
Harald Pichler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/499169/publications.pdf Version: 2024-02-01

HADALD DICHLED

#	Article	IF	CITATIONS
1	Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Applied Microbiology and Biotechnology, 2014, 98, 5301-5317.	3.6	744
2	A subfraction of the yeast endoplasmic reticulum associates with the plasma membrane and has a high capacity to synthesize lipids. FEBS Journal, 2001, 268, 2351-2361.	0.2	237
3	Functional Interactions between Sphingolipids and Sterols in Biological Membranes Regulating Cell Physiology. Molecular Biology of the Cell, 2009, 20, 2083-2095.	2.1	196
4	Production of the sesquiterpenoid (+)-nootkatone by metabolic engineering of Pichia pastoris. Metabolic Engineering, 2014, 24, 18-29.	7.0	155
5	Specific Sterols Required for the Internalization Step of Endocytosis in Yeast. Molecular Biology of the Cell, 1999, 10, 3943-3957.	2.1	151
6	Multiple Functions of Sterols in Yeast Endocytosis. Molecular Biology of the Cell, 2002, 13, 2664-2680.	2.1	151
7	High-quality genome sequence of Pichia pastoris CBS7435. Journal of Biotechnology, 2011, 154, 312-320.	3.8	146
8	Application of Designed Enzymes in Organic Synthesis. Chemical Reviews, 2011, 111, 4141-4164.	47.7	144
9	PDR16 and PDR17, Two Homologous Genes ofSaccharomyces cerevisiae, Affect Lipid Biosynthesis and Resistance to Multiple Drugs. Journal of Biological Chemistry, 1999, 274, 1934-1941.	3.4	142
10	Apolipoprotein E Binding Drives Structural and Compositional Rearrangement of mRNA-Containing Lipid Nanoparticles. ACS Nano, 2021, 15, 6709-6722.	14.6	138
11	Identifying and engineering the ideal microbial terpenoid production host. Applied Microbiology and Biotechnology, 2019, 103, 5501-5516.	3.6	114
12	Yeast <i>ARV1</i> Is Required for Efficient Delivery of an Early GPI Intermediate to the First Mannosyltransferase during GPI Assembly and Controls Lipid Flow from the Endoplasmic Reticulum. Molecular Biology of the Cell, 2008, 19, 2069-2082.	2.1	97
13	A stable yeast strain efficiently producing cholesterol instead of ergosterol is functional for tryptophan uptake, but not weak organic acid resistance. Metabolic Engineering, 2011, 13, 555-569.	7.0	95
14	Where sterols are required for endocytosis. Biochimica Et Biophysica Acta - Biomembranes, 2004, 1666, 51-61.	2.6	87
15	Yeast metabolic engineering – Targeting sterol metabolism and terpenoid formation. Progress in Lipid Research, 2013, 52, 277-293.	11.6	76
16	Structureâ€Based Mechanism of Oleate Hydratase from <i>Elizabethkingia meningoseptica</i> . ChemBioChem, 2015, 16, 1730-1734.	2.6	66
17	Tuning microbial hosts for membrane protein production. Microbial Cell Factories, 2009, 8, 69.	4.0	64
18	Photobiocatalytic synthesis of chiral secondary fatty alcohols from renewable unsaturated fatty acids. Nature Communications, 2020, 11, 2258.	12.8	58

HARALD PICHLER

#	Article	IF	CITATIONS
19	Subcellular localization of yeast Sec14 homologues and their involvement in regulation of phospholipid turnover. FEBS Journal, 2003, 270, 3133-3145.	0.2	57
20	On the current role of hydratases in biocatalysis. Applied Microbiology and Biotechnology, 2018, 102, 5841-5858.	3.6	50
21	A novel cholesterol-producing Pichia pastoris strain is an ideal host for functional expression of human Na,K-ATPase α3β1 isoform. Applied Microbiology and Biotechnology, 2013, 97, 9465-9478.	3.6	42
22	Production of human cytochrome P450 2D6 drug metabolites with recombinant microbes $\hat{a} \in \hat{a}$ a comparative study. Biotechnology Journal, 2012, 7, 1346-1358.	3.5	41
23	Recombinant Lipoxygenases and Hydroperoxide Lyases for the Synthesis of Green Leaf Volatiles. Journal of Agricultural and Food Chemistry, 2019, 67, 13367-13392.	5.2	39
24	Multiple lipid transport pathways to the plasma membrane in yeast. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2005, 1687, 130-140.	2.4	38
25	Localization of Cholesterol within Supported Lipid Bilayers Made of a Natural Extract of Tailor-Deuterated Phosphatidylcholine. Langmuir, 2018, 34, 472-479.	3.5	36
26	Overâ€expression of <i>ICE2</i> stabilizes cytochrome P450 reductase in <i>Saccharomyces cerevisiae</i> and <i>Pichia pastoris</i> . Biotechnology Journal, 2015, 10, 623-635.	3.5	34
27	Alternative pig liver esterase (APLE) – Cloning, identification and functional expression in Pichia pastoris of a versatile new biocatalyst. Journal of Biotechnology, 2008, 133, 301-310.	3.8	33
28	Pichia pastoris Aft1 - a novel transcription factor, enhancing recombinant protein secretion. Microbial Cell Factories, 2014, 13, 120.	4.0	33
29	Screening for improved isoprenoid biosynthesis in microorganisms. Journal of Biotechnology, 2016, 235, 112-120.	3.8	30
30	Modification of membrane lipid compositions in single-celled organisms – From basics to applications. Methods, 2018, 147, 50-65.	3.8	29
31	Overexpression of membrane proteins from higher eukaryotes in yeasts. Applied Microbiology and Biotechnology, 2014, 98, 7671-7698.	3.6	27
32	The impact of deuteration on natural and synthetic lipids: A neutron diffraction study. Colloids and Surfaces B: Biointerfaces, 2018, 168, 126-133.	5.0	27
33	Perdeuteration of cholesterol for neutron scattering applications using recombinant Pichia pastoris. Chemistry and Physics of Lipids, 2018, 212, 80-87.	3.2	27
34	Evolving the Promiscuity of Elizabethkingia meningoseptica Oleate Hydratase for the Regio―and Stereoselective Hydration of Oleic Acid Derivatives. Angewandte Chemie - International Edition, 2019, 58, 7480-7484.	13.8	27
35	Lipid requirements for endocytosis in yeast. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2007, 1771, 442-454.	2.4	24
36	Whole-cell (+)-ambrein production in the yeast Pichia pastoris. Metabolic Engineering Communications, 2018, 7, e00077.	3.6	24

