List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4991784/publications.pdf Version: 2024-02-01

LUNC-MING FU

#	Article	IF	CITATIONS
1	Rapid microfluidic analysis detection system for sodium dehydroacetate in foods. Chemical Engineering Journal, 2022, 427, 131530.	12.7	13
2	Microfluidic aptasensor POC device for determination of whole blood potassium. Analytica Chimica Acta, 2022, 1203, 339722.	5.4	13
3	Association between Enzyme-Linked Immunosorbent Assay-Measured Kidney Injury Markers and Urinary Cadmium Levels in Chronic Kidney Disease. Journal of Clinical Medicine, 2022, 11, 156.	2.4	13
4	Microfluidic Sliding Paper-Based Device for Point-of-Care Determination of Albumin-to-Creatine Ratio in Human Urine. Biosensors, 2022, 12, 496.	4.7	6
5	Microfluidic colorimetric analysis system for sodium benzoate detection in foods. Food Chemistry, 2021, 345, 128773.	8.2	26
6	Recent advances in lab-on-paper diagnostic devices using blood samples. Lab on A Chip, 2021, 21, 1433-1453.	6.0	28
7	Rapid electrochemical-biosensor microchip platform for determination of microalbuminuria in CKD patients. Analytica Chimica Acta, 2021, 1146, 70-76.	5.4	14
8	Design and Application of MEMS-Based Hall Sensor Array for Magnetic Field Mapping. Micromachines, 2021, 12, 299.	2.9	1
9	Recent Advances in Microfluidic Devices for Contamination Detection and Quality Inspection of Milk. Micromachines, 2021, 12, 558.	2.9	12
10	Lab-on-Paper Devices for Diagnosis of Human Diseases Using Urine Samples—A Review. Biosensors, 2021, 11, 260.	4.7	24
11	Microfluidic colorimetric detection platform with sliding hybrid PMMA/paper microchip for human urine and blood sample analysis. Talanta, 2021, 231, 122362.	5.5	20
12	Novel sliding hybrid microchip detection system for determination of whole blood phosphorus concentration. Chemical Engineering Journal, 2021, 419, 129592.	12.7	12
13	Recent advances in microfluidic paper-based assay devices for diagnosis of human diseases using saliva, tears and sweat samples. Sensors and Actuators B: Chemical, 2021, 342, 130078.	7.8	59
14	Process Optimization of Silver Nanoparticle Synthesis and Its Application in Mercury Detection. Micromachines, 2021, 12, 1123.	2.9	20
15	Effect of Substrate-Thickness on Voltage Responsivity of MEMS-Based ZnO Pyroelectric Infrared Sensors. Applied Sciences (Switzerland), 2021, 11, 9074.	2.5	3
16	Rapid detection of artificial sweeteners in food using microfluidic chromatography detection system. Chemical Engineering Journal, 2021, 425, 131528.	12.7	11
17	Levels of Phthalates, Bisphenol-A, Nonylphenol, and Microplastics in Fish in the Estuaries of Northern Taiwan and the Impact on Human Health. Toxics, 2021, 9, 246.	3.7	24
18	Design of an Integrated Microfluidic Paper-Based Chip and Inspection Machine for the Detection of Mercury in Food with Silver Nanoparticles. Biosensors, 2021, 11, 491.	4.7	6

