Gengchao Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4991141/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nano storage-boxes constructed by the vertical growth of MoS2 on graphene for high-performance Li-S batteries. Journal of Energy Chemistry, 2022, 66, 91-99.	12.9	37
2	High-Performance-Integrated Stretchable Supercapacitors Based on a Polyurethane Organo/Hydrogel Electrolyte. ACS Applied Materials & Interfaces, 2022, 14, 622-632.	8.0	19
3	"Integrated Interlocking―architecture improving cycle stability of supercapacitors based on Self-Supporting electrodes. Chemical Engineering Journal, 2022, 450, 137918.	12.7	4
4	Simultaneous Improvement of the Mechanical and Flame-Retardant Properties of a Composite Elastomer by a Biomimetic Modified Multilayer Graphene. Journal of Macromolecular Science - Physics, 2021, 60, 708-726.	1.0	0
5	Fully integrated design of intrinsically stretchable electrodes for stretchable supercapacitors. Energy Storage Materials, 2021, 39, 130-138.	18.0	19
6	Dual Li-ion migration channels in an ester-rich copolymer/ionic liquid quasi-solid-state electrolyte for high-performance Li–S batteries. Journal of Materials Chemistry A, 2021, 9, 2459-2469.	10.3	18
7	Electrophoresis-microwave synthesis of S,N-doped graphene foam for high-performance supercapacitors. Journal of Materials Chemistry A, 2021, 9, 15766-15775.	10.3	10
8	Rearrangement of Ion Transport Path on Nano-Cross-linker for All-Solid-State Electrolyte with High Room Temperature Ionic Conductivity. ACS Nano, 2021, 15, 20489-20503.	14.6	31
9	A novel poly(vinyl carbonate-co-butyl acrylate) quasi-solid-state electrolyte as a strong catcher for lithium polysulfide in Li–S batteries. Electrochimica Acta, 2020, 332, 135463.	5.2	13
10	Elastic, Conductive Coating Layer for Self‣tanding Sulfur Cathode Achieving Long Lifespan Li–S Batteries. Advanced Energy Materials, 2020, 10, 1904026.	19.5	12
11	Improving Resistanceâ€Temperature Characteristic of Polyethylene/Carbon Black Composites by Poly(3,4â€Ethylenedioxythiophene)â€Functionalized Multilayer Graphene. Macromolecular Chemistry and Physics, 2020, 221, 2000144.	2.2	6
12	A high-resilience and conductive composite binder for lithium-sulfur batteries. Chemical Engineering Journal, 2020, 389, 124404.	12.7	43
13	Fabrication of porous lithium titanate self-supporting anode for high performance lithium-ion capacitor. Journal of Energy Chemistry, 2020, 50, 344-350.	12.9	40
14	Rational design of modified fluororubber-based quasi-solid-state electrolyte for flexible supercapacitors with enhanced performance. Chemical Engineering Journal, 2019, 378, 122244.	12.7	13
15	Unique holey graphene/carbon dots frameworks by microwave-initiated chain reduction for high-performance compressible supercapacitors and reusable oil/water separation. Journal of Materials Chemistry A, 2019, 7, 22054-22062.	10.3	27
16	Poly(ionic liquid)-Based Quasi-Solid-State Copolymer Electrolytes for Dynamic-Reversible Adsorption of Lithium Polysulfides in Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2019, 11, 38136-38146.	8.0	27
17	Long-life flexible supercapacitors based on nitrogen-doped porous graphene@Ï€-conjugated polymer film electrodes and porous quasi-solid-state polymer electrolyte. Electrochimica Acta, 2019, 317, 250-260.	5.2	24
18	High-performance stretchable supercapacitors based on intrinsically stretchable acrylate rubber/MWCNTs@conductive polymer composite electrodes. Journal of Materials Chemistry A, 2018, 6, 4432-4442.	10.3	82

