Kei Goto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4991649/publications.pdf

Version: 2024-02-01

		361413	345221
58	1,442 citations	20	36
papers	citations	h-index	g-index
64	64	64	1137
01	01	01	1137
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Synthesis, Structure, and Reactions of a Sulfenic Acid Bearing a Novel Bowl-Type Substituent:  The First Synthesis of a Stable Sulfenic Acid by Direct Oxidation of a Thiol. Journal of the American Chemical Society, 1997, 119, 1460-1461.	13.7	133
2	Fixation of Both O2and CO2from Air by a Crystalline Palladium Complex BearingN-Heterocyclic Carbene Ligands. Journal of the American Chemical Society, 2005, 127, 7294-7295.	13.7	99
3	Isolation and X-ray Crystallographic Analysis of a Stable Selenenic Acid. Angewandte Chemie International Edition in English, 1997, 36, 2223-2224.	4.4	81
4	Synthesis of a Stable Arenesulfenic Acid Bearing a Bowl-Shaped Macrobicyclic Cyclophane Skeleton. Angewandte Chemie International Edition in English, 1995, 34, 1124-1126.	4.4	70
5	The First Direct Oxidative Conversion of a Selenol to a Stable Selenenic Acid:  Experimental Demonstration of Three Processes Included in the Catalytic Cycle of Glutathione Peroxidase. Organic Letters, 2001, 3, 3569-3572.	4.6	65
6	Modeling of the 5′â€Deiodination of Thyroxine by Iodothyronine Deiodinase: Chemical Corroboration of a Selenenyl Iodide Intermediate. Angewandte Chemie - International Edition, 2010, 49, 545-547.	13.8	60
7	Synthesis and Structure of a Bridged Calix[6]arene with a Sulfenic Acid Functionality in the Cavity. Journal of Organic Chemistry, 1996, 61, 2924-2925.	3.2	57
8	Synthesis and crystal structure of a stable S-nitrosothiol bearing a novel steric protection group and of the corresponding S-nitrothiol. Tetrahedron Letters, 2000, 41, 8479-8483.	1.4	57
9	Theoretical Evidence for Enhanced NO Dimerization in Aromatic Hosts:Â Implications for the Role of the Electrophile (NO)2in Nitric Oxide Chemistry. Journal of the American Chemical Society, 2005, 127, 7964-7965.	13.7	50
10	Molecular Bowls and Capsules with an Endohedral Functionality: The Stabilization of Highly Reactive Species in Their Inner Phase. Liebigs Annalen, 1997, 1997, 2393-2407.	0.8	48
11	Isolation of aSe-Nitrososelenol:Â A New Class of Reactive Nitrogen Species Relevant to ProteinSe-Nitrosation. Journal of the American Chemical Society, 2004, 126, 13238-13239.	13.7	46
12	A Bowl-Shaped Triarylphosphane with a Large Cone Angle: Synthesis and Crystallographic Analysis of a[(PdX2)3(PR3)2]-Type Complex. Angewandte Chemie - International Edition, 2003, 42, 5714-5717.	13.8	41
13	Copper(I)â€Dioxygen Reactivity in a Sterically Demanding Tripodal Tetradentate tren Ligand: Formation and Reactivity of a Mononuclear Copper(II) Endâ€On Superoxo Complex. European Journal of Inorganic Chemistry, 2012, 2012, 4574-4578.	2.0	41
14	Modeling the Catalytic Cycle of Glutathione Peroxidase by Nuclear Magnetic Resonance Spectroscopic Analysis of Selenocysteine Selenenic Acids. Journal of the American Chemical Society, 2021, 143, 6345-6350.	13.7	40
15	A novel dendrimer-type m-terphenyl substituent for the kinetic stabilization of highly reactive species. Tetrahedron Letters, 2001, 42, 4875-4877.	1.4	37
16	5-Carbaphosphatranes:Â The First Main Group Atrane Bearing a 1â^'5 Covalent Bond. Journal of the American Chemical Society, 2001, 123, 3387-3388.	13.7	30
17	Generation, Characterization, and Reactivity of a Cu ^{II} –Alkylperoxide/Anilino Radical Complex: Insight into the O–O Bond Cleavage Mechanism. Journal of the American Chemical Society, 2015, 137, 10870-10873.	13.7	29
18	Synthesis, Structure, and Reactions of the First Stable AromaticS-Nitrosothiol Bearing a Novel Dendrimer-Type Steric Protection Group. Chemistry Letters, 2001, 30, 1204-1205.	1.3	25

