Juan M Saavedra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4991778/publications.pdf

Version: 2024-02-01

31976 51608 7,913 130 53 86 citations g-index h-index papers 134 134 134 5937 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Introduction to the Special Issue "The Brain-Gut Axis― Cellular and Molecular Neurobiology, 2022, 42, 311-313.	3.3	6
2	396 Brain pathophysiology in SARS-CoV-2 disease. Journal of Clinical and Translational Science, 2022, 6, 74-75.	0.6	1
3	Angiotensin Receptor Blockers Are Not Just for Hypertension Anymore. Physiology, 2021, 36, 160-173.	3.1	12
4	Candesartan Neuroprotection in Rat Primary Neurons Negatively Correlates with Aging and Senescence: a Transcriptomic Analysis. Molecular Neurobiology, 2020, 57, 1656-1673.	4.0	9
5	Candesartan could ameliorate the COVID-19 cytokine storm. Biomedicine and Pharmacotherapy, 2020, 131, 110653.	5 . 6	23
6	COVID-19, Angiotensin Receptor Blockers, and the Brain. Cellular and Molecular Neurobiology, 2020, 40, 667-674.	3.3	30
7	Angiotensin receptor blockers for the treatment of COVID-19 and its comorbidities. Pharmacological Research, 2020, 159, 104958.	7.1	2
8	Angiotensin receptor blockers and COVID-19. Pharmacological Research, 2020, 156, 104832.	7.1	48
9	Trace Amines and Trace Amine-Associated Receptors: A New Frontier in Cell Signaling. Cellular and Molecular Neurobiology, 2020, 40, 189-190.	3.3	11
10	Telmisartan Protects a Microglia Cell Line from LPS Injury Beyond AT1 Receptor Blockade or PPARÎ ³ Activation. Molecular Neurobiology, 2019, 56, 3193-3210.	4.0	22
11	MALAT1 Up-Regulator Polydatin Protects Brain Microvascular Integrity and Ameliorates Stroke Through C/EBPI ² /MALAT1/CREB/PGC-1α/PPARÎ ³ Pathway. Cellular and Molecular Neurobiology, 2019, 39, 265-286.	3.3	60
12	Significance of the Stress Research: "In Memoriam, Richard Kvetnansky― Cellular and Molecular Neurobiology, 2018, 38, 1-4.	3.3	2
13	Microglia: Housekeeper of the Central Nervous System. Cellular and Molecular Neurobiology, 2018, 38, 53-71.	3.3	170
14	A Dual AMPK/Nrf2 Activator Reduces Brain Inflammation After Stroke by Enhancing Microglia M2 Polarization. Antioxidants and Redox Signaling, 2018, 28, 141-163.	5.4	171
15	Angiotensin II AT2 Receptors Contribute to Regulate the Sympathoadrenal and Hormonal Reaction to Stress Stimuli. Cellular and Molecular Neurobiology, 2018, 38, 85-108.	3.3	11
16	Balasubramide derivative 3C modulates microglia activation via CaMKK \hat{l}^2 -dependent AMPK/PGC- \hat{l}^\pm pathway in neuroinflammatory conditions. Brain, Behavior, and Immunity, 2018, 67, 101-117.	4.1	38
17	Beneficial effects of Angiotensin II receptor blockers in brain disorders. Pharmacological Research, 2017, 125, 91-103.	7.1	65
18	Temporal Changes in Cortical and Hippocampal Expression of Genes Important for Brain Glucose Metabolism Following Controlled Cortical Impact Injury in Mice. Frontiers in Endocrinology, 2017, 8, 231.	3 . 5	29

#	Article	IF	CITATIONS
19	An integrative genome-wide transcriptome reveals that candesartan is neuroprotective and a candidate therapeutic for Alzheimer's disease. Alzheimer's Research and Therapy, 2016, 8, 5.	6.2	34
20	Evidence to Consider Angiotensin II Receptor Blockers for the Treatment of Early Alzheimer's Disease. Cellular and Molecular Neurobiology, 2016, 36, 259-279.	3.3	68
21	Telmisartan prevention of LPS-induced microglia activation involves M2 microglia polarization via CaMKKβ-dependent AMPK activation. Brain, Behavior, and Immunity, 2015, 50, 298-313.	4.1	121
22	Neurorestoration after traumatic brain injury through angiotensin II receptor blockage. Brain, 2015, 138, 3299-3315.	7.6	110
23	Hepatic Expression of Serum Amyloid A1 Is Induced by Traumatic Brain Injury and Modulated by Telmisartan. American Journal of Pathology, 2015, 185, 2641-2652.	3.8	33
