
Zhiwei Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4991551/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Acquisition of Epithelial-Mesenchymal Transition Phenotype of Gemcitabine-Resistant Pancreatic Cancer Cells Is Linked with Activation of the Notch Signaling Pathway. Cancer Research, 2009, 69, 2400-2407.	0.9	576
2	Targeting miRNAs involved in cancer stem cell and EMT regulation: An emerging concept in overcoming drug resistance. Drug Resistance Updates, 2010, 13, 109-118.	14.4	313
3	Pancreatic cancer: understanding and overcoming chemoresistance. Nature Reviews Gastroenterology and Hepatology, 2011, 8, 27-33.	17.8	303
4	Down-regulation of Notch-1 Inhibits Invasion by Inactivation of Nuclear Factor-κB, Vascular Endothelial Growth Factor, and Matrix Metalloproteinase-9 in Pancreatic Cancer Cells. Cancer Research, 2006, 66, 2778-2784.	0.9	302
5	Down-regulation of Notch-1 contributes to cell growth inhibition and apoptosis in pancreatic cancer cells. Molecular Cancer Therapeutics, 2006, 5, 483-493.	4.1	294
6	The Role of Notch Signaling Pathway in Epithelial-Mesenchymal Transition (EMT) During Development and Tumor Aggressiveness. Current Drug Targets, 2010, 11, 745-751.	2.1	271
7	Down-regulation of Forkhead Box M1 Transcription Factor Leads to the Inhibition of Invasion and Angiogenesis of Pancreatic Cancer Cells. Cancer Research, 2007, 67, 8293-8300.	0.9	233
8	Emerging role of Notch in stem cells and cancer. Cancer Letters, 2009, 279, 8-12.	7.2	226
9	Downâ€regulation of Notchâ€1 and Jaggedâ€1 inhibits prostate cancer cell growth, migration and invasion, and induces apoptosis via inactivation of Akt, mTOR, and NFâ€r̂B signaling pathways. Journal of Cellular Biochemistry, 2010, 109, 726-736.	2.6	174
10	Targeting Notch signaling pathway to overcome drug resistance for cancer therapy. Biochimica Et Biophysica Acta: Reviews on Cancer, 2010, 1806, 258-267.	7.4	163
11	Forkhead box M1 transcription factor: A novel target for cancer therapy. Cancer Treatment Reviews, 2010, 36, 151-156.	7.7	139
12	Knockdown of Oct4 and Nanog expression inhibits the stemness of pancreatic cancer cells. Cancer Letters, 2013, 340, 113-123.	7.2	129
13	Cross-talk between miRNA and Notch signaling pathways in tumor development and progression. Cancer Letters, 2010, 292, 141-148.	7.2	128
14	Regulation of Akt/FOXO3a/GSK-3β/AR Signaling Network by Isoflavone in Prostate Cancer Cells. Journal of Biological Chemistry, 2008, 283, 27707-27716.	3.4	109
15	Down-regulation of Platelet-Derived Growth Factor-D Inhibits Cell Growth and Angiogenesis through Inactivation of Notch-1 and Nuclear Factor-IºB Signaling. Cancer Research, 2007, 67, 11377-11385.	0.9	108
16	Attenuation of multi-targeted proliferation-linked signaling by 3,3′-diindolylmethane (DIM): From bench to clinic. Mutation Research - Reviews in Mutation Research, 2011, 728, 47-66.	5.5	105
17	Signaling Mechanism(S) of Reactive Oxygen Species in Epithelial-Mesenchymal Transition Reminiscent of Cancer Stem Cells in Tumor Progression. Current Stem Cell Research and Therapy, 2010, 5, 74-80.	1.3	101
18	Emerging roles of PDGF-D signaling pathway in tumor development and progression. Biochimica Et Biophysica Acta: Reviews on Cancer, 2010, 1806, 122-130.	7.4	99

