exhibit impaired hypertrophy and fibronectin expression in high glucose. Kidney International, 2004, 65, 1191-1204.	5.2	29
43	Glycated albumin increases oxidative stress, activates NF-κB and extracellular signal-regulated kinase (ERK), and stimulates ERK-dependent transforming growth factor-β1 production in macrophage RAW cells. Translational Research, 2003, 141, 242-249.	2.3	99
44	Retinoids as a potential treatment for experimental puromycinâ€induced nephrosis. British Journal of Pharmacology, 2003, 139, 823-831.	5.4	54
45	Diabetic nephropathy and transforming growth factor-β: transforming our view of glomerulosclerosis and fibrosis build-up. Seminars in Nephrology, 2003, 23, 532-543.	1.6	233
46	Reversibility of established diabetic glomerulopathy by anti-TGF-β antibodies in db/db mice. Biochemical and Biophysical Research Communications, 2003, 300, 16-22.	2.1	120
47	Smad pathway is activated in the diabetic mouse kidney and Smad3 mediates TGF-β-induced fibronectin in mesangial cells. Biochemical and Biophysical Research Communications, 2002, 296, 1356-1365.	2.1	161
48	Leptin and renal disease. American Journal of Kidney Diseases, 2002, 39, 1-11.	1.9	6,157
49	Involvement of the transforming growth factor-β system in the pathogenesis of diabetic nephropathy. Clinical and Experimental Nephrology, 2002, 6, 125-129.	1.6	2
50	Inhibiting albumin glycation in vivo ameliorates glomerular overexpression of TGF-β1. Kidney International, 2002, 61, 2025-2032.	5.2	26
51	Effects of high glucose and TGF-β1 on the expression of collagen IV and vascular endothelial growth factor in mouse podocytes. Kidney International, 2002, 62, 901-913.	5.2	182
52	Increased Glomerular and Tubular Expression of Transforming Growth Factor-β1, Its Type II Receptor, and Activation of the Smad Signaling Pathway in the db/db Mouse. American Journal of Pathology, 2001, 158, 1653-1663.	3.8	187
53	The Renin-Angiotensin System in Diabetic Nephropathy. , 2001, 135, 212-221.		11
54	Hydrogen peroxide increases extracellular matrix mRNA through TGF-β in human mesangial cells. Kidney International, 2001, 59, 87-95.	5.2	196

#	Article	IF	CITATIONS
55	Glycated albumin stimulates TGF-βbgr;1 production and protein kinase C activity in glomerular endothelial cells. Kidney International, 2001, 59, 673-681.	5.2	99
56	Leptin stimulates type I collagen production in db/db mesangial cells: Glucose uptake and TGF-β type II receptor expression. Kidney International, 2001, 59, 1315-1323.	5.2	126
57	THE KEY ROLE OF THE TRANSFORMING GROWTH FACTOR-Î ² SYSTEM IN THE PATHOGENESIS OF DIABETIC NEPHROPATHY. Renal Failure, 2001, 23, 471-481.	2.1	88
58	Amadori-glycated albumin in diabetic nephropathy: Pathophysiologic connections. Kidney International, 2000, 58, S40-S44.	5.2	72
59	Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor-l ² antibody in <i>db/db</i> diabetic mice. Proceedings of the National Academy of Sciences of the United States of America. 2000. 97. 8015-8020.	7.1	859
60	The Urine/Plasma Electrolyte Ratio: A Predictive Guide to Water Restriction. American Journal of the Medical Sciences, 2000, 319, 240-244.	1.1	95
61	Transforming Growth Factor-β and other Cytokines in Experimental and Human Nephropathy. , 2000, , 313-338.		3
62	The Urine/Plasma Electrolyte Ratio: A Predictive Guide to Water Restriction. American Journal of the Medical Sciences, 2000, 319, 240-244.	1.1	120
63	Extracellular Signal-Regulated Kinase Mediates Stimulation of TGF-β1 and Matrix by High Glucose in Mesangial Cells. Journal of the American Society of Nephrology: JASN, 2000, 11, 2222-2230.	6.1	115
64	TRANSFORMING GROWTH FACTOR- $\hat{1}^2$ AND OTHER CYTOKINES IN EXPERIMENTAL AND HUMAN DIABETIC NEPHROPATHY. , 0, , 397-432.		1