24	Totarol prevents neuronal injury in vitro and ameliorates brain ischemic stroke: Potential roles of Akt activation and HO-1 induction. Toxicology and Applied Pharmacology, 2015, 289, 142-154.	2.8	57
25	Neuroprotective Effects of Angiotensin Receptor Blockers. American Journal of Hypertension, 2015, 28, 289-299.	2.0	157
26	Telmisartan ameliorates glutamate-induced neurotoxicity: Roles of AT1 receptor blockade and PPAR \hat{I}^3 activation. Neuropharmacology, 2014, 79, 249-261.	4.1	78
27	Antihypertensive drug Valsartan promotes dendritic spine density by altering AMPA receptor trafficking. Biochemical and Biophysical Research Communications, 2013, 439, 464-470.	2.1	16
28	Commercially Available Angiotensin II At2 Receptor Antibodies Are Nonspecific. PLoS ONE, 2013, 8, e69234.	2.5	65
29	Stressâ€triggered regulation of the adrenomedullary angiotensin II type 2 receptor. FASEB Journal, 2013, 27, 936.8.	0.5	0
30	Telmisartan ameliorates lipopolysaccharide-induced innate immune response through peroxisome proliferator-activated receptor-13 activation in human monocytes. Journal of Hypertension, 2012, 30, 87-96.	0.5	57
31	Candesartan, an Angiotensin II AT1-Receptor Blocker and PPAR-Î ³ Agonist, Reduces Lesion Volume and Improves Motor and Memory Function After Traumatic Brain Injury in Mice. Neuropsychopharmacology, 2012, 37, 2817-2829.	5.4	101
32	Angiotensin II AT1 receptor blockers as treatments for inflammatory brain disorders. Clinical Science, 2012, 123, 567-590.	4.3	168
33	Six Commercially Available Angiotensin II AT1 Receptor Antibodies are Non-specific. Cellular and Molecular Neurobiology, 2012, 32, 1353-1365.	3.3	101
34	Telmisartan directly ameliorates the neuronal inflammatory response to IL- $1\hat{l}^2$ partly through the JNK/c-Jun and NADPH oxidase pathways. Journal of Neuroinflammation, 2012, 9, 102.	7.2	83
35	Regulation of angiotensin II type 2 receptor gene expression in the adrenal medulla by acute and repeated immobilization stress. Journal of Endocrinology, 2012, 215, 291-301.	2.6	12
36	Angiotensin II AT1 Receptor Blockers Ameliorate Inflammatory Stress: A Beneficial Effect for the Treatment of Brain Disorders. Cellular and Molecular Neurobiology, 2012, 32, 667-681.	3.3	78

#	Article	IF	CITATIONS
37	In Memoriam Zofia Zukowska, MD PhD. Cellular and Molecular Neurobiology, 2012, 32, 643-644.	3.3	o
38	Blockade of brain angiotensin II AT1 receptors ameliorates stress, anxiety, brain inflammation and ischemia: Therapeutic implications. Psychoneuroendocrinology, 2011, 36, 1-18.	2.7	217
39	Angiotensin II AT1 Receptor Blockade Ameliorates Brain Inflammation. Neuropsychopharmacology, 2011, 36, 857-870.	5.4	201
40	Angiotensin II AT $<$ sub $>$ 1 $<$ /sub $>$ blockade reduces the lipopolysaccharide-induced innate immune response in rat spleen. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R1376-R1384.	1.8	39
41	A peripherally administered, centrally acting angiotensin II AT2 antagonist selectively increases brain AT1 receptors and decreases brain tyrosine hydroxylase transcription, pituitary vasopressin and ACTH. Brain Research, 2009, 1250, 130-140.	2.2	37
42	In Memoriam John William Daly (1933–2008). Cellular and Molecular Neurobiology, 2009, 29, 441-442.	3.3	0
43	Anti-Inflammatory Effects of Angiotensin Receptor Blockers in the Brain and the Periphery. Cellular and Molecular Neurobiology, 2009, 29, 781-792.	3.3	101
44	Increased Angiotensin II AT1 receptor mRNA and binding in spleen and lung of AT2 receptor gene disrupted mice. Regulatory Peptides, 2009, 158, 156-166.	1.9	12
45	Candesartan reduces the innate immune response to lipopolysaccharide in human monocytes. Journal of Hypertension, 2009, 27, 2365-2376.	0.5	29
