List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/499108/publications.pdf Version: 2024-02-01

Μει Μανς

#	Article	IF	CITATIONS
1	Orlistat increases arsenite tolerance in THP-1 derived macrophages through the up-regulation of ABCA1. Drug and Chemical Toxicology, 2022, 45, 274-282.	2.3	3
2	Structure-activity studies of PTPRD phosphatase inhibitors identify a 7-cyclopentymethoxy illudalic acid analog candidate for development. Biochemical Pharmacology, 2022, 195, 114868.	4.4	2
3	A PET-based fluorescent probe for monitoring labile Fe(<scp>ii</scp>) pools in macrophage activations and ferroptosis. Chemical Communications, 2022, 58, 2979-2982.	4.1	13
4	Methylglyoxal produced by tumor cells through formaldehyde-enhanced Warburg effect potentiated polarization of tumor-associated macrophages. Toxicology and Applied Pharmacology, 2022, 438, 115910.	2.8	5
5	An anthracenecarboximide-guanidine fluorescent probe for selective detection of glyoxals under weak acidic conditions. RSC Advances, 2022, 12, 9473-9477.	3.6	1
6	Synthesis of α-Aryl Primary Amides from α-Silyl Nitriles and Aryl Sulfoxides through [3,3]-Sigmatropic Rearrangement. Organic Letters, 2022, 24, 1700-1705.	4.6	1
7	Synthesis of C-1 Deuterated 3-Formylindoles by Organophotoredox Catalyzed Direct Formylation of Indoles with Deuterated Glyoxylic Acid. Organic Letters, 2022, 24, 5034-5039.	4.6	6
8	PIFAâ€Mediated Crossâ€Dehydrogenative Coupling of <i>N</i> â€Heteroarenes with Cyclic Ethers: Ethanol as an Efficient Promoter. European Journal of Organic Chemistry, 2021, 2021, 411-421.	2.4	12
9	Homo-PROTAC mediated suicide of MDM2 to treat non-small cell lung cancer. Acta Pharmaceutica Sinica B, 2021, 11, 1617-1628.	12.0	40
10	Organophotocatalyzed E and Z stereoselective <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si3.svg"><mml:mrow><mml:msub><mml:mtext>C</mml:mtext><mml:msup><mml:mtext>spbond forming cross coupling reactions of carboxylic acids with l²-aryl-vinyl halides. Green Synthesis</mml:mtext></mml:msup></mml:msub></mml:mrow></mml:math 	cex t6:8 mm	l:m no 3
11	and Catalysis, 2021, 2, 27-31. An "AND―logic-gate-based fluorescent probe with dual reactive sites for monitoring extracellular methylglyoxal level changes of activated macrophages. Chemical Communications, 2021, 57, 8166-8169.	4.1	9
12	Organic Transformations Enabled by Yolk–Shell and Core–Shell Structured Catalysts. Nanostructure Science and Technology, 2021, , 479-492.	0.1	0
13	Synthesis of β-Silyl α-Amino Acids via Visible-Light-Mediated Hydrosilylation. Organic Letters, 2021, 23, 1406-1410.	4.6	37
14	Photoredox Asymmetric Nucleophilic Dearomatization of Indoles with Neutral Radicals. ACS Catalysis, 2021, 11, 998-1007.	11.2	26
15	Organophotocatalytic dearomatization of indoles, pyrroles and benzo(thio)furans via a Giese-type transformation. Communications Chemistry, 2021, 4, .	4.5	19
16	Design and synthesis of a novel "turn-on―long range measuring fluorescent probe for monitoring endogenous cysteine in living cells and Caenorhabditis elegans. Analytica Chimica Acta, 2021, 1152, 338243.	5.4	16
17	A compact fluorescence/circular dichroism dual-modality probe for detection, differentiation, and detoxification of multiple heavy metal ions via bond-cleavage cascade reactions. Chinese Chemical Letters, 2021, 32, 3876-3881.	9.0	12
18	Myricetin protects natural killer cells from arsenite induced DNA damage by attenuating oxidative stress and retaining poly(ADP-Ribose) polymerase 1 activity. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2021, 865, 503337.	1.7	1