#	Article	lF	Citations
19	An Endohedral Simple Enol:Â The First Isolation of a \hat{I}^2 -Unsubstituted Simple Enol Utilizing a Lantern-Shaped Molecular Framework. Journal of the American Chemical Society, 1997, 119, 3195-3196.	13.7	23
20	Formation of a Stable Sulfenic Acid by Hydrolysis of a Thionitrate and a Sulfenyl Bromide. Chemistry Letters, 2006, 35, 862-863.	1.3	23
21	Photochemically Generated Thiyl Free Radicals Observed by X-ray Absorption Spectroscopy. Journal of the American Chemical Society, 2017, 139, 11519-11526.	13.7	23
22	Syntheses and structures of bowl-shaped triarylphosphines and their palladium(II) complexes. Journal of Organometallic Chemistry, 2005, 690, 4175-4183.	1.8	22
23	Synthese einer stabilen Arensulfensäre mit einem schüsselförmigen makrobicyclischen Cyclophangerüst. Angewandte Chemie, 1995, 107, 1202-1203.	2.0	21
24	Stable Sulfenyl Iodide Bearing a Primary Alkyl Steric Protection Group with a Cavity-shaped Framework. Chemistry Letters, 2009, 38, 1188-1189.	1.3	19
25	Ajothiolanes: 3,4-Dimethylthiolane Natural Products from Garlic (<i>Allium sativum</i>). Journal of Agricultural and Food Chemistry, 2018, 66, 10193-10204.	5.2	19
26	Synthesis of a Stable Selenoaldehyde by Selfâ€Catalyzed Thermal Dehydration of a Primaryâ€Alkylâ€Substituted Selenenic Acid. Angewandte Chemie - International Edition, 2015, 54, 901-904.	13.8	18
27	Synthesis, Structure, and Reactions of a Novel Triarylsilanol with a Bowl-Type Framework: A Silanol Extremely Resistant to Self-Condensation. Chemistry Letters, 2001, 30, 1258-1259.	1.3	17
28	Synthesis of highly reactive organosulfur compounds. Heteroatom Chemistry, 2002, 13, 414-418.	0.7	16
29	Isolable small-molecule cysteine sulfenic acid. Chemical Communications, 2021, 57, 2479-2482.	4.1	16
30	Isolierung und röntgenstrukturanalytische Charakterisierung einer stabilen Selenensäre. Angewandte Chemie, 1997, 109, 2320-2322.	2.0	15
31	Catalyst-Free Syntheses of [2]Rotaxanes Utilizing a Pentacoordinated Hydrosilane as an End-Capping Agent. Organic Letters, 2010, 12, 2586-2589.	4.6	15
32	Thermolysis and Photolysis of StableSe-Nitrososelenols. Chemistry Letters, 2005, 34, 654-655.	1.3	13
33	Synthesis, Structure, and Reactivities of a Stable Primary-alkyl-substituted Sulfenic Acid. Chemistry Letters, 2015, 44, 615-617.	1.3	13
34	Model study on trapping of protein selenenic acids by utilizing a stable synthetic congener. New Journal of Chemistry, 2019, 43, 6830-6833.	2.8	12
35	Syntheses and Structural Characterizations of a Novel Bowl-Type Germanol and Its Derivatives. Bulletin of the Chemical Society of Japan, 2003, 76, 2389-2394.	3.2	11
36	Synthesis of a Stable Primary-Alkyl-Substituted Selenenyl Iodide and Its Hydrolytic Conversion to the Corresponding Selenenic Acid. Molecules, 2015, 20, 21415-21420.	3.8	11