ZHIWEI WANG

#	Article	IF	CITATIONS
19	Exploitation of the Notch signaling pathway as a novel target for cancer therapy. Anticancer Research, 2008, 28, 3621-30.	1.1	85
20	Downâ€regulation of Notchâ€1 is associated with Akt and FoxM1 in inducing cell growth inhibition and apoptosis in prostate cancer cells. Journal of Cellular Biochemistry, 2011, 112, 78-88.	2.6	81
21	TW-37, a Small-Molecule Inhibitor of Bcl-2, Inhibits Cell Growth and Induces Apoptosis in Pancreatic Cancer: Involvement of Notch-1 Signaling Pathway. Cancer Research, 2009, 69, 2757-2765.	0.9	78
22	MiR-200a inhibits epithelial-mesenchymal transition of pancreatic cancer stem cell. BMC Cancer, 2014, 14, 85.	2.6	73
23	Notch Signaling Proteins: Legitimate Targets for Cancer Therapy. Current Protein and Peptide Science, 2010, 11, 398-408.	1.4	65
24	PDGF-D Signaling: A Novel Target in Cancer Therapy. Current Drug Targets, 2009, 10, 38-41.	2.1	58
25	Decellularization and Recellularization of Rat Livers With Hepatocytes and Endothelial Progenitor Cells. Artificial Organs, 2016, 40, E25-38.	1.9	57
26	Synergistic effects of multiple natural products in pancreatic cancer cells. Life Sciences, 2008, 83, 293-300.	4.3	55
27	Reversal of Diabetes in Mice by Intrahepatic Injection of Boneâ€derived GFPâ€murine Mesenchymal Stem Cells Infected with the Recombinant Retrovirusâ€carrying Human Insulin Gene. World Journal of Surgery, 2007, 31, 1872-1882.	1.6	54
28	FoxM1 is a Novel Target of a Natural Agent in Pancreatic Cancer. Pharmaceutical Research, 2010, 27, 1159-1168.	3.5	54
29	Induction of growth arrest and apoptosis in human breast cancer cells by 3,3-diindolylmethane is associated with induction and nuclear localization of p27kip. Molecular Cancer Therapeutics, 2008, 7, 341-349.	4.1	45
30	High ROR2 expression in tumor cells and stroma is correlated with poor prognosis in pancreatic ductal adenocarcinoma. Scientific Reports, 2015, 5, 12991.	3.3	45
31	Activated K-ras and INK4a/Arf Deficiency Cooperate During the Development of Pancreatic Cancer by Activation of Notch and NF-κB Signaling Pathways. PLoS ONE, 2011, 6, e20537.	2.5	43
32	Activated Kâ€Ras and INK4a/Arf deficiency promote aggressiveness of pancreatic cancer by induction of EMT consistent with cancer stem cell phenotype. Journal of Cellular Physiology, 2013, 228, 556-562.	4.1	40
33	Culture of iPSCs Derived Pancreatic <i>β</i> -Like Cells In Vitro Using Decellularized Pancreatic Scaffolds: A Preliminary Trial. BioMed Research International, 2017, 2017, 1-14.	1.9	37
34	3D Culture of MIN-6 Cells on Decellularized Pancreatic Scaffold: In Vitro and In Vivo Study. BioMed Research International, 2015, 2015, 1-8.	1.9	34
35	microRNA-690 regulates induced pluripotent stem cells (iPSCs) differentiation into insulin-producing cells by targeting Sox9. Stem Cell Research and Therapy, 2019, 10, 59.	5.5	32
36	lncRNA Gm10451 regulates PTIP to facilitate iPSCs-derived β-like cell differentiation by targeting miR-338-3p as a ceRNA. Biomaterials, 2019, 216, 119266.	11.4	29