#	Article	IF	CITATIONS
19	Microfluidic synthesis control technology and its application in drug delivery, bioimaging, biosensing, environmental analysis and cell analysis. Chemical Engineering Journal, 2020, 399, 125748.	12.7	73
20	Microfluidic detection platform with integrated micro-spectrometer system. Chemical Engineering Journal, 2020, 393, 124700.	12.7	25
21	Microfluidic colorimetric system for nitrite detection in foods. Chemical Engineering Journal, 2020, 398, 125573.	12.7	51
22	Microfluidic paper-based analytical devices for environmental analysis of soil, air, ecology and river water. Sensors and Actuators B: Chemical, 2019, 301, 126855.	7.8	125
23	Experimental study of particle electrophoresis in shear-thinning fluids. Physics of Fluids, 2019, 31, .	4.0	15
24	Multifunctional microchip-based distillation apparatus II - Aerated distillation for sulfur dioxide detection. Analytica Chimica Acta, 2019, 1071, 44-52.	5.4	18
25	Multifunctional microchip-based distillation apparatus I - Steam distillation for formaldehyde detection. Analytica Chimica Acta, 2019, 1062, 94-101.	5.4	20
26	A PET/paper chip platform for high resolution sulphur dioxide detection in foods. Food Chemistry, 2019, 286, 316-321.	8.2	40
27	Electroosmotic flow of nonâ€Newtonian fluids in a constriction microchannel. Electrophoresis, 2019, 40, 1387-1394.	2.4	40
28	Micropumps and biomedical applications – A review. Microelectronic Engineering, 2018, 195, 121-138.	2.4	178
29	Recent advances and applications of micromixers. Sensors and Actuators B: Chemical, 2018, 259, 677-702.	7.8	190
30	Microfluidic paper-based chip platform for benzoic acid detection in food. Food Chemistry, 2018, 249, 162-167.	8.2	75
31	Microfluidic paper-based platform for whole blood creatinine detection. Chemical Engineering Journal, 2018, 348, 117-124.	12.7	81
32	Review and perspectives on microfluidic flow cytometers. Sensors and Actuators B: Chemical, 2018, 266, 26-45.	7.8	104
33	Sample preconcentration from dilute solutions on micro/nanofluidic platforms: A review. Electrophoresis, 2018, 39, 289-310.	2.4	50
34	Microfluidic paper-based chip platform for formaldehyde concentration detection. Chemical Engineering Journal, 2018, 332, 695-701.	12.7	48
35	Rapid microfluidic paper-based platform for low concentration formaldehyde detection. Sensors and Actuators B: Chemical, 2018, 255, 3623-3629.	7.8	69
36	An integrated microfluidic loop-mediated isothermal amplification platform for koi herpesvirus detection. Chemical Engineering Journal, 2018, 334, 1828-1834.	12.7	20

#	Article	IF	CITATIONS
37	Detection methods and applications of microfluidic paper-based analytical devices. TrAC - Trends in Analytical Chemistry, 2018, 107, 196-211.	11.4	194
38	A rapid paper-based detection system for determination of human serum albumin concentration. Chemical Engineering Journal, 2018, 352, 241-246.	12.7	48
39	Rapid Paper-Based System for Human Serum Creatinine Detection. Inventions, 2018, 3, 34.	2.5	19
40	Integrated microfluidic paper-based system for determination of whole blood albumin. Sensors and Actuators B: Chemical, 2018, 273, 1091-1097.	7.8	39
41	Rapid integrated microfluidic paper-based system for sulfur dioxide detection. Chemical Engineering Journal, 2017, 316, 790-796.	12.7	48
42	A comprehensive review of micro-distillation methods. Chemical Engineering Journal, 2017, 313, 1509-1520.	12.7	53
43	Micro-distillation system for formaldehyde concentration detection. Chemical Engineering Journal, 2016, 304, 419-425.	12.7	28
44	Passive mixers in microfluidic systems: A review. Chemical Engineering Journal, 2016, 288, 146-160.	12.7	399
45	Microfluidic distillation chip for methanol concentration detection. Analytica Chimica Acta, 2016, 912, 97-104.	5.4	13
46	Micro-magnetofluidics in microfluidic systems: A review. Sensors and Actuators B: Chemical, 2016, 224, 1-15.	7.8	158
47	Particles small angle forwardâ€scattered light measurement based on photovoltaic cell microflow cytometer. Electrophoresis, 2014, 35, 337-344.	2.4	4
48	Integrated microfluidic array chip and LED photometer system for sulfur dioxide and methanol concentration detection. Chemical Engineering Journal, 2014, 243, 421-427.	12.7	22
49	Rapid vortex microfluidic mixer utilizing double-heart chamber. Chemical Engineering Journal, 2014, 249, 246-251.	12.7	26
50	MEMS-based humidity sensor based on thiol-coated gold nanoparticles. , 2014, , .		0
51	An integrated microfluidic chip for formaldehyde analysis in Chinese herbs. Chemical Engineering Journal, 2014, 244, 422-428.	12.7	30
52	Electrokinetic Sample Injection. , 2014, , 1-10.		2
53	Chaotic vortex micromixer utilizing gas pressure driving force. Chemical Engineering Journal, 2013, 214, 1-7.	12.7	28
54	Electrophoresis separation and electrochemical detection on a novel thread-based microfluidic device. Microfluidics and Nanofluidics, 2013, 14, 583-590.	2.2	39

