Abdelhamid Sayari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4992888/publications.pdf

Version: 2024-02-01

113 papers 14,364 citations

18482 62 h-index 26613 107 g-index

114 all docs

114 does citations

times ranked

114

10275 citing authors

#	Article	IF	CITATIONS
1	Periodic Mesoporous Silica-Based Organicâ^'Inorganic Nanocomposite Materials. Chemistry of Materials, 2001, 13, 3151-3168.	6.7	814
2	Catalysis by Crystalline Mesoporous Molecular Sieves. Chemistry of Materials, 1996, 8, 1840-1852.	6.7	765
3	Sulfated Zirconia-Based Strong Solid-Acid Catalysts: Recent Progress. Catalysis Reviews - Science and Engineering, 1996, 38, 329-412.	12.9	616
4	Stabilization of Amine-Containing CO ₂ Adsorbents: Dramatic Effect of Water Vapor. Journal of the American Chemical Society, 2010, 132, 6312-6314.	13.7	531
5	Flue gas treatment via CO2 adsorption. Chemical Engineering Journal, 2011, 171, 760-774.	12.7	476
6	Applications of Pore-Expanded Mesoporous Silica. 5. Triamine Grafted Material with Exceptional CO2Dynamic and Equilibrium Adsorption Performance. Industrial & Engineering Chemistry Research, 2007, 46, 446-458.	3.7	450
7	Applications of Pore-Expanded Mesoporous Silica. 2. Development of a High-Capacity, Water-Tolerant Adsorbent for CO2. Industrial & Engineering Chemistry Research, 2005, 44, 8007-8013.	3.7	364
8	Applications of Pore-Expanded Mesoporous Silicas. 3. Triamine Silane Grafting for Enhanced CO2Adsorption. Industrial & Engineering Chemistry Research, 2006, 45, 3248-3255.	3.7	362
9	New Insights into the Interactions of CO ₂ with Amine-Functionalized Silica. Industrial & Lamp; Engineering Chemistry Research, 2008, 47, 9406-9412.	3.7	361
10	Modeling adsorption of CO2 on amine-functionalized mesoporous silica. 2: Kinetics and breakthrough curves. Chemical Engineering Journal, 2010, 161, 182-190.	12.7	348
11	Simple Synthesis Route to Monodispersed SBA-15 Silica Rods. Journal of the American Chemical Society, 2004, 126, 14348-14349.	13.7	338
12	Applications of Pore-Expanded Mesoporous Silica. 1. Removal of Heavy Metal Cations and Organic Pollutants from Wastewater. Chemistry of Materials, 2005, 17, 212-216.	6.7	317
13	Polyethylenimine-Impregnated Mesoporous Silica: Effect of Amine Loading and Surface Alkyl Chains on CO ₂ Adsorption. Langmuir, 2011, 27, 12411-12416.	3.5	303
14	CO ₂ -Induced Degradation of Amine-Containing Adsorbents: Reaction Products and Pathways. Journal of the American Chemical Society, 2012, 134, 13834-13842.	13.7	278
15	Effect of pore expansion and amine functionalization ofÂmesoporous silica on CO2 adsorption over a wide range ofÂconditions. Adsorption, 2009, 15, 318-328.	3.0	268
16	Comprehensive study of ultra-microporous nitrogen-doped activated carbon for CO2 capture. Carbon, 2015, 93, 68-80.	10.3	263
17	Stability of amine-functionalized CO ₂ adsorbents: a multifaceted puzzle. Chemical Society Reviews, 2019, 48, 3320-3405.	38.1	260
18	Adsorption of CO ₂ -Containing Gas Mixtures over Amine-Bearing Pore-Expanded MCM-41 Silica: Application for Gas Purification. Industrial & Engineering Chemistry Research, 2010, 49, 359-365.	3.7	253