46	Angiotensin II AT $<$ sub $>$ 1 $<$ /sub $>$ receptor blockade selectively enhances brain AT $<$ sub $>$ 2 $<$ /sub $>$ receptor expression, and abolishes the cold-restraint stress-induced increase in tyrosine hydroxylase mRNA in the locus coeruleus of spontaneously hypertensive rats. Stress, 2008, 11, 457-466.	1.8	48
47	Angiotensin II AT1 Receptor Blockade Decreases Lipopolysaccharide-Induced Inflammation in the Rat Adrenal Gland. Endocrinology, 2008, 149, 5177-5188.	2.8	44
48	Estrogen Reduces Aldosterone, Upregulates Adrenal Angiotensin II AT ₂ Receptors and Normalizes Adrenomedullary Fra-2 in Ovariectomized Rats. Neuroendocrinology, 2008, 88, 276-286.	2.5	56
49	Brain and peripheral angiotensin II play a major role in stress. Stress, 2007, 10, 185-193.	1.8	138
50	Angiotensin II AT1 receptor blockade prevents the hypothalamic corticotropin-releasing factor response to isolation stress. Brain Research, 2007, 1142, 92-99.	2.2	70
51	Angiotensin II: multitasking in the brain. Journal of Hypertension, 2006, 24, S131-S137.	0.5	39
52	Mechanisms of the Anti-Ischemic Effect of Angiotensin II AT 1 Receptor Antagonists in the Brain. Cellular and Molecular Neurobiology, 2006, 26, 1097-1109.	3.3	73
53	The Discovery of a Novel Macrophage Binding Site. Cellular and Molecular Neurobiology, 2006, 26, 507-524.	3.3	5
54	Long-term angiotensin II AT1 receptor inhibition produces adipose tissue hypotrophy accompanied by increased expression of adiponectin and PPARÎ3. European Journal of Pharmacology, 2006, 552, 112-122.	3.5	111

#	Article	IF	CITATIONS
55	AT ₁ Receptor Blockade Regulates the Local Angiotensin II System in Cerebral Microvessels From Spontaneously Hypertensive Rats. Stroke, 2006, 37, 1271-1276.	2.0	94
56	A Centrally Acting, Anxiolytic Angiotensin II AT1 Receptor Antagonist Prevents the Isolation Stress-Induced Decrease in Cortical CRF1 Receptor and Benzodiazepine Binding. Neuropsychopharmacology, 2006, 31, 1123-1134.	5.4	96
57	Angiotensin II AT1 Receptor Blockade Abolishes Brain Microvascular Inflammation and Heat Shock Protein Responses in Hypertensive Rats. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, 878-886.	4.3	106
58	Angiotensin II AT1 receptor antagonists inhibit the angiotensin-CRF-AVP axis and are potentially useful for the treatment of stress-related and mood disorders. Drug Development Research, 2005, 65, 237-269.	2.9	15
59	Brain Angiotensin II: New Developments, Unanswered Questions and Therapeutic Opportunities. Cellular and Molecular Neurobiology, 2005, 25, 485-512.	3.3	258
60	Estrogen upregulates renal angiotensin II AT1 and AT2 receptors in the rat. Regulatory Peptides, 2005, 124, 7-17.	1.9	104
61	Anti-stress and anti-anxiety effects of centrally acting angiotensin II AT1 receptor antagonists. Regulatory Peptides, 2005, 128, 227-238.	1.9	108
62	Decreased Hypothalamic and Adrenal Angiotensin II Receptor Expression and Adrenomedullary Catecholamines in Transgenic Mice with Impaired Glucocorticoid Receptor Function. Neuroendocrinology, 2004, 80, 171-180.	2.5	8
63	Angiotensin II AT 1 Receptor Blockade Reverses Pathological Hypertrophy and Inflammation in Brain Microvessels of Spontaneously Hypertensive Rats. Stroke, 2004, 35, 1726-1731.	2.0	183
64	Oral administration of an AT1 receptor antagonist prevents the central effects of angiotensin II in spontaneously hypertensive rats. Brain Research, 2004, 1028, 9-18.	2.2	61
65	Brain Angiotensin II, an Important Stress Hormone: Regulatory Sites and Therapeutic Opportunities. Annals of the New York Academy of Sciences, 2004, 1018, 76-84.	3.8	70
66	Life-Long Serotonin Reuptake Deficiency Results in Complex Alterations in Adrenomedullary Responses to Stress. Annals of the New York Academy of Sciences, 2004, 1018, 99-104.	3.8	23