#	Article	IF	CITATIONS
55	Rapid prototyping of glass-based microfluidic chips utilizing two-pass defocused CO2 laser beam method. Microfluidics and Nanofluidics, 2013, 14, 479-487.	2.2	47
56	Microfluidic rectifier based on poly(dimethylsiloxane) membrane and its application to a micropump. Biomicrofluidics, 2013, 7, 044118.	2.4	7
57	A Ferrofluidic Magnetic Micropump for Variable-Flow-Rate Applications. Japanese Journal of Applied Physics, 2012, 51, 047201.	1.5	6
58	A hydrodynamic focusing microchannel based on micro-weir shear lift force. Biomicrofluidics, 2012, 6, 34110.	2.4	19
59	Convenient quantification of methanol concentration detection utilizing an integrated microfluidic chip. Biomicrofluidics, 2012, 6, 034111.	2.4	16
60	High-performance microfluidic rectifier based on sudden expansion channel with embedded block structure. Biomicrofluidics, 2012, 6, 024108.	2.4	25
61	Integrated microfluidic chip for rapid DNA digestion and time-resolved capillary electrophoresis analysis. Biomicrofluidics, 2012, 6, 12818-1281811.	2.4	31
62	Optical microflow cytometer based on external total reflection. Electrophoresis, 2012, 33, 3229-3235.	2.4	11
63	Particle analysis and differentiation using a photovoltaic cell. Journal of Micromechanics and Microengineering, 2012, 22, 105023.	2.6	5
64	Capillary electrophoresis electrochemical (CE-EC) detection on a novel thread-based microfluidic device with 3D sensing electrodes. , 2012, , .		4
65	Distillation and detection of SO ₂ using a microfluidic chip. Lab on A Chip, 2012, 12, 622-626.	6.0	40
66	Formation of recirculation zones in a sudden expansion microchannel with a rectangular block structure over a wide Reynolds number range. Microfluidics and Nanofluidics, 2012, 12, 213-220.	2.2	18
67	Rapid Fabrication of Glass-Based Microfluidic Chips Utilizing a Femtosecond Laser. Advanced Science Letters, 2012, 8, 416-420.	0.2	4
68	Electromagnetic Actuator Utilizing Magnetic Film of Electroplated Alloy and Its Application to Valveless Pumps. Advanced Science Letters, 2012, 14, 244-248.	0.2	1
69	An Integrated Microfluidic Chip for Rapid Methanol Detection. International Journal of Automation and Smart Technology, 2012, 2, 21-27.	0.4	3
70	A Ferrofluidic Magnetic Micropump for Variable-Flow-Rate Applications. Japanese Journal of Applied Physics, 2012, 51, 047201.	1.5	4
71	Rapid Detection of Methanol in an Integration Microfluidic Chip. Key Engineering Materials, 2011, 483, 364-369.	0.4	0
72	A micro gas sensor based on a WO <inf>3</inf> thin film for aromatic hydrocarbon detection. , 2011, , .		0

