
Rani Gupta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4993961/publications.pdf Version: 2024-02-01

Ρανι Οιιστα

#	Article	IF	CITATIONS
1	Development of a novel <i>Pichia pastoris</i> expression platform <i>via</i> genomic integration of lipase gene for sustained release of methanol from methyloleate. Preparative Biochemistry and Biotechnology, 2022, , 1-12.	1.9	1
2	N-truncation in lipase Lip11 from Yarrowia lipolytica alleviates substrate inhibition with improved stability and efficiency ensuing distinct structural modifications. Process Biochemistry, 2022, 116, 185-196.	3.7	1
3	Gamma cyclodextrin glycosyltransferase from evansella caseinilytica: production, characterization and product specificity. 3 Biotech, 2022, 12, 16.	2.2	7
4	Cell surface expression of Î ³ -CGTase from Evansella caseinilytica on E. coli: Application in the enzymatic conversion of starch to Î ³ -cyclodextrin. Enzyme and Microbial Technology, 2022, 159, 110066.	3.2	3
5	Bacterial Gamma-Glutamyl Transpeptidase, an Emerging Biocatalyst: Insights Into Structure–Function Relationship and Its Biotechnological Applications. Frontiers in Microbiology, 2021, 12, 641251.	3.5	29
6	Functional characterization of the extra sequence in the large subunit of Î ³ -glutamyl transpeptidase from Bacillus atrophaeus: Role in autoprocessing and activity. Process Biochemistry, 2021, 106, 199-212.	3.7	0
7	Disrupting putative N-glycosylation site N17 in lipase Lip11 of Yarrowia lipolytica yielded a catalytically efficient and thermostable variant accompanying conformational changes. Enzyme and Microbial Technology, 2021, 151, 109922.	3.2	6
8	Draft Genome Sequence of a Poly-γ-Glutamic Acid-Producing Isolate, Bacillus paralicheniformis Strain bcasdu2018/01. Microbiology Resource Announcements, 2021, 10, e0101321.	0.6	0
9	High level extracellular production of recombinant γ-glutamyl transpeptidase from Bacillus licheniformis in Escherichia coli fed-batch culture. Enzyme and Microbial Technology, 2018, 116, 23-32.	3.2	7
10	Characterization of a novel thiol activated phospholipase TAPLB1 from Trichosporon asahii MSR 54. International Journal of Biological Macromolecules, 2018, 120, 537-546.	7.5	0
11	Hyperproduction of γ-glutamyl transpeptidase from <i>Bacillus licheniformis</i> ER15 in the presence of high salt concentration. Preparative Biochemistry and Biotechnology, 2017, 47, 163-172.	1.9	8
12	Heterologous expression of γ-glutamyl transpeptidase from Bacillus atrophaeus GS-16 and its application in the synthesis of I³- d -glutamyl- l -tryptophan, a known immunomodulatory peptide. Enzyme and Microbial Technology, 2017, 99, 67-76.	3.2	18
13	High Resolution X-ray Diffraction Dataset for Bacillus licheniformis Gamma Glutamyl Transpeptidase-acivicin complex: SUMO-Tag Renders High Expression and Solubility. Protein Journal, 2017, 36, 7-16.	1.6	5
14	Targeted mutations and MD simulations of a methanol-stable lipase YLIP9 from Yarrowia lipolytica MSR80 to develop a biodiesel enzyme. International Journal of Biological Macromolecules, 2017, 104, 78-88.	7.5	14
15	Evolving transpeptidase and hydrolytic variants of Î ³ -glutamyl transpeptidase from Bacillus licheniformis by targeted mutations of conserved residue Arg109 and their biotechnological relevance. Journal of Biotechnology, 2017, 249, 82-90.	3.8	11
16	Functional characterization of hormone sensitive-like lipase from Bacillus halodurans: synthesis and recovery of pNP-laurate with high yields. Extremophiles, 2017, 21, 871-889.	2.3	8
17	Heterologous expression of lipases YLIP4, YLIP5, YLIP7, YLIP13, and YLIP15 from <i>Yarrowia lipolytica</i> MSR80 in <i>Escherichia coli</i> : Substrate specificity, kinetic comparison, and enantioselectivity. Biotechnology and Applied Biochemistry, 2017, 64, 851-861.	3.1	9
18	Rational design of drug-like compounds targeting Mycobacterium marinum MelF protein. PLoS ONE, 2017, 12, e0183060.	2.5	13