HARALD PICHLER

#	Article	IF	CITATIONS
37	Enhancing cytochrome P450-mediated conversions in P. pastoris through RAD52 over-expression and optimizing the cultivation conditions. Fungal Genetics and Biology, 2016, 89, 114-125.	2.1	22
38	The Production of Matchout-Deuterated Cholesterol and the Study of Bilayer-Cholesterol Interactions. Scientific Reports, 2019, 9, 5118.	3.3	22
39	Metabolic fluxes for nutritional flexibility of <i>Mycobacterium tuberculosis</i> . Molecular Systems Biology, 2021, 17, e10280.	7.2	19
40	Enzymatic Aerobic Alkene Cleavage Catalyzed by a Mn ³⁺ â€Dependent Proteinase A Homologue. ChemBioChem, 2013, 14, 2427-2430.	2.6	18
41	SARS-CoV-2 spike protein removes lipids from model membranes and interferes with the capacity of high density lipoprotein to exchange lipids. Journal of Colloid and Interface Science, 2021, 602, 732-739.	9.4	18
42	<i>Pichia pastoris</i> proteaseâ€deficient and auxotrophic strains generated by a novel, userâ€friendly vector toolbox for gene deletion. Yeast, 2019, 36, 557-570.	1.7	17
43	Towards a secure and self-adapting smart indoor farming framework. Elektrotechnik Und Informationstechnik, 2019, 136, 341-344.	1.1	16
44	Lipoprotein ability to exchange and remove lipids from model membranes as a function of fatty acid saturation and presence of cholesterol. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158769.	2.4	12
45	Sphingolipids regulate telomere clustering by affecting transcriptional levels of genes involved in telomere homeostasis. Journal of Cell Science, 2015, 128, 2454-67.	2.0	11
46	Weiterentwicklung der Substrattoleranz von Elizabethkingia meningoseptica Oleathydratase zur regio―und stereoselektiven Hydratisierung von ÖlsÃ ¤ rederivaten. Angewandte Chemie, 2019, 131, 7558-7563.	2.0	8
47	Engineering of <i>Saccharomyces cerevisiae</i> for the production of (+)â€ambrein. Yeast, 2020, 37, 163-172.	1.7	8
48	The influence of residual water on the solid-state properties of freeze-dried fibrinogen. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 91, 1-8.	4.3	7
49	Membrane Protein Production in Yeast: Modification of Yeast Membranes for Human Membrane Protein Production. Methods in Molecular Biology, 2019, 1923, 265-285.	0.9	7
50	Strains and Molecular Tools for Recombinant Protein Production in Pichia pastoris. Methods in Molecular Biology, 2014, 1152, 87-111.	0.9	7
51	Recombinant expression, purification and biochemical characterization of kievitone hydratase from Nectria haematococca. PLoS ONE, 2018, 13, e0192653.	2.5	6
52	A recommendation for suitable technologies for an indoor farming framework. Elektrotechnik Und Informationstechnik, 2020, 137, 370-374.	1.1	6
53	ApoE and ApoE Nascent-Like HDL Particles at Model Cellular Membranes: Effect of Protein Isoform and Membrane Composition. Frontiers in Chemistry, 2021, 9, 630152.	3.6	6
54	Nanoscale Structure and Dynamics of Model Membrane Lipid Raft Systems, Studied by Neutron Scattering Methods. Frontiers in Physics, 2022, 10, .	2.1	5

HARALD PICHLER

#	Article	IF	CITATIONS
55	Exploring Castellaniella defragrans Linalool (De)hydratase-Isomerase for Enzymatic Hydration of Alkenes. Molecules, 2019, 24, 2092.	3.8	4
56	Production of Aromatic Plant Terpenoids in Recombinant Baker's Yeast. Methods in Molecular Biology, 2016, 1405, 79-89.	0.9	4
57	Secretion ofPseudomonas aeruginosaLipoxygenase byPichia pastorisupon Glycerol Feed. Biotechnology Journal, 2020, 15, 2000089.	3.5	3
58	Strains and Molecular Tools for Recombinant Protein Production in Pichia pastoris. Methods in Molecular Biology, 2022, , 79-112.	0.9	2
59	Alternative pig liver esterase (APLE): Discovery and functional expression of a high-value biocatalyst. Journal of Biotechnology, 2007, 131, S215.	3.8	1
60	Pichia pastoris as a cell factory—examining the secretory capabilities. New Biotechnology, 2012, 29, S92-S93.	4.4	0