#	Article	IF	CITATIONS
73	Three-dimensional focusing for microflow cytometer with sequence micro-weir structures. , 2011, , .		Ο
74	Electrical current measurement based on Joule heating of micro-resistors. , 2011, , .		0
75	Microfluidic Mixing: A Review. International Journal of Molecular Sciences, 2011, 12, 3263-3287.	4.1	831
76	Microflow cytometer incorporating sequential micro-weir structure for three-dimensional focusing. Microfluidics and Nanofluidics, 2011, 11, 469-478.	2.2	36
77	Rapid glucose concentration detection utilizing disposable integrated microfluidic chip. Microfluidics and Nanofluidics, 2011, 11, 479-487.	2.2	40
78	Numerical analysis of a rapid magnetic microfluidic mixer. Electrophoresis, 2011, 32, 3268-3276.	2.4	60
79	Microfluidic flow meter and viscometer utilizing flow-induced vibration on an optic fiber cantilever. , 2011, , .		12
80	Magnetic Microfluidic Mixer. Key Engineering Materials, 2011, 483, 354-358.	0.4	1
81	Rapid Microfluidc Biochips Fabrication by Femtosecond Laser on Glass Substrate. Key Engineering Materials, 2011, 483, 359-363.	0.4	Ο
82	Experimental and Numerical Analysis of High-Resolution Injection Technique for Capillary Electrophoresis Microchip. International Journal of Molecular Sciences, 2011, 12, 3594-3605.	4.1	4
83	Rapid prototyping of PMMA microfluidic chips utilizing a CO2 laser. Microfluidics and Nanofluidics, 2010, 9, 1125-1133.	2.2	210
84	Novel flow cytometrer utilizing wavelength-resolved detection under a diascopic illumination configuration. , 2010, , .		0
85	Design and Analysis of Impedance Pumps Utilizing Electromagnetic Actuation. Sensors, 2010, 10, 4040-4052.	3.8	23
86	High performance microfludic rectifier utilizing self-induced virtual valves in a sudden expansion channel with a block structure. , 2010, , .		0
87	A MEMS-based Benzene Gas Sensor with a Self-heating WO3 Sensing Layer. Sensors, 2009, 9, 2895-2906.	3.8	73
88	Experimental and numerical investigation into microâ€flow cytometer with 3â€D hydrodynamic focusing effect and microâ€weir structure. Electrophoresis, 2009, 30, 2507-2515.	2.4	28
89	Rapid magnetic microfluidic mixer utilizing AC electromagnetic field. Electrophoresis, 2009, 30, 4179-4186.	2.4	98
90	A microcantilever-based gas flow sensor for flow rate and direction detection. Microsystem Technologies, 2009, 15, 1201-1205.	2.0	24