67	Angiotensin II AT1Receptor Blockade Prolongs the Lifespan of Spontaneously Hypertensive Rats and Reduces Stress-Induced Release of Catecholamines, Glucocorticoids, and Vasopressin. Annals of the New York Academy of Sciences, 2004, 1018, 131-136.	3.8	22
68	Angiotensin II AT1and AT2Receptor Types Regulate Basal and Stress-Induced Adrenomedullary Catecholamine Production through Transcriptional Regulation of Tyrosine Hydroxylase. Annals of the New York Academy of Sciences, 2004, 1018, 302-309.	3.8	31
69	Normalization of Endothelial and Inducible Nitric Oxide Synthase Expression in Brain Microvessels of Spontaneously Hypertensive Rats by Angiotensin II AT ₁ Receptor Inhibition. Journal of Cerebral Blood Flow and Metabolism, 2003, 23, 371-380.	4.3	125
70	Anti-inflammatory effects of angiotensin II AT ₁ receptor antagonism prevent stress-induced gastric injury. American Journal of Physiology - Renal Physiology, 2003, 285, G414-G423.	3.4	109
71	The Serotonin Transporter is Required for Stress-Evoked Increases in Adrenal Catecholamine Synthesis and Angiotensin II AT ₂ Receptor Expression. Neuroendocrinology, 2003, 78, 217-225.	2.5	22
72	Angiotensin II AT1 and AT2 Receptors Contribute to Maintain Basal Adrenomedullary Norepinephrine Synthesis and Tyrosine Hydroxylase Transcription. Endocrinology, 2003, 144, 2092-2101.	2.8	47

#	Article	IF	Citations
73	Normalization of Endothelial and Inducible Nitric Oxide Synthase Expression in Brain Microvessels of Spontaneously Hypertensive Rats by Angiotensin II AT1 Receptor Inhibition. Journal of Cerebral Blood Flow and Metabolism, 2003, , 371-380.	4.3	35
74	Stress and Angiotensin II: Novel Therapeutic Opportunities. CNS and Neurological Disorders, 2003, 2, 413-419.	4.3	24
75	Protection Against Ischemia and Improvement of Cerebral Blood Flow in Genetically Hypertensive Rats by Chronic Pretreatment With an Angiotensin II AT ₁ Antagonist. Stroke, 2002, 33, 2297-2303.	2.0	197
76	Estrogen upregulates renal angiotensin II AT ₂ receptors. American Journal of Physiology - Renal Physiology, 2002, 283, F934-F943.	2.7	111
77	Restraint Stress Modulates Brain, Pituitary and Adrenal Expression of Angiotensin II AT _{1A} , AT _{1B} and AT ₂ Receptors. Neuroendocrinology, 2002, 75, 227-240.	2.5	72
78	Exaggerated Adrenomedullary Response to Immobilization in Mice with Targeted Disruption of the Serotonin Transporter Gene. Endocrinology, 2002, 143, 4520-4526.	2.8	113
79	Increased Angiotensin II AT ₁ Receptor Expression in Paraventricular Nucleus and Hypothalamic-Pituitary-Adrenal Axis Stimulation in AT ₂ Receptor Gene Disrupted Mice. Neuroendocrinology, 2002, 76, 137-147.	2.5	33
80	Increased AT1 receptors in adrenal gland of AT2 receptor gene-disrupted mice. Regulatory Peptides, 2001, 102, 41-47.	1.9	19
81	Increased AT ₁ receptor expression and mRNA in kidney glomeruli of AT ₂ receptor gene-disrupted mice. American Journal of Physiology - Renal Physiology, 2001, 280, F71-F78.	2.7	24
82	Candesartan decreases the sympatho-adrenal and hormonal response to isolation stress. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2001, 2, S130-S135.	1.7	3
83	Peripheral Administration of an Angiotensin II AT1 Receptor Antagonist Decreases the Hypothalamic-Pituitary-Adrenal Response to Isolation Stress. Endocrinology, 2001, 142, 3880-3889.	2.8	131
84	Review: The role of angiotensin II AT1-receptors in the regulation of the cerebral blood flow and brain ischaemia. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2001, 2, S102-S109.	1.7	9
85	Chronic peripheral administration of the angiotensin II AT1 receptor antagonist Candesartan blocks brain AT1 receptors. Brain Research, 2000, 871, 29-38.	2.2	130