#	Article	IF	CITATIONS
19	Facile Synthesis of 2H-Benzo[h]Chromenes via an Arylamine-Catalyzed Mannich Cyclization Cascade Reaction. Molecules, 2021, 26, 3617.	3.8	2
20	Aminocatalytic stereoselective synthesis of (E)-α-naphthyl enals via cross-coupling-like reaction of 1-bromo-2-naphthols with enals. Green Synthesis and Catalysis, 2021, 2, 377-380.	6.8	3
21	Construction of Enantioenriched γ,γ-Disubstituted Butenolides Enabled by Chiral Amine and Lewis Acid Cascade Cocatalysis. Organic Letters, 2021, 23, 7656-7660.	4.6	6
22	Formaldehyde reinforces pro-inflammatory responses of macrophages through induction of glycolysis. Chemosphere, 2021, 282, 131149.	8.2	12
23	Selective Synthesis of <i>Z</i> innamyl Ethers and Cinnamyl Alcohols through Visible Lightâ€Promoted Photocatalytic <i>E</i> to <i>Z</i> Isomerization. Chemistry - an Asian Journal, 2020, 15, 555-559.	3.3	25
24	Autophagy: New Insights into Its Roles in Cancer Progression and Drug Resistance. Cancers, 2020, 12, 3005.	3.7	6
25	One-pot synthesis of salicylaldehyde containing biaryl frameworks via an aminocatalytic Diels-Alder-retro-Diels-Alder cascade reaction of ynals with 2-pyrones. Green Synthesis and Catalysis, 2020, 1, 66-69.	6.8	3
26	Catalytic asymmetric Catellani-type reaction: A powerful tool for axial chirality construction. Green Synthesis and Catalysis, 2020, 1, 83-85.	6.8	21
27	An Allosteric Modulator of RNA Binding Targeting the N-Terminal Domain of TDP-43 Yields Neuroprotective Properties. ACS Chemical Biology, 2020, 15, 2854-2859.	3.4	19
28	Enantioselective [4 + 2] Cycloaddition Reaction of Vinylquinolines with Dienals Enabled by Synergistic Organocatalysis. Organic Letters, 2020, 22, 6061-6066.	4.6	14
29	Graphitic Carbon Nitride Polymer as a Recyclable Photoredox Catalyst for Decarboxylative Alkynylation of Carboxylic Acids. Advanced Synthesis and Catalysis, 2020, 362, 3898-3904.	4.3	20
30	Direct, stereoselective thioglycosylation enabled by an organophotoredox radical strategy. Chemical Science, 2020, 11, 13079-13084.	7.4	22
31	Fluorophore-Promoted Facile Deprotonation and Exocyclic Five-Membered Ring Cyclization for Selective and Dynamic Tracking of Labile Glyoxals. Analytical Chemistry, 2020, 92, 13829-13838.	6.5	18
32	Organophotoredox-Catalyzed Formation of Alkyl–Aryl and â^'Alkyl C–S/Se Bonds from Coupling of Redox-Active Esters with Thio/Selenosulfonates. Organic Letters, 2020, 22, 9562-9567.	4.6	33
33	Aldehydes Switch Regioselectivity: a Prins Cyclization Strategy for the Synthesis of Indolineâ€fused THFs and Indoleâ€fused Oxepanes. Advanced Synthesis and Catalysis, 2020, 362, 2620-2625.	4.3	4
34	Chemoreactive-Inspired Discovery of Influenza A Virus Dual Inhibitor to Block Hemagglutinin-Mediated Adsorption and Membrane Fusion. Journal of Medicinal Chemistry, 2020, 63, 6924-6940.	6.4	20
35	Investigation of the Relationship Between H ₂ O ₂ and HClO in Living Cells by a Bifunctional, Dual-ratiometric Responsive Fluorescent Probe. Analytical Chemistry, 2020, 92, 5134-5142.	6.5	56
36	Frontispiece: Potent Dual BET/HDAC Inhibitors for Efficient Treatment of Pancreatic Cancer. Angewandte Chemie - International Edition, 2020, 59, .	13.8	0