#	Article	IF	CITATIONS
91	Experimental and numerical investigation into the joule heating effect for electrokinetically driven microfluidic chips utilizing total internal reflection fluorescence microscopy. Microfluidics and Nanofluidics, 2009, 6, 499-507.	2.2	24
92	Design and characterization of MEMS-based flow-rate and flow-direction microsensor. Microfluidics and Nanofluidics, 2009, 6, 363-371.	2.2	32
93	MEMS-based gas flow sensors. Microfluidics and Nanofluidics, 2009, 6, 333-346.	2.2	138
94	Novel continuous particle sorting in microfluidic chip utilizing cascaded squeeze effect. Microfluidics and Nanofluidics, 2009, 7, 499-508.	2.2	27
95	Computational aero-acoustic analysis of a passenger car with a rear spoiler. Applied Mathematical Modelling, 2009, 33, 3661-3673.	4.2	43
96	Experimental and numerical investigations into high-voltage pulsed DC electric fields for enhancing CE chip performance. , 2009, , .		0
97	Fabrication and testing of high-performance detection sensor for capillary electrophoresis microchips. Biomedical Microdevices, 2008, 10, 73-80.	2.8	14
98	Improving the separation efficiency of DNA biosamples in capillary electrophoresis microchips using high-voltage pulsed DC electric fields. Microfluidics and Nanofluidics, 2008, 5, 403-410.	2.2	30
99	Enhanced sensing characteristics in MEMS-based formaldehyde gas sensors. Microsystem Technologies, 2008, 14, 995-1000.	2.0	25
100	A highâ€discernment microflow cytometer with microweir structure. Electrophoresis, 2008, 29, 1874-1880.	2.4	41
101	A lowâ€leakage sample plug injection scheme for crossform microfluidic capillary electrophoresis devices incorporating a restricted crossâ€channel intersection. Electrophoresis, 2008, 29, 3135-3144.	2.4	2
102	Electrokinetic instability effects in microchannels with and without nanofilm coatings. Electrophoresis, 2008, 29, 4871-4879.	2.4	12
103	An optimal three-dimensional focusing technique for micro-flow cytometers. Microfluidics and Nanofluidics, 2008, 5, 827-836.	2.2	74
104	A microcantilever-based gas flow sensor for flow rate and direction detection. , 2008, , .		4
105	Design of Interactively Time-Pulsed Microfluidic Mixers in Microchips using Numerical Simulation. Japanese Journal of Applied Physics, 2007, 46, 420-429.	1.5	27
106	Design of High-resolution Analysis Technique for Capillary Electrophoresis Microchip. Japanese Journal of Applied Physics, 2007, 46, 6865-6870.	1.5	6
107	Rapid Microfluidic Mixers Utilizing Dispersion Effect and Interactively Time-Pulsed Injection. Japanese Journal of Applied Physics, 2007, 46, 5345.	1.5	17
108	Rapid circular microfluidic mixer utilizing unbalanced driving force. Biomedical Microdevices, 2007, 9, 43-50.	2.8	33

#	Article	IF	CITATIONS
109	A rapid DNA digestion system. Biomedical Microdevices, 2007, 9, 277-286.	2.8	45
110	High performance microfluidic capillary electrophoresis devices. Biomedical Microdevices, 2007, 9, 405-412.	2.8	19
111	Optimal configuration of capillary electrophoresis microchip with expansion chamber in separation channel. Journal of Chromatography A, 2006, 1121, 120-128.	3.7	11
112	Application of electrokinetic instability flow for enhanced micromixing in cross-shaped microchannel. Biomedical Microdevices, 2006, 8, 309-315.	2.8	62
113	Elastic–plastic modeling of heat-treated bimorph micro-cantilevers. Microsystem Technologies, 2006, 12, 979-986.	2.0	13
114	MEMS-based formaldehyde gas sensor integrated with a micro-hotplate. Microsystem Technologies, 2006, 12, 893-898.	2.0	32
115	Capabilities and limitations of 2-dimensional and 3-dimensional numerical methods in modeling the fluid flow in sudden expansion microchannels. Microfluidics and Nanofluidics, 2006, 3, 13-18.	2.2	55
116	Micromixer utilizing electrokinetic instability-induced shedding effect. Electrophoresis, 2006, 27, 4982-4990.	2.4	37
117	Experimental and numerical investigation into leakage effect in injectors of microfluidic devices. Electrophoresis, 2006, 27, 4991-4998.	2.4	16
118	Fabrication and characterization of semicircular detection electrodes for contactless conductivity detector – CE microchips. Electrophoresis, 2006, 27, 5043-5050.	2.4	48
119	Numerical simulation of electrokinetic injection techniques in capillary electrophoresis microchips. Electrophoresis, 2005, 26, 674-686.	2.4	64
120	A novel microfluidic mixer utilizing electrokinetic driving forces under low switching frequency. Electrophoresis, 2005, 26, 1814-1824.	2.4	90
121	Experimental and numerical analysis of the geometry effects of low-dispersion turns in microfluidic systems. Journal of Micromechanics and Microengineering, 2005, 15, 377-385.	2.6	20
122	A Novel Microfabricated Formaldehyde Gas Sensor with NiO Thin Film. , 2005, , .		1
123	A rapid three-dimensional vortex micromixer utilizing self-rotation effects under low Reynolds number conditions. Journal of Micromechanics and Microengineering, 2005, 15, 935-943.	2.6	110
124	Electrokinetically driven active micro-mixers utilizing zeta potential variation induced by field effect. Journal of Micromechanics and Microengineering, 2004, 14, 1390-1398.	2.6	94
125	Dispersion control in microfluidic chips by localized zeta potential variation using the field effect. Electrophoresis, 2004, 25, 1879-1887.	2.4	29
126	High-resolution DNA separation in microcapillary electrophoresis chips utilizing double-L injection techniques. Electrophoresis, 2004, 25, 3652-3659.	2.4	33