GENGCHAO WANG

#	Article	IF	CITATIONS
19	Improving the dielectric performance of poly(vinylidene fluoride)/polyaniline nanorod composites by stretchâ€induced crystal transition. Polymer International, 2018, 67, 1103-1111.	3.1	4
20	High-performance lithium-sulfur batteries based on self-supporting graphene/carbon nanotube foam@sulfur composite cathode and quasi-solid-state polymer electrolyte. Chemical Engineering Journal, 2018, 332, 8-15.	12.7	39
21	Polyaniline/reduced graphene oxide hydrogel film with attached graphite current collector for flexible supercapacitors. Journal of Materials Science: Materials in Electronics, 2018, 29, 3025-3034.	2.2	17
22	Distinct Photovoltaic Performance of Hierarchical Nanostructures Self-Assembled from Multiblock Copolymers. ACS Applied Materials & amp; Interfaces, 2018, 10, 22552-22561.	8.0	9
23	Green Preparation of Expandable Graphite and Its Application in Flame-Resistance Polymer Elastomer. Industrial & Engineering Chemistry Research, 2017, 56, 5253-5261.	3.7	40
24	High energy-density organic supercapacitors based on optimum matching between GNS/aMWCNT@polyaniline nanocone arrays cathode and GNS/aMWCNT@poly(1,5-diaminoanthraquinone) nanoparticles anode. Chemical Engineering Journal, 2017, 326, 9-16.	12.7	29
25	Enhanced dielectric properties of polymer composite films induced by encapsulated MWCNTs with a one coreâ€two shell structure. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 948-956.	2.1	11
26	Activated hierarchical porous carbon@Ï€-conjugated polymer composite as cathode for high-performance lithium storage. Journal of Solid State Electrochemistry, 2016, 20, 2169-2177.	2.5	7
27	A self-healable and easily recyclable supramolecular hydrogel electrolyte for flexible supercapacitors. Journal of Materials Chemistry A, 2016, 4, 8769-8776.	10.3	238
28	Alkali-Resistant Quasi-Solid-State Electrolyte for Stretchable Supercapacitors. ACS Applied Materials & Interfaces, 2016, 8, 27701-27709.	8.0	17
29	Stretchable fluoroelastomer quasi-solid-state organic electrolyte for high-performance asymmetric flexible supercapacitors. Journal of Materials Chemistry A, 2016, 4, 14839-14848.	10.3	29
30	Synthesis and performance of cross-linked PEDOT:MOI-P(SS-HEA) transparent conductive films by UV irradiation. RSC Advances, 2016, 6, 29592-29597.	3.6	2
31	Self-Assembly of Polyethylene Glycol-Grafted Carbon Nanotube/Sulfur Composite with Nest-like Structure for High-Performance Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2016, 8, 6061-6071.	8.0	42
32	Improving the dielectric properties of poly(vinylidene fluoride) composites by using poly(vinyl) Tj ETQq0 0 0 rgBT	Overlock	10 Tf 50 222
33	A graphene/carbon nanotube@Ï€-conjugated polymer nanocomposite for high-performance organic supercapacitor electrodes. Journal of Materials Chemistry A, 2015, 3, 3880-3890.	10.3	58
34	The perfect matching between the low-cost Fe ₂ O ₃ nanowire anode and the NiO nanoflake cathode significantly enhances the energy density of asymmetric supercapacitors. Journal of Materials Chemistry A, 2015, 3, 6662-6670.	10.3	132
35	A Novel Flexible Supercapacitor Based on Cross-Linked PVDF-HFP Porous Organogel Electrolyte and Carbon Nanotube Paper@Ï€-Conjugated Polymer Film Electrodes. ACS Sustainable Chemistry and Engineering, 2015, 3, 2067-2076.	6.7	47

Promising graphene/carbon nanotube foam@i€-conjugated polymer self-supporting composite
athodes for high-performance rechargeable lithium batteries. Carbon, 2015, 94, 864-871.