#	Article	IF	CITATIONS
37	Fluorescent Detection of Dynamic H ₂ O ₂ /H ₂ S Redox Event in Living Cells and Organisms. Analytical Chemistry, 2020, 92, 4387-4394.	6.5	48
38	Frontispiz: Potent Dual BET/HDAC Inhibitors for Efficient Treatment of Pancreatic Cancer. Angewandte Chemie, 2020, 132, .	2.0	0
39	Synthesis of Enantioenriched α-Deuterated α-Amino Acids Enabled by an Organophotocatalytic Radical Approach. Organic Letters, 2020, 22, 1557-1562.	4.6	61
40	Potent Dual BET/HDAC Inhibitors for Efficient Treatment of Pancreatic Cancer. Angewandte Chemie - International Edition, 2020, 59, 3028-3032.	13.8	100
41	Copper Promoted Aerobic Oxidative C(sp ³)–C(sp ³) Bond Cleavage of <i>N</i> -(2-(Pyridin-2-yl)-ethyl)anilines. Journal of Organic Chemistry, 2020, 85, 2725-2732.	3.2	8
42	Deuteration of Formyl Groups via a Catalytic Radical H/D Exchange Approach. ACS Catalysis, 2020, 10, 2226-2230.	11.2	50
43	Potent Dual BET/HDAC Inhibitors for Efficient Treatment of Pancreatic Cancer. Angewandte Chemie, 2020, 132, 3052-3056.	2.0	4
44	Mebendazole is a potent inhibitor to chemoresistant T cell acute lymphoblastic leukemia cells. Toxicology and Applied Pharmacology, 2020, 396, 115001.	2.8	10
45	Moving beyond hydroxychloroquine: the novel lysosomal autophagy inhibitor ROC-325 shows significant potential in preclinical studies. Cancer Communications, 2019, 39, 72.	9.2	17
46	Practical synthesis of C1 deuterated aldehydes enabled by NHC catalysis. Nature Catalysis, 2019, 2, 1071-1077.	34.4	81
47	Construction of <i>N</i> -Alkyl- and <i>N</i> -Arylaziridines from Unprotected Amines via C–H Oxidative Amination Strategy. Organic Letters, 2019, 21, 904-907.	4.6	10
48	A naphthalimide-aminal-based pH-sensitive fluorescent donor for lysosome-targeted formaldehyde release and fluorescence turn-on readout. Chemical Communications, 2019, 55, 7053-7056.	4.1	16
49	Synthesis of 3-aminoindan-1-one derivatives from 2-acetylbenzaldehydes and secondary amines by Mannich annulation. Tetrahedron Letters, 2019, 60, 1463-1466.	1.4	4
50	Organocatalytic Transformation of Aldehydes to Thioesters with Visible Light. Chemistry - A European Journal, 2019, 25, 8225-8228.	3.3	29
51	Visible-Light-Mediated, Chemo- and Stereoselective Radical Process for the Synthesis of <i>C</i> -Glycoamino Acids. Organic Letters, 2019, 21, 3086-3092.	4.6	100
52	Photocatalytic C–H silylation of heteroarenes by using trialkylhydrosilanes. Chemical Science, 2019, 10, 3817-3825.	7.4	56
53	Highly stereoselective synthesis of aryl/heteroaryl- <i>C</i> -nucleosides <i>via</i> the merger of photoredox and nickel catalysis. Chemical Communications, 2019, 55, 14657-14660.	4.1	47
54	The Employment of Sodium Hydride as a Michael Donor in Palladiumâ€catalyzed Reductions of α, βâ€Unsaturated Carbonyl Compounds. Advanced Synthesis and Catalysis, 2019, 361, 1554-1558.	4.3	22

#	Article	IF	CITATIONS
55	Trideuteromethylation Enabled by a Sulfoxonium Metathesis Reaction. Organic Letters, 2019, 21, 448-452.	4.6	30
56	Pd-Catalyzed Debenzylation and Deallylation of Ethers and Esters with Sodium Hydride. ACS Catalysis, 2018, 8, 3016-3020.	11.2	38
57	A simple two-photon turn-on fluorescent probe for the selective detection of cysteine based on a dual PeT/ICT mechanism. RSC Advances, 2018, 8, 13388-13392.	3.6	12
58	α-Functionalization of 2-Vinylpyridines via a Chiral Phosphine Catalyzed Enantioselective Cross Rauhut–Currier Reaction. Organic Letters, 2018, 20, 1304-1307.	4.6	36
59	Direct Access of the Chiral Quinolinyl Core of Cinchona Alkaloids via a BrĄ̃nsted Acid and Chiral Amine Co-catalyzed Chemo- and Enantioselective α-Alkylation of Quinolinylmethanols with Enals. Organic Letters, 2018, 20, 1195-1199.	4.6	9
60	Organocatalytic Asymmetric Formal [4 + 2] Cycloaddition ofin SituOxidation-Generatedortho-Quinone Methides and Aldehydes. Organic Letters, 2018, 20, 174-177.	4.6	21
61	Recent developments in multimodality fluorescence imaging probes. Acta Pharmaceutica Sinica B, 2018, 8, 320-338.	12.0	172
62	Discovery of Novel Indoleamine 2,3-Dioxygenase 1 (IDO1) and Histone Deacetylase (HDAC) Dual Inhibitors. ACS Medicinal Chemistry Letters, 2018, 9, 312-317.	2.8	50
63	A pinacol boronate caged NIAD-4 derivative as a near-infrared fluorescent probe for fast and selective detection of hypochlorous acid. Chinese Chemical Letters, 2018, 29, 139-142.	9.0	27
64	Improving the Potency of Cancer Immunotherapy by Dual Targeting of IDO1 and DNA. ChemMedChem, 2018, 13, 30-36.	3.2	20
65	Analyte Regeneration Fluorescent Probes for Formaldehyde Enabled by Regiospecific Formaldehyde-Induced Intramolecularity. Journal of the American Chemical Society, 2018, 140, 16408-16412.	13.