Rani Gupta

#	Article	IF	CITATIONS
19	Localized surface plasmon resonance–based fiber-optic sensor for the detection of triacylglycerides using silver nanoparticles. Journal of Biomedical Optics, 2017, 22, 1.	2.6	23
20	Thermo- and salt-tolerant chitosan cross-linked γ-glutamyl transpeptidase from Bacillus licheniformis ER15. International Journal of Biological Macromolecules, 2016, 91, 544-553.	7.5	14
21	Long period fiber grating based sensor for the detection of triacylglycerides. Biosensors and Bioelectronics, 2016, 79, 693-700.	10.1	39
22	Novel S -enantioselective lipase TALipB from Trichosporon asahii MSR54: Heterologous expression, characterization, conformational stability and homology modeling. Enzyme and Microbial Technology, 2016, 83, 29-39.	3.2	11
23	Selective disruption of disulphide bonds lowered activation energy and improved catalytic efficiency in TALipB from Trichosporon asahii MSR54: MD simulations revealed flexible lid and extended substrate binding area in the mutant. Biochemical and Biophysical Research Communications, 2016, 472, 223-230.	2.1	6
24	Long period fiber grating for the detection of triacylglycerides: Analytical and experimental study. , 2015, , .		0
25	Molecular and functional diversity of yeast and fungal lipases: Their role in biotechnology and cellular physiology. Progress in Lipid Research, 2015, 57, 40-54.	11.6	129
26	Functional Characterisation of Novel Enantioselective Lipase TALipA from Trichosporon asahii MSR54: Sequence Comparison Revealed New Signature Sequence AXSXG Among Yeast Lipases. Applied Biochemistry and Biotechnology, 2015, 175, 360-371.	2.9	9
27	Cloning, Expression, and Biochemical Characterization of an Enantioselective Lipase, YLIP9, from Yarrowia lipolytica MSR80. Applied Biochemistry and Biotechnology, 2015, 176, 110-124.	2.9	10
28	Extracellular expression of YlLip11 with a native signal peptide from Yarrowia lipolytica MSR80 in three different yeast hosts. Protein Expression and Purification, 2015, 110, 138-144.	1.3	12
29	"Phylogenetic and evolutionary analysis of functional divergence among Gamma glutamyl transpeptidase (GGT) subfamilies― Biology Direct, 2015, 10, 49.	4.6	29
30	Novel Strategy of Using Methyl Esters as Slow Release Methanol Source during Lipase Expression by mut+ Pichia pastoris X33. PLoS ONE, 2014, 9, e104272.	2.5	7
31	<scp>l</scp> -Theanine Synthesis Using γ-Glutamyl Transpeptidase from <i>Bacillus licheniformis</i> ER-15. Journal of Agricultural and Food Chemistry, 2014, 62, 9151-9159.	5.2	48
32	A hydrolytic Î ³ -glutamyl transpeptidase from thermo-acidophilic archaeon Picrophilus torridus: binding pocket mutagenesis and transpeptidation. Extremophiles, 2013, 17, 29-41.	2.3	20
33	Revisiting microbial keratinases: next generation proteases for sustainable biotechnology. Critical Reviews in Biotechnology, 2013, 33, 216-228.	9.0	113
34	Comparative biochemical characterization and in silico analysis of novel lipases Lip11 and Lip12 with Lip2 from Yarrowia lipolytica. World Journal of Microbiology and Biotechnology, 2012, 28, 3103-3111.	3.6	19
35	γ-Glutamyl transpeptidase from Bacillus pumilus KS 12: Decoupling autoprocessing from catalysis and molecular characterization of N-terminal region. Enzyme and Microbial Technology, 2012, 50, 159-164.	3.2	23
36	Cloning and characterization of a thermostable detergentâ€compatible recombinant keratinase from <i>Bacillus pumilus</i> KS12. Biotechnology and Applied Biochemistry, 2011, 58, 109-118.	3.1	17