86	Angiotensin II AT ₁ Blockade Normalizes Cerebrovascular Autoregulation and Reduces Cerebral Ischemia in Spontaneously Hypertensive Rats. Stroke, 2000, 31, 2478-2486.	2.0	249
87	Characterization of AT2 receptor expression in NIH 3T3 fibroblasts. Cellular and Molecular Neurobiology, 1999, 19, 277-288.	3.3	8
88	Angiotensin and cerebral blood flow. Cellular and Molecular Neurobiology, 1999, 19, 553-573.	3.3	51
89	Decreased expression of natriuretic peptide a receptors and decreased cGMP production in the choroid plexus of spontaneously hypertensive rats. Molecular and Chemical Neuropathology, 1998, 33, 209-222.	1.0	9
90	Characterization and distribution of angiotensin II receptor subtypes in the mouse brain. European Journal of Pharmacology, 1998, 348, 101-114.	3 . 5	66

#	Article	IF	CITATIONS
91	CGP-42112 partially activates human monocytes and reduces their stimulation by lipopolysaccharides. American Journal of Physiology - Cell Physiology, 1997, 273, C826-C833.	4.6	17
92	Localization of angiotensin-converting enzyme, angiotensin II, angiotensin II receptor subtypes, and vasopressin in the mouse hypothalamus. Brain Research, 1997, 757, 218-227.	2.2	73
93	Selective chronic sodium or chloride depletion specifically modulates subfornical organ atrial natriuretic peptide receptor number in young rats. Cellular and Molecular Neurobiology, 1997, 17, 455-470.	3.3	2
94	Localization of AT2 angiotensin II receptor gene expression in rat brain by in sity hybridization histochemistry. Molecular Brain Research, 1996, 37, 192-200.	2.3	47
95	Expression of AT1A and AT1B angiotensin II receptor messenger RNA in forebrain of 2-wk-old rats. American Journal of Physiology - Endocrinology and Metabolism, 1996, 271, E104-E112.	3.5	43
96	Gene expression of angiotensin II receptor subtypes in the cerebellar cortex of young rats. NeuroReport, 1996, 7, 1349-1352.	1.2	15
97	Brain Angiotensin II and Related Receptors: New Developments. Advances in Experimental Medicine and Biology, 1996, 396, 247-252.	1.6	2
98	AT1A, AT1B, and AT2angiotensin II receptor subtype gene expression in rat brain. NeuroReport, 1995, 6, 2549-2552.	1.2	105
99	Quantitative autoradiography of angiotensin II AT2 receptors with [125I]CGP 42112. Brain Research, 1995, 677, 29-38.	2.2	50
100	Expression of non-angiotensin II [125I]CGP 42112 binding sites on activated microglia after kainic acid, induced neurodegeneration. Brain Research, 1995, 702, 153-161.	2.2	15
101	Angiotensin II receptor subtypes and phosphoinositide hydrolysis in rat adrenal medulla. Brain Research Bulletin, 1995, 38, 441-446.	3.0	49
102	Selective peptide and nonpeptide ligands differentially bind to angiotensin II AT2 receptor and a non-angiotensin II CGP42112 binding site. Journal of Pharmacology and Experimental Therapeutics, 1995, 274, 1129-34.	2.5	9
103	[125I]CGP 42112 reveals a non-angiotensin II binding site in 1-methyl-4-phenylpyridine (MPP+)-induced brain injury. Cellular and Molecular Neurobiology, 1994, 14, 99-104.	3.3	16
104	Expression of a novel non-angiotensin II [125I]CGP 42112 binding site in healing wounds of the rat brain. Brain Research, 1994, 658, 265-270.	2.2	26
105	Specific, Non-Angiotensin, [1251]CGP 42112 Binding Sites in Rat Spleen Macrophages. Biochemical and Biophysical Research Communications, 1994, 200, 1049-1058.	2.1	17
106	Characterization of brain angiotensin II AT2 receptor subtype using [125I] CGP 42112A. NeuroReport, 1993, 4, 103-105.	1.2	25
107	Reproductive hormones modulate angiotensin II AT1 receptors in the dorsomedial arcuate nucleus of the female rat. Endocrinology, 1993, 133, 939-941.	2.8	7
108	Brain and Pituitary Angiotensin. Endocrine Reviews, 1992, 13, 329-380.	20.1	421