#	Article	IF	Citations
19	Expanding the Pore Size of MCM-41 Silicas:  Use of Amines as Expanders in Direct Synthesis and Postsynthesis Procedures. Journal of Physical Chemistry B, 1999, 103, 3651-3658.	2.6	234
20	Amine-bearing mesoporous silica for CO2 removal from dry and humid air. Chemical Engineering Science, 2010, 65, 3695-3698.	3.8	233
21	Activated carbon with optimum pore size distribution for hydrogen storage. Carbon, 2016, 99, 289-294.	10.3	215
22	New Insights into the Synthesis, Morphology, and Growth of Periodic Mesoporous Organosilicas. Chemistry of Materials, 2000, 12, 3857-3863.	6.7	200
23	Relations between Pore Structure Parameters and Their Implications for Characterization of MCM-41 Using Gas Adsorption and X-ray Diffraction. Chemistry of Materials, 1999, 11, 492-500.	6.7	194
24	Understanding the Effect of Water on CO ₂ Adsorption. Chemical Reviews, 2021, 121, 7280-7345.	47.7	194
25	CO2 capture on polyethylenimine-impregnated hydrophobic mesoporous silica: Experimental and kinetic modeling. Chemical Engineering Journal, 2011, 173, 72-79.	12.7	186
26	New Approaches to Pore Size Engineering of Mesoporous Silicates. Advanced Materials, 1998, 10, 1376-1379. Adsorption of complement xmlps:mml="http://www.w3.org/1998/Math/Math/Mil" altimg="sil.gif"	21.0	185
27	display="inline" overflow="scroll"> <mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mi mathvariant="normal">CO</mml:mi></mml:mrow></mml:mrow><mml:mrow><mml:mn>2</mml:mn><td>row_{3.8}/mm</td><td>l:msub></td></mml:mrow></mml:msub></mml:mrow>	row _{3.8} /mm	l:msub>
28	overflow="scroll" > cmml:mrow> cmml:msub> cmm. Chemical Engineering Science, 2009, 64, 3721-3728. Thermal, Oxidative, and CO ₂ -Induced Degradation of Supported Polyethylenimine Adsorbents. Industrial & Company Engineering Chemistry Research, 2012, 51, 6887-6894.	3.7	178
29	CO ₂ Deactivation of Supported Amines: Does the Nature of Amine Matter?. Langmuir, 2012, 28, 4241-4247.	3.5	176
30	Modeling CO2 adsorption on amine-functionalized mesoporous silica: 1. A semi-empirical equilibrium model. Chemical Engineering Journal, 2010, 161, 173-181.	12.7	172
31	Adsorption of copper on amine-functionalized SBA-15 prepared by co-condensation: Equilibrium properties. Chemical Engineering Journal, 2011, 166, 445-453.	12.7	167
32	Amine-Bearing Mesoporous Silica for CO ₂ and H ₂ S Removal from Natural Gas and Biogas. Langmuir, 2009, 25, 13275-13278.	3.5	166
33	Adsorption of CO2 from dry gases on MCM-41 silica at ambient temperature and high pressure. 2: Adsorption of CO2/N2, CO2/CH4 and CO2/H2 binary mixtures. Chemical Engineering Science, 2009, 64, 3729-3735.	3.8	149
34	Further investigations of CO2 capture using triamine-grafted pore-expanded mesoporous silica. Chemical Engineering Journal, 2010, 158, 513-519.	12.7	146
35	Effect of the Pore Length on CO ₂ Adsorption over Amine-Modified Mesoporous Silicas. Energy & Energy	5.1	144
36	New Approach to Evaluate Pore Size Distributions and Surface Areas for Hydrophobic Mesoporous Solids. Journal of Physical Chemistry B, 1999, 103, 10670-10678.	2.6	135