#	Article	IF	CITATIONS
37	Enhancing the Energy Density of Asymmetric Stretchable Supercapacitor Based on Wrinkled CNT@MnO ₂ Cathode and CNT@polypyrrole Anode. ACS Applied Materials & Interfaces, 2015, 7, 15303-15313.	8.0	137
38	A facile prestrain-stick-release assembly of stretchable supercapacitors based on highly stretchable and sticky hydrogel electrolyte. Journal of Power Sources, 2015, 284, 400-408.	7.8	96
39	A post-oxidation strategy for the synthesis of graphene/carbon nanotube-supported polyaniline nanocomposites as advanced supercapacitor electrodes. RSC Advances, 2015, 5, 24599-24606.	3.6	12
40	Synthesis and electrochemical capacitance performance of polyaniline doped with lignosulfonate. RSC Advances, 2015, 5, 76116-76121.	3.6	25
41	A novel asymmetric supercapacitors based on binder-free carbon fiber paper@ nickel cobaltite nanowires and graphene foam electrodes. Journal of Power Sources, 2015, 273, 654-662.	7.8	62
42	Synthesis, curing behavior and thermal properties of silicon-containing hybrid polymers with Siâ^'C≡C units. Polymer International, 2014, 63, 1531-1536.	3.1	14
43	Irradiation preparation of reduced graphene oxide/carbon nanotube composites for high-performance supercapacitors. Journal of Power Sources, 2014, 245, 436-444.	7.8	66
44	Preparation and supercapacitance performance of manganese oxide nanosheets/graphene/carbon nanotubes ternary composite film. Electrochimica Acta, 2014, 125, 488-496.	5.2	27
45	All-solid-state asymmetric supercapacitor based on reduced graphene oxide/carbon nanotube and carbon fiber paper/polypyrrole electrodes. Journal of Materials Chemistry A, 2014, 2, 1458-1464.	10.3	220
46	Rational synthesis of novel π-conjugated poly(1,5-diaminoanthraquinone) for high-performance supercapacitors. RSC Advances, 2014, 4, 7774-7779.	3.6	34
47	Improving thermal conductivity and decreasing supercooling of paraffin phase change materials by n-octadecylamine-functionalized multi-walled carbon nanotubes. RSC Advances, 2014, 4, 36584-36590.	3.6	81
48	Improving the performance of PEDOT-PSS coated sulfur@activated porous graphene composite cathodes for lithium–sulfur batteries. Journal of Materials Chemistry A, 2014, 2, 18345-18352.	10.3	81
49	Synthesis and electrochemical performances of a novel two-dimensional nanocomposite: polyaniline-coated laponite nanosheets. Journal of Materials Science, 2014, 49, 6830-6837.	3.7	14
50	High-Performance Asymmetric Supercapacitor Based on Nanoarchitectured Polyaniline/Graphene/Carbon Nanotube and Activated Graphene Electrodes. ACS Applied Materials & Interfaces, 2013, 5, 8467-8476.	8.0	243
51	Synthesis of hierarchical sulfonated graphene/MnO2/polyaniline ternary composite and its improved electrochemical performance. Journal of Power Sources, 2013, 241, 231-238.	7.8	118
52	Hierarchical composites of sulfonated graphene-supported vertically aligned polyaniline nanorods for high-performance supercapacitors. Journal of Power Sources, 2012, 215, 36-42.	7.8	101
53	Synthesis, cure and pyrolysis behavior of heat-resistant boron-silicon hybrid polymer containing acetylene. Journal of Applied Polymer Science, 2012, 126, 1322-1327.	2.6	4
54	Synthesis and characterization of a poly(aniline-based disulfide)/diisocyanate-modified graphite oxide hybrid by a grafting technique. European Polymer Journal, 2011, 47, 1630-1635.	5.4	8

