John Quale

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/499255/publications.pdf

Version: 2024-02-01

37	1,454	516710	414414
papers	1,454 citations	h-index	g-index
37	37	37	1667
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Is remdesivir safe in patients with renal impairment? Experience at a large tertiary urban medical center. Infection, 2023, 51, 247-252.	4.7	6
2	Relationship of TonB-dependent receptors with susceptibility to cefiderocol in clinical isolates of <i>Pseudomonas aeruginosa</i> . Journal of Antimicrobial Chemotherapy, 2022, 77, 1282-1285.	3.0	9
3	<i>In Vitro</i> and <i>In Vivo</i> Activity of Amoxicillin–Clavulanate Combined with Ceftibuten or Cefpodoxime Against Extended-Spectrum β-Lactamase–Producing <i>Escherichia coli</i> and <i>Klebsiella pneumoniae</i> Microbial Drug Resistance, 2022, 28, 419-424.	2.0	3
4	The initial and lingering impact of coronavirus disease 2019 (COVID-19) on catheter-associated infections in a large healthcare system in New York City. Antimicrobial Stewardship & Healthcare Epidemiology, 2022, 2, .	0.5	1
5	Trends in Clostridioides difficile infection across a public health hospital system in New York City 2019-2021: A cautionary note. American Journal of Infection Control, 2022, 50, 1389-1391.	2.3	5
6	Activity of Omadacycline and Other Tetracyclines Against Contemporary Gram-Negative Pathogens from New York City Hospitals. Microbial Drug Resistance, 2021, 27, 190-195.	2.0	14
7	Effectiveness of Fluconazole Prophylaxis in a Targeted High-Risk Group in a Surgical Intensive Care Unit. Surgical Infections, 2021, 22, 738-740.	1.4	1
8	Trends in Healthcare Facility-Onset Clostridioides difficile Infection and the Impact of Testing Schemes in an Acute Care Hospital System in New York City, 2016-2019. American Journal of Infection Control, 2021, 49, 1262-1266.	2.3	1
9	Trends in central-line-associated bloodstream infections and catheter-associated urinary tract infections in a large acute-care hospital system in New York City, 2016-2019. Infection Control and Hospital Epidemiology, 2021, 42, 842-846.	1.8	4
10	Tocilizumab therapy for COVID-19: A comparison of subcutaneous and intravenous therapies. International Journal of Infectious Diseases, 2020, 101, 59-64.	3.3	12
11	Cefiderocol Resistance in Acinetobacter baumannii: Roles of \hat{l}^2 -Lactamases, Siderophore Receptors, and Penicillin Binding Protein 3. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	68
12	Activity of Cefiderocol Against <i>Enterobacterales</i> , <i>Pseudomonas aeruginosa</i> , and <i>Acinetobacter baumannii</i> Endemic to Medical Centers in New York City. Microbial Drug Resistance, 2020, 26, 722-726.	2.0	40
13	Activity of cefepime/zidebactam (WCK 5222) against Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter baumannii endemic to New York City medical centres. Journal of Antimicrobial Chemotherapy, 2019, 74, 2938-2942.	3.0	20
14	Activity of Meropenem with a Novel Broader-Spectrum \hat{I}^2 -Lactamase Inhibitor, WCK 4234, against Gram-Negative Pathogens Endemic to New York City. Antimicrobial Agents and Chemotherapy, 2019, 64, .	3.2	3
15	Fulminant and rapidly fatal hemophagocytic lymphohistiocytosis in patients with HIV infection: A report of five cases and a review. International Journal of STD and AIDS, 2019, 30, 1224-1228.	1.1	1
16	<i>In Vitro</i> and <i>In Vivo</i> Activity of a Novel Antisense Peptide Nucleic Acid Compound Against Multidrug-Resistant <i>Acinetobacter baumannii</i> Microbial Drug Resistance, 2019, 25, 961-965.	2.0	12
17	In vitro and in vivo activity of single and dual antimicrobial agents against KPC-producing Klebsiella pneumoniae. Journal of Antimicrobial Chemotherapy, 2018, 73, 431-436.	3.0	31
18	Effect of Porins and <i>bla</i> _{KPC} Expression on Activity of Imipenem with Relebactam in <i>Klebsiella pneumoniae</i> : Can Antibiotic Combinations Overcome Resistance?. Microbial Drug Resistance, 2018, 24, 877-881.	2.0	36