#	Article	IF	Citations
37	Molecularly Ordered Nanoporous Organosilicates Prepared with and without Surfactants. Journal of the American Chemical Society, 2005, 127, 12194-12195.	13.7	135
38	Adsorption of heavy metals on amine-functionalized SBA-15 prepared by co-condensation: Applications to real water samples. Desalination, 2012, 285, 62-67.	8.2	128
39	Periodic mesoporous materials: synthesis, characterization and potential applications. Studies in Surface Science and Catalysis, 1996, , 1-46.	1.5	123
40	A General Correlation for the 129Xe NMR Chemical Shiftâ^'Pore Size Relationship in Porous Silica-Based Materials. Langmuir, 2002, 18, 5653-5656.	3.5	119
41	Light alkane dehydrogenation over mesoporous Cr2O3/Al2O3 catalysts. Applied Catalysis A: General, 2010, 389, 155-164.	4.3	114
42	A highly efficient CaO-based CO2 sorbent prepared by a citrate-assisted sol–gel technique. Chemical Engineering Journal, 2015, 262, 913-920.	12.7	113
43	CO2 capture using triamine-grafted SBA-15: The impact of the support pore structure. Chemical Engineering Journal, 2018, 334, 1260-1269.	12.7	113
44	A Unified Interpretation of High-Temperature Pore Size Expansion Processes in MCM-41 Mesoporous Silicas. Journal of Physical Chemistry B, 1999, 103, 4590-4598.	2.6	110
45	Degradation of amine-supported CO2 adsorbents in the presence of oxygen-containing gases. Microporous and Mesoporous Materials, 2011, 145, 146-149.	4.4	106
46	Applications of pore-expanded mesoporous silica 6. Novel synthesis of monodispersed supported palladium nanoparticles and their catalytic activity for Suzuki reaction. Journal of Catalysis, 2007, 246, 60-65.	6.2	105
47	Nanoporous zirconium oxide prepared using the supramolecular templating approach. Catalysis Letters, 1996, 38, 219-223.	2.6	102
48	Isothermal versus Non-isothermal Adsorptionâ^'Desorption Cycling of Triamine-Grafted Pore-Expanded MCM-41 Mesoporous Silica for CO ₂ Capture from Flue Gas. Energy &	5.1	101
49	Applications of Pore-Expanded Mesoporous Silica. 7. Adsorption of Volatile Organic Compounds. Environmental Science & Drychnology, 2007, 41, 4761-4766.	10.0	88
50	Simultaneous Adsorption of H ₂ S and CO ₂ on Triamine-Grafted Pore-Expanded Mesoporous MCM-41 Silica. Energy & Description of Expanded Mesoporous MCM-41 Silica. Energy & Description of Expanded Mesoporous MCM-41 Silica.	5.1	86
51	Unprecedented Expansion of the Pore Size and Volume of Periodic Mesoporous Silica. Angewandte Chemie - International Edition, 2000, 39, 2920-2922.	13.8	85
52	Supported Polytertiary Amines: Highly Efficient and Selective SO ₂ Adsorbents. Environmental Science & Environmental	10.0	85
53	Enhanced Adsorption Efficiency through Materials Design for Direct Air Capture over Supported Polyethylenimine. ChemSusChem, 2016, 9, 2796-2803.	6.8	82
54	A Unified Approach to CO ₂ –Amine Reaction Mechanisms. ACS Omega, 2020, 5, 26125-26133.	3.5	80

#	Article	IF	CITATIONS
55	New insights into pore-size expansion of mesoporous silicates using long-chain amines. Microporous and Mesoporous Materials, 2000, 35-36, 545-553.	4.4	77
56	SBA-15 Templated Mesoporous Carbon:  New Insights into the SBA-15 Pore Structure. Chemistry of Materials, 2005, 17, 6108-6113.	6.7	74
57	Oxidative degradation of silica-supported polyethylenimine for CO ₂ adsorption: insights into the nature of deactivated species. Physical Chemistry Chemical Physics, 2014, 16, 1529-1535.	2.8	74
58	Synthesis of Periodic Mesoporous Phenylenesilica under Acidic Conditions with Novel Molecular Order in the Pore Walls. Chemistry of Materials, 2003, 15, 4886-4889.	6.7	72
59	Influence of regeneration conditions on the cyclic performance of amine-grafted mesoporous silica for CO2 capture: An experimental and statistical study. Chemical Engineering Science, 2010, 65, 4166-4172.	3.8	71
60	Periodic mesoporous organosilicas functionalized with a wide variety of amines for CO2 adsorption. Physical Chemistry Chemical Physics, 2013, 15, 9792.	2.8	69
61	Triamine-grafted pore-expanded mesoporous silica for CO2 capture: Effect of moisture and adsorbent regeneration strategies. Adsorption, 2010, 16, 567-575.	3.0	64
62	Adsorption of CO2-containing gas mixtures over amine-bearing pore-expanded MCM-41 silica: application for CO2 separation. Adsorption, 2011, 17, 395-401.	3.0	64
63	Adsorption of copper on amine-functionalized SBA-15 prepared by co-condensation: Kinetics properties. Chemical Engineering Journal, 2011, 166, 454-459.	12.7	64
64	Selective removal of SO2 over tertiary amine-containing materials. Chemical Engineering Journal, 2014, 240, 462-468.	12.7	64
65	Highly Ordered MCM-41 Silica Prepared in the Presence of Decyltrimethylammonium Bromide. Journal of Physical Chemistry B, 2000, 104, 4835-4839.	2.6	62
66	Comparative study of triglyceride transesterification in the presence of catalytic amounts of sodium, magnesium, and calcium methoxides. Applied Catalysis A: General, 2008, 339, 45-52.	4.3	61
67	Ethane dehydrogenation over pore-expanded mesoporous silica-supported chromium oxide: 2. Catalytic properties and nature of active sites. Journal of Molecular Catalysis A, 2009, 301, 159-165.	4.8	60
68	Nitrogen-Doped Carbons: Remarkably Stable Materials for CO ₂ Capture. Energy & Stable Fuels, 2014, 28, 2727-2731.	5.1	59
69	Nonionic oligomeric polymer directed synthesis of highly ordered large pore periodic mesoporous organosilica. Chemical Communications, 2002, , 2582-2583.	4.1	54
70	Optimization of copper removal efficiency by adsorption on amine-modified SBA-15: Experimental design methodology. Chemical Engineering Journal, 2011, 167, 91-98.	12.7	52
71	Insights into the Hydrothermal Stability of Triamineâ€Functionalized SBAâ€15 Silica for CO ₂ Adsorption. ChemSusChem, 2017, 10, 4037-4045.	6.8	50
72	Nitrogen Adsorption Study of MCM-41 Molecular Sieves Synthesized Using Hydrothermal Restructuring. Adsorption, 2000, 6, 47-51.	3.0	49