ΓΑΝΙ GUPTA

#	Article	IF	CITATIONS
37	Medium optimization for a novel 58kDa dimeric keratinase from Bacillus licheniformis ER-15: Biochemical characterization and application in feather degradation and dehairing of hides. Bioresource Technology, 2010, 101, 6103-6110.	9.6	100
38	Extracellular Expression of Keratinase from Bacillus licheniformis ER-15 in Escherichia coli. Journal of Agricultural and Food Chemistry, 2010, 58, 8380-8385.	5.2	30
39	Green Enzymatic Synthesis of L-Ascorbyl Fatty Acid Ester: An Antioxidant. Synthetic Communications, 2009, 39, 1143-1151.	2.1	13
40	Keratinases vis-Ã-vis conventional proteases and feather degradation. World Journal of Microbiology and Biotechnology, 2007, 23, 1537-1540.	3.6	56
41	Microbial keratinases and their prospective applications: an overview. Applied Microbiology and Biotechnology, 2006, 70, 21-33.	3.6	525
42	Single-step purification of lipase from Burkholderia multivorans using polypropylene matrix. Applied Microbiology and Biotechnology, 2005, 67, 648-653.	3.6	28
43	Optimization of medium composition for keratinase production on feather by Bacillus licheniformis RG1 using statistical methods involving response surface methodology. Biotechnology and Applied Biochemistry, 2004, 40, 191.	3.1	93
44	Lipase assays for conventional and molecular screening: an overview. Biotechnology and Applied Biochemistry, 2003, 37, 63.	3.1	146
45	Lipase Mediated Upgradation of Dietary Fats and Oils. Critical Reviews in Food Science and Nutrition, 2003, 43, 635-644.	10.3	60
46	Microbial biomass: an economical alternative for removal of heavy metals from waste water. Indian Journal of Experimental Biology, 2003, 41, 945-66.	0.0	21
47	Statistical Media Optimization and Production of ITS α-Amylase from Aspergillus oryzae in a Bioreactor. Current Microbiology, 2002, 45, 203-208.	2.2	44
48	Simplified para-nitrophenyl palmitate assay for lipases and esterases. Analytical Biochemistry, 2002, 311, 98-99.	2.4	200
49	Fermentation waste of Aspergillus terreus: a potential copper biosorbent. World Journal of Microbiology and Biotechnology, 2002, 18, 397-401.	3.6	38
50	Reduced Uptake as a Mechanism of Zinc Tolerance in Oscillatoria anguistissima. Current Microbiology, 2001, 43, 305-310.	2.2	14
51	Regulation of the production of polygalacturonase by Aspergillus terreus. World Journal of Microbiology and Biotechnology, 2001, 17, 487-491.	3.6	25
52	A hyper-thermostable, alkaline lipase from Pseudomonas sp. with the property of thermal activation. Biotechnology Letters, 2000, 22, 495-498.	2.2	61
53	Microwave Assisted Stereoselective Synthesis and Antibacterial Activity of New Fluoroquinolinyl-β-lactam Derivatives. Monatshefte FÃ1⁄4r Chemie, 2000, 131, 85-90.	1.8	13
54	Bleach-stable, alkaline protease from Bacillus sp Biotechnology Letters, 1999, 21, 135-138.	2.2	116

ΓΑΝΙ GUPTA

#	Article	IF	CITATIONS
55	News & Notes: Sorption and Desorption of Cobalt by Oscillatoria anguistissima. Current Microbiology, 1999, 39, 49-52.	2.2	45
56	Microwave Assisted Synthesis and Antibacterial Activity of New Quinolone Derivatives. Monatshefte Für Chemie, 1998, 129, 961-965.	1.8	7
57	Utility of a Novel Lipase FromAspergillus Terreusin Deacetylation Reactions. Biocatalysis and Biotransformation, 1998, 16, 17-25.	2.0	13
58	Oscillatoria anguistissima : A Promising Cu 2+ Biosorbent. Current Microbiology, 1997, 35, 151-154.	2.2	19
59	Polyamines as Modulators of Microcycle Conidiation in Aspergillus Flavus. Microbiology (United) Tj ETQq1 1 0.78	4314 rgBT 1.8	- /Qyerlock 1
60	Chitinase production by <i>Streptomyces viridificans:</i> its potential in fungal cell wall lysis. Journal of Applied Bacteriology, 1995, 78, 378-383.	1.1	188
61	In-Situ and Cell-Free Goat Hair Hydrolysis by a Consortium of Proteases from Bacillus licheniformis Strain ER-15: Hair Hydrolysate Valorization by Melanin Extraction. Waste and Biomass Valorization, 0, , 1.	3.4	0