#	Article	IF	Citations
19	Carbapenemases in New York City: the continued decline of KPC-producing Klebsiella pneumoniae, but a new threat emerges. Journal of Antimicrobial Chemotherapy, 2018, 73, 2997-3000.	3.0	13
20	In Vitro and In Vivo Activity of Single and Dual Antimicrobial Agents Against KPC-producing Klebsiella pneumoniae. Open Forum Infectious Diseases, 2017, 4, S379-S379.	0.9	0
21	Rise and fall of KPC-producingKlebsiella pneumoniaein New York City. Journal of Antimicrobial Chemotherapy, 2016, 71, 2945-2948.	3.0	26
22	Activity of Eravacycline against Enterobacteriaceae and Acinetobacter baumannii, Including Multidrug-Resistant Isolates, from New York City. Antimicrobial Agents and Chemotherapy, 2015, 59, 1802-1805.	3.2	108
23	Activity of Imipenem with Relebactam against Gram-Negative Pathogens from New York City. Antimicrobial Agents and Chemotherapy, 2015, 59, 5029-5031.	3.2	163
24	Activity of Meropenem Combined with RPX7009, a Novel β-Lactamase Inhibitor, against Gram-Negative Clinical Isolates in New York City. Antimicrobial Agents and Chemotherapy, 2015, 59, 4856-4860.	3.2	130
25	Reduction in the prevalence of carbapenem-resistant Acinetobacter baumannii and Pseudomonas aeruginosa in New York City. American Journal of Infection Control, 2015, 43, 650-652.	2.3	11
26	253Activity of Eravacycline Against Enterobacteriaceae and Acinetobacter baumannii from New York City. Open Forum Infectious Diseases, 2014, 1, S108-S109.	0.9	0
27	1802Prevalence of KPC-possessing Klebsiella pneumoniae in New York City: Have We Turned the Corner?. Open Forum Infectious Diseases, 2014, 1, S63-S64.	0.9	0
28	249Activity of Plazomicin Against Contemporary Isolates of Enterobacteriaceae from New York City. Open Forum Infectious Diseases, 2014, 1, S107-S107.	0.9	0
29	Are community environmental surfaces near hospitals reservoirs for gram-negative nosocomial pathogens?. American Journal of Infection Control, 2014, 42, 346-348.	2.3	8
30	In vitro activity of the siderophore monosulfactam BAL30072 against contemporary Gram-negative pathogens from New York City, including multidrug-resistant isolates. International Journal of Antimicrobial Agents, 2014, 43, 527-532.	2.5	18
31	Activity of Polymyxin B and the Novel Polymyxin Analogue CB-182,804 Against Contemporary Gram-Negative Pathogens in New York City. Microbial Drug Resistance, 2012, 18, 132-136.	2.0	37
32	Contribution of OmpK36 to carbapenem susceptibility in KPC-producing Klebsiella pneumoniae. Journal of Medical Microbiology, 2009, 58, 1303-1308.	1.8	107
33	Correlation of Antimicrobial Resistance with \hat{l}^2 -Lactamases, the OmpA-Like Porin, and Efflux Pumps in Clinical Isolates of <i>Actinetobacter baumannii</i> and Chemotherapy, 2008, 52, 2999-3005.	3.2	129
34	Role of AmpD, OprF and penicillin-binding proteins in \hat{l}^2 -lactam resistance in clinical isolates of Pseudomonas aeruginosa. Journal of Medical Microbiology, 2007, 56, 809-814.	1.8	26
35	Interplay of Efflux System, <i>ampC</i> , and <i>oprD</i> Expression in Carbapenem Resistance of <i>Pseudomonas aeruginosa</i> Clinical Isolates. Antimicrobial Agents and Chemotherapy, 2006, 50, 1633-1641.	3.2	377
36	<i>Streptococcus pneumoniae,</i> Brooklyn, New York: Fluoroquinolone Resistance at our Doorstep. Emerging Infectious Diseases, 2002, 8, 594-597.	4.3	34

ARTICLE IF CITATIONS

37 Carbapenem Resistance in < i > Klebsiella pneumoniae < / i > and Other Members of the Family < i > Enterobacteriaceae < / i > . , 0, , 181-197.