#	Article	IF	CITATIONS
73	Applications of pore-expanded MCM-41 silica: 4. Synthesis of a highly active base catalyst. Catalysis Communications, 2007, 8, 829-833.	3.3	40
74	Grafted propyldiethanolamine for selective removal of SO 2 in the presence of CO 2. Chemical Engineering Journal, 2016, 289, 142-149.	12.7	40
75	Removal of cadmium from aqueous solutions by adsorption onto polyethylenimine-functionalized mesocellular silica foam: Equilibrium properties. Journal of the Taiwan Institute of Chemical Engineers, 2016, 66, 372-378.	5.3	39
76	Rhodium ComplexedC2-PAMAM Dendrimers Supported on Large Pore Davisil Silica as Catalysts for the Hydroformylation of Olefins. Advanced Synthesis and Catalysis, 2005, 347, 1379-1388.	4.3	38
77	Long-Term Effect of Steam Exposure on CO ₂ Capture Performance of Amine-Grafted Silica. ACS Applied Materials & Discrete Steam (1998) ACS ACS Applied Materials & Discrete Steam (1998) ACS	8.0	36
78	Molecularly Ordered Biphenyl-Bridged Mesoporous Organosilica Prepared under Acidic Conditions. Chemistry of Materials, 2007, 19, 4117-4119.	6.7	35
79	Amine-modified mesoporous silica for quantitative adsorption and release of hydroxytyrosol and other phenolic compounds from olive mill wastewater. Journal of the Taiwan Institute of Chemical Engineers, 2017, 70, 111-118.	5.3	34
80	Ethane dehydrogenation over pore-expanded mesoporous silica supported chromium oxide: 1. Catalysts preparation and characterization. Journal of Molecular Catalysis A, 2009, 301, 152-158.	4.8	31
81	Mesoporous Silicateâ^'Surfactant Composites with Hydrophobic Surfaces and Tailored Pore Sizes. Journal of Physical Chemistry B, 2002, 106, 10096-10101.	2.6	29
82	Molecularâ€Level Insights into the Oxidative Degradation of Grafted Amines. Chemistry - A European Journal, 2013, 19, 10543-10550.	3.3	29
83	Physicochemical Properties Can Be Key Determinants of Mesoporous Silica Nanoparticle Potency <i>in Vitro</i> . ACS Nano, 2018, 12, 12062-12079.	14.6	29
84	Sulfated Zirconia as a Cocatalyst in Fischerâ^'Tropsch Synthesis. Energy &	5.1	26
85	Synthesis and Physicochemical Characterization of Mesoporous <mml:math id="M1" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mtext>S</mml:mtext><mml:mtext>G</mml:mtext>O</mml:math>	ım <mark>?.7</mark> text>	·/mml:mrov
86	Synthesis of onion-like mesoporous silica from sodium silicate in the presence of $\hat{l}\pm, \hat{l}\%$ -diamine surfactant. Microporous and Mesoporous Materials, 2008, 114, 387-394.	4.4	25
87	Synthesis of MCM-48 Silica Using a Gemini Surfactant with a Rigid Spacer. Chemistry of Materials, 2006, 18, 4147-4150.	6.7	22
88	Mesoporous Organosilicates from Multiple Precursors: Co-Condensation or Phase Segregation/Separation?. Chemistry of Materials, 2008, 20, 2980-2984.	6.7	22
89	Substrate dependence on the fixation of CO2 to cyclic carbonates over reusable porous hybrid solids. Journal of CO2 Utilization, 2018, 26, 564-574.	6.8	22
90	Production of ultra highly pure H2 and higher hydrocarbons from methane in one step at mild temperatures and development of the catalyst under non-equilibrium reaction conditions. Chemical Communications, 2001, , 1952-1953.	4.1	21