#	Article	IF	CITATIONS
127	Electrokinetically driven micro flow cytometers with integrated fiber optics for on-line cell/particle detection. Analytica Chimica Acta, 2004, 507, 163-169.	5.4	188
128	Integrated optical-fiber capillary electrophoresis microchips with novel spin-on-glass surface modification. Biosensors and Bioelectronics, 2004, 20, 83-90.	10.1	43
129	Band spreading control in electrophoresis microchips by localized zeta-potential variation using field-effect. Analyst, The, 2004, 129, 931.	3.5	12
130	Vertical Focusing Device Utilizing Dielectrophoretic Force and Its Application on Microflow Cytometer. Journal of Microelectromechanical Systems, 2004, 13, 923-932.	2.5	84
131	Microfluidic T-Form Mixer Utilizing Switching Electroosmotic Flow. Analytical Chemistry, 2004, 76, 5265-5272.	6.5	85
132	Double-L injection technique for high performance capillary electrophoresis detection in microfluidic chips. Journal of Micromechanics and Microengineering, 2004, 14, 639-646.	2.6	29
133	Manipulation of Microparticles Using New Modes of Traveling-Wave-Dielectrophoretic Forces: Numerical Simulation and Experiments. IEEE/ASME Transactions on Mechatronics, 2004, 9, 377-383.	5.8	26
134	Multiple injection techniques for microfluidic sample handling. Electrophoresis, 2003, 24, 3026-3032.	2.4	41
135	Low-voltage driven control in electrophoresis microchips by traveling electric field. Electrophoresis, 2003, 24, 1253-1260.	2.4	30
136	Electrokinetic Focusing Injection Methods on Microfluidic Devices. Analytical Chemistry, 2003, 75, 1905-1910.	6.5	84
137	Numerical Analysis and Experimental Estimation of a Low-Leakage Injection Technique for Capillary Electrophoresis. Analytical Chemistry, 2003, 75, 5790-5796.	6.5	50
138	Analysis of geometry effects on band spreading of microchip electrophoresis. Electrophoresis, 2002, 23, 602-612.	2.4	44
139	Variable-volume-injection methods using electrokinetic focusing on microfluidic chips. Journal of Separation Science, 2002, 25, 996-1010.	2.5	43
140	M×N micro flow switches using electrokinetic forces. , 0, , .		2
141	Low azeotropic solvent sealing of PMMA microfluidic devices. , 0, , .		1
142	A novel dispersion control in CE chips by /spl seta/-potential variation using field-effect. , 0, , .		0
143	A novel pinched-switching T-form mixer for fast DNA digestion. , 0, , .		0
144	Continuous Particle Sorting Utilizing Cascade Squeeze-Jumping Effect Under Microfluidic		0

Configuration., 0, , .

#	Article	IF	CITATIONS
145	Design and Fabrication of Micro Oxygen Sensor. Key Engineering Materials, 0, 483, 237-242.	0.4	Ο
146	Numerical Simulation of Electromagnetic Actuator for Impedance Pumping. Key Engineering Materials, 0, 483, 305-310.	0.4	2
147	Design and Fabrication of PDMS/PMMA-Based Rotary Micropump. Applied Mechanics and Materials, 0, 829, 29-34.	0.2	2
148	Experimental and Numerical Investigation into Mixing Efficiency of Micromixers with Different Geometric Barriers. Materials Science Forum, 0, , 391-396.	0.3	1