ZHIWEI WANG

#	Article	IF	CITATIONS
37	YB-1 expression promotes pancreatic cancer metastasis that is inhibited by microRNA-216a. Experimental Cell Research, 2017, 359, 319-326.	2.6	27
38	Triple-amiRNA VEGFRs inhibition in pancreatic cancer improves the efficacy of chemotherapy through EMT regulation. Journal of Controlled Release, 2017, 245, 1-14.	9.9	27
39	Biomimetic hybrid scaffold of electrospun silk fibroin and pancreatic decellularized extracellular matrix for islet survival. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 151-165.	3.5	27
40	Differentiation of iPSCs into insulin-producing cells via adenoviral transfection of PDX-1, NeuroD1 and MafA. Diabetes Research and Clinical Practice, 2014, 104, 383-392.	2.8	25
41	Hyaluronic acid methacrylate/pancreatic extracellular matrix as a potential 3D printing bioink for constructing islet organoids. Acta Biomaterialia, 2023, 165, 86-101.	8.3	25
42	Three-dimensional culture of mouse pancreatic islet on a liver-derived perfusion-decellularized bioscaffold for potential clinical application. Journal of Biomaterials Applications, 2015, 30, 379-387.	2.4	24
43	Constructing heparin-modified pancreatic decellularized scaffold to improve its re-endothelialization. Journal of Biomaterials Applications, 2018, 32, 1063-1070.	2.4	22
44	KIF2A overexpression and its association with clinicopathologic characteristics and unfavorable prognosis in colorectal cancer. Tumor Biology, 2015, 36, 8895-8902.	1.8	19
45	The dynamic three-dimensional culture of islet-like clusters in decellularized liver scaffolds. Cell and Tissue Research, 2016, 365, 157-171.	2.9	19
46	Vascularization of pancreatic decellularized scaffold with endothelial progenitor cells. Journal of Artificial Organs, 2018, 21, 230-237.	0.9	19
47	SCFFBXW7/GSK3Î ² -Mediated GFI1 Degradation Suppresses Proliferation of Gastric Cancer Cells. Cancer Research, 2019, 79, 4387-4398.	0.9	18
48	LAMP3 and TP53 overexpression predicts poor outcome in laryngeal squamous cell carcinoma. International Journal of Clinical and Experimental Pathology, 2015, 8, 5519-27.	0.5	17
49	Pancreatic Extracellular Matrix/Alginate Hydrogels Provide a Supportive Microenvironment for Insulin-Producing Cells. ACS Biomaterials Science and Engineering, 2021, 7, 3793-3805.	5.2	16
50	Hydrogel materials for the application of islet transplantation. Journal of Biomaterials Applications, 2019, 33, 1252-1264.	2.4	14
51	Transcriptome Analysis of Induced Pluripotent Stem Cell (iPSC)-derived Pancreatic β-like Cell Differentiation. Cell Transplantation, 2017, 26, 1380-1391.	2.5	11
52	Enhanced vascularization and biocompatibility of rat pancreatic decellularized scaffolds loaded with platelet-rich plasma. Journal of Biomaterials Applications, 2020, 35, 313-330.	2.4	9
53	Controlling the blood glucose of type 1 diabetes mice by coâ€culturing <scp>MIN</scp> â€6 β cells on 3 <scp>D</scp> scaffold. Pediatric Transplantation, 2015, 19, 371-379.	1.0	8
54	miR-573 suppresses pancreatic cancer cell proliferation, migration, and invasion through targeting TSPAN1. Strahlentherapie Und Onkologie, 2021, 197, 438-448.	2.0	7

ZHIWEI WANG

#	Article	IF	CITATIONS
55	Pancreatic extracellular matrix and plateletâ€rich plasma constructing injectable hydrogel for pancreas tissue engineering. Artificial Organs, 2020, 44, e532-e551.	1.9	6
56	Comparing the reprogramming efficiency of mouse embryonic fibroblasts, mouse bone marrow mesenchymal stem cells and bone marrow mononuclear cells to iPSCs. In Vitro Cellular and Developmental Biology - Animal, 2012, 48, 236-243.	1.5	5
57	Decellularized and solubilized pancreatic stroma promotes the in vitro proliferation, migration and differentiation of BMSCs into IPCs. Cell and Tissue Banking, 2019, 20, 389-401.	1.1	4
58	Exosomes from β-Cells Promote Differentiation of Induced Pluripotent Stem Cells into Insulin-Producing Cells Through microRNA-Dependent Mechanisms. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2021, Volume 14, 4767-4782.	2.4	4