#	Article	IF	CITATIONS
91	Modification of Surface and Structural Properties of Ordered Mesoporous Silicates. Adsorption, 1999, 5, 39-45.	3.0	19
92	Bifunctional MCM-41 aluminosilicate supported Ir with adjusted metal and acid functionality for catalytic ring opening of 1,2-dimethylcyclohexane. Journal of Catalysis, 2016, 344, 729-740.	6.2	15
93	Solid Phase Extraction of Bio-Oil Model Compounds and Lignin-Derived Bio-Oil Using Amine-Functionalized Mesoporous Silicas. ACS Sustainable Chemistry and Engineering, 2018, 6, 9716-9724.	6.7	15
94	Catalysis Over Pore-Expanded MCM-41 Mesoporous Materials. Topics in Catalysis, 2010, 53, 154-167.	2.8	14
95	Effect of regeneration conditions on the cyclic performance of amine-modified SBA-15 for removal of copper from aqueous solutions: Composite surface design methodology. Desalination, 2011, 277, 54-60.	8.2	14
96	Sol–Gel Assisted Preparation of Chromia–Silica Catalysts for Non-Oxidative Dehydrogenation of Propane. Catalysis Letters, 2008, 126, 164-172.	2.6	13
97	One-pot synthesis of large-pore AlMCM-41 aluminosilicates with high stability and adjustable acidity. Microporous and Mesoporous Materials, 2018, 262, 166-174.	4.4	13
98	Synthesis and Characterization of Titanium-Substituted Large Pore SSZ-42 Zeolite. Catalysis Letters, 2001, 77, 227-231.	2.6	12
99	Covalently Immobilized Polyethylenimine for CO ₂ Adsorption. Industrial & Description in the Covalently Immobilized Polyethylenimine for CO ₂ Adsorption. Industrial & Description in the Covalently Immobilized Polyethylenimine for CO ₄	3.7	11
100	Odd-even effect in the synthesis of mesoporous silicate molecular sieves in the presence of alkyl cetyl dimethyl ammonium bromide. Journal of Porous Materials, 1996, 3, 77-82.	2.6	9
101	Facile synthesis route to monodispersed platelet-like SBA-15 silica. Journal of Porous Materials, 2012, 19, 745-749.	2.6	8
102	Novel porous organocatalysts for cycloaddition of CO2 and epoxides. RSC Advances, 2019, 9, 24527-24538.	3.6	5
103	Vanadium Containing Large Pore Zeolites with ZSM-12 and SSZ-24 Structures. Materials Research Society Symposia Proceedings, 1994, 371, 87.	0.1	4
104	MESOPOROUS MATERIALS., 2003, , 39-68.		4
105	Modeling Adsorption of Copper on Amine-Functionalized SBA-15: Predicting Breakthrough Curves. Journal of Environmental Engineering, ASCE, 2013, 139, 95-103.	1.4	4
106	Mesoporous Silica and Silica–Organic Hybrids. , 2004, , 852-860.		3
107	Environmentally Friendly Gas Phase Grafting of Mesoporous Silicas. Chemical Engineering Journal, 2021, 430, 132627.	12.7	2
108	Adsorption Separation of Methyl Chloride from Nitrogen Using ZSM-5 and Mesoporous SBA-15. Adsorption Science and Technology, 2006, 24, 79-99.	3.2	1

#	Article	IF	CITATIONS
109	Photophysical Properties of Methyl Triazone Included in MCMâ€41 [¶] . Photochemistry and Photobiology, 2005, 81, 949-952.	2.5	O
110	Hydrothermally stable onion-like mesoporous silica. Studies in Surface Science and Catalysis, 2008, 174, 293-296.	1.5	0
111	UREASE IMMOBILIZATION ON PORE-EXPANDED MESOPOROUS SILICA AND ITS CATALYTIC EFFECT ON HYDROLYSIS OF UREA. , 2008, , .		O
112	Carbon Dioxide Capture from Post-combustion Streams Using Amine-functionalized Nanoporous Materials., 2012,, 407-432.		0
113	ADSORPTION OF VOLATILE ORGANIC COMPOUNDS ON PORE EXPANDED MESOPOROUS MATERIALS. , 2008, , .		0