GENGCHAO WANG

#	Article	IF	CITATIONS
55	Poly(2,5-dimercapto-1,3,4-thiadiazole)/sulfonated graphene composite as cathode material for rechargeable lithium batteries. Journal of Applied Electrochemistry, 2011, 41, 377-382.	2.9	28
56	Fabrication and electrochemical characterization of polyaniline nanorods modified with sulfonated carbon nanotubes for supercapacitor applications. Electrochimica Acta, 2011, 56, 1366-1372.	5.2	125
57	Electrical and electrochemical properties of poly(2,5-dimercapto-1,3,4-thiadiazole)-polyaniline adduct intercalated graphite oxide composites. Materials Chemistry and Physics, 2010, 122, 224-229.	4.0	14
58	Synthesis and characterization of polypyrrole/graphite oxide composite by <i>in situ</i> emulsion polymerization. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 1329-1335.	2.1	89
59	A novel electrode material based on a highly homogeneous polyaniline/titanium oxide hybrid for high-rate electrochemical capacitors. Journal of Materials Chemistry, 2010, 20, 10598.	6.7	46
60	Anilineâ€Based Disulfide/Aniline Copolymers as a High Energyâ€Storage Material. Macromolecular Chemistry and Physics, 2009, 210, 2118-2124.	2.2	11
61	Anticorrosive properties of epoxy resin coatings cured by aniline/ <i>p</i> â€phenylenediamine copolymer. Journal of Applied Polymer Science, 2009, 112, 1988-1993.	2.6	15
62	Synthesis and characterization of electrically conductive and fluorescent poly(N-[5-(8-hydroxyquinoline)methyl]aniline)/V2O5 xerogel hybrids. Synthetic Metals, 2009, 159, 366-371.	3.9	8
63	Effects of synthetic conditions on the structure and electrical properties of polyaniline nanofibers. Journal of Materials Science, 2008, 43, 197-202.	3.7	28
64	Meltâ€processed polyaniline nanofibers/LDPE/EAA conducting composites. Polymer Composites, 2008, 29, 1177-1182.	4.6	7
65	Waterâ€dispersible conducting polyaniline/nano‣iO ₂ composites without any stabilizer. Journal of Applied Polymer Science, 2008, 107, 403-408.	2.6	20
66	Poly(aniline-2-sulfonic acid) modified multiwalled carbon nanotubes with good aqueous dispersibility. Journal of Colloid and Interface Science, 2008, 317, 199-205.	9.4	17
67	Preparation of poly(aniline-co-o-anisidine)-intercalated mesostructured manganese oxide composites by exchange reaction. Materials Research Bulletin, 2008, 43, 2145-2152.	5.2	3
68	Poly(anilineâ€coâ€oâ€anisidine)/Sulfonated Carbon Nanotubes Composites Prepared by Surface Adsorption Method. Journal of Macromolecular Science - Physics, 2008, 47, 743-753.	1.0	6
69	Effect of Carbon Black Modified with Polyaniline on Resistivity Behavior of Polyethylene/Carbon Black Composites. Journal of Macromolecular Science - Physics, 2007, 47, 65-75.	1.0	14
70	Intercalation of conducting poly(N-propane sulfonic acid aniline) in V2O5 xerogel. Journal of Applied Polymer Science, 2007, 103, 2569-2574.	2.6	10
71	Preparation and characterization of composites of polyaniline nanorods and multiwalled carbon nanotubes coated with polyaniline. Journal of Applied Polymer Science, 2007, 106, 4241-4247.	2.6	25
72	Synthesis of poly(aniline-co-o-anisidine)-intercalated graphite oxide composite by delamination/reassembling method. Carbon, 2005, 43, 2564-2570.	10.3	155

#	Article	IF	CITATIONS
73	Melt processable conducting poly(aniline-co-o-anisidine)/linear low-density polyethylene composites with ethylene-acrylic acid copolymer as compatibilizer. Journal of Applied Polymer Science, 2005, 98, 1511-1516.	2.6	6
74	Synthesis and characterization of poly(o-anisidine)/V2O5 and poly(o-anthranilic acid)/V2O5 nanocomposites. Polymer International, 2005, 54, 1082-1087.	3.1	7
75	The influence of crystalline and aggregate structure on PTC characteristic of conductive polyethylene/carbon black composite. European Polymer Journal, 1998, 34, 1221-1227.	5.4	100
76	Stretchable Sodium-Ion Capacitors Based on Coaxial CNT Supported Na2Ti3O7 with High Capacitance Contribution. Nanoscale, 0, , .	5.6	4