#	Article	IF	CITATIONS
109	The AT2 subtype of the angiotensin II receptors has differential sensitivity to dithiothreitol in specific brain nuclei of young rats. European Journal of Pharmacology, 1992, 226, 169-173.	2.6	23
110	Comparative quantification of rat brain and pituitary angiotensin-converting enzyme with autoradiographic and enzymatic methods. Brain Research, 1991, 545, 215-222.	2.2	13
111	Characterization of AT2 angiotensin II receptors in rat anterior cerebral arteries. American Journal of Physiology - Heart and Circulatory Physiology, 1991, 261, H667-H670.	3.2	27
112	Autoradiographic Localization and Quantification of Rat Heart Angiotensin Converting Enzyme. American Journal of Hypertension, 1991, 4, 321-326.	2.0	54
113	Quantitative Autoradiography Reveals Different Angiotensin II Receptor Subtypes in Selected Rat Brain Nuclei. Journal of Neurochemistry, 1991, 56, 348-351.	3.9	137
114	Increased dithiothreitol-insensitive, type 2 angiotensin II receptors in selected brain areas of young rats. Cellular and Molecular Neurobiology, 1991, 11, 295-299.	3.3	21
115	DIFFERENTIAL DEVELOPMENT OF ANGIOTENSIN II RECEPTOR SUBTYPES IN THE RAT BRAIN. Endocrinology, 1991, 128, 630-632.	2.8	73
116	Angiotensin-II Receptor Subtypes in Median Eminence and Basal Forebrain Areas Involved in Regulation of Pituitary Function. Endocrinology, 1991, 129, 3001-3008.	2.8	68
117	Differential Sensitivity to Cations of the Melatonin Receptors in the Rat Area Postrema and Suprachiasmatic Nuclei. Journal of Neurochemistry, 1990, 55, 1450-1453.	3.9	10
118	Increased Â2-Adrenoceptor Number in Peripheral Sympathetic Ganglia of Spontaneously Hypertensive Rats. American Journal of Hypertension, 1990, 3, 886-889.	2.0	4
119	Enhanced Phosphoinositide Hydrolysis in the Pineal Gland of Spontaneously Hypertensive Rats. American Journal of Hypertension, 1990, 3, 496-498.	2.0	2
120	Interactions Between the Circulating Hormones Angiotensin and Atrial Natriuretic Peptide and Their Receptors in Brain. Advances in Experimental Medicine and Biology, 1990, 274, 191-210.	1.6	8
121	Quantitative in vitro autoradiographic characterization of [1251]angiotensin III binding sites in rat adrenal gland. Regulatory Peptides, 1988, 23, 127-133.	1.9	16
122	Regulation of atrial natriuretic peptide receptors in the rat brain. Cellular and Molecular Neurobiology, 1987, 7, 151-173.	3.3	53
123	Angiotensin II binding sites in the anteroventral-third ventricle (AV3V) area and related structures of the rat brain. Neuroscience Letters, 1986, 67, 37-41.	2.1	30
124	Binding of angiotensin and atrial natriuretic peptide in brain of hypertensive rats. Nature, 1986, 320, 758-760.	27.8	183
125	Quantitative autoradiographic characterization of receptors for angiotensin II and other neuropeptides in individual brain nuclei and peripheral tissues from single rats. Cellular and Molecular Neurobiology, 1985, 5, 211-222.	3.3	65
126	High-affinity angiotensin receptors in rat adrenal medulla. Regulatory Peptides, 1985, 11, 237-243.	1.9	38

#	Article	IF	CITATIONS
127	Quantitative Measurement of Angiotensin II (A II) Receptors in Discrete Regions of Rat Brain, Pituitary and Adrenal Gland by Autoradiography. Clinical and Experimental Hypertension, 1984, 6, 1761-1764.	0.3	14
128	Highâ€Protein Carboxymethylase Activity and Low Endogenous Methyl Acceptor Proteins in Posterior Pituitary Lobe of Rats Lacking Neurophysinâ€Vasopressin (Brattleboro Rats). Journal of Neurochemistry, 1983, 41, 195-200.	3.9	4
129	Twenty-four-hour rhythm and effects of stress and adrenomedullectomy on rat pineal dopamine, noradrenaline, and adrenaline concentrations. Cellular and Molecular Neurobiology, 1982, 2, 1-10.	3.3	30
130	Distribution of Angiotensin-Converting Enzyme Activity in Specific Areas of the Rat Brain Stem. Journal of Neurochemistry, 1982, 38, 281-284.	3.9	65