#	Article	IF	Citations
37	Synthesis, Structure, and Reducing Ability of a Stable Organotrihydroaluminate Bearing a Novel Bowl-Type Substituent. Organometallics, 1999, 18, 1357-1359.	2.3	10
38	Title is missing!. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2000, 36, 117-122.	1.6	10
39	Efficient Endâ€Capping Synthesis of Neutral Donor–Acceptor [2]Rotaxanes Under Additiveâ€Free and Mild Conditions. Chemistry - A European Journal, 2014, 20, 15998-16005.	3.3	10
40	Synthesis and reactions of conformational isomers of a stable selenenic acid bearing a bridged calix[6] arene framework. Heteroatom Chemistry, 2001, 12, 195-197.	0.7	9
41	Initial Step of Selenite Reduction via Thioredoxin for Bacterial Selenoprotein Biosynthesis. International Journal of Molecular Sciences, 2021, 22, 10965.	4.1	9
42	Late-Stage Functionalization of the Periphery of Oligophenylene Dendrimers with Various Arene Units via Fourfold Câ€"H Borylation. Journal of Organic Chemistry, 2021, 86, 14433-14443.	3.2	7
43	Iodide-promoted Deselenylation of \hat{I}^2 -Chloro- and \hat{I}^2 -Oxyselenides to Form Alkenes and Selenenyl Iodides. Chemistry Letters, 2012, 41, 766-768.	1.3	6
44	Syntheses and characterization of alkylzirconium complexes containing two silanolato ligands with a bowl-shaped framework. Journal of Organometallic Chemistry, 2007, 692, 2115-2119.	1.8	5
45	Modeling of the Bioactivation of an Organic Nitrate by a Thiol to Form a Thionitrate Intermediate. Molecules, 2017, 22, 19.	3.8	5
46	Modeling of selenocysteine-derived reactive intermediates utilizing a nano-sized molecular cavity as a protective cradle. Methods in Enzymology, 2022, 662, 331-361.	1.0	5
47	Syntheses of the First Se-Nitrososelenol and Related Compounds. Phosphorus, Sulfur and Silicon and the Related Elements, 2005, 180, 945-949.	1.6	4
48	Visualizing sulfur with X-rays: From molecules to tissues. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 618-623.	1.6	3
49	Syntheses and Reactions of Stable Arenesulfenic Acids Bearing Bowl-Shaped Macrobicyclic Cyclophane Skeletons. Phosphorus, Sulfur and Silicon and the Related Elements, 1994, 95, 353-354.	1.6	2
50	Synthesis and Properties of Pentacoordinated Phenoxysilane and Carboxysilanes with Intramolecular Nitrogen–Silicon Coordination. Phosphorus, Sulfur and Silicon and the Related Elements, 2010, 185, 1221-1229.	1.6	2
51	Transnitrosation from a stable thionitrate to an amine with concomitant formation of a sulfenic acid. Journal of Sulfur Chemistry, 2013, 34, 705-710.	2.0	2
52	Oxygen-atom-transfer Reactions of a Palladium(II) Peroxocarbonate Complex. Chemistry Letters, 2015, 44, 157-159.	1.3	2
53	Oxy- and aminoselenation of alkenes utilizing an isolable selenenyl iodide. Mendeleev Communications, 2022, 32, 80-82.	1.6	2
54	Reactions of 1-Hydro-5-carbaphosphatrane: Tautomerization between Five-Coordinate and Three-Coordinate Species. Phosphorus, Sulfur and Silicon and the Related Elements, 2002, 177, 1405-1407.	1.6	1

#	Article	IF	CITATIONS
55	Synthesis and Crystal Structure of a Zirconium Complex Containing Germanolato Ligands and Its Catalytic Activity for Ethylene Polymerization. Chemistry Letters, 2007, 36, 776-777.	1.3	1
56	Synthesis and structural characterization of a mixed aggregate containing a lithium thiolate and a lithium amide. Journal of Sulfur Chemistry, 2009, 30, 365-369.	2.0	0
57	Syntheses of Biologically Relevant Reactive Sulfur Species by Utilizing a Primary Alkyl Steric Protection Group. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 1255-1258.	1.6	0
58	Modeling of biologically relevant chemical transformations involving thionitrates. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 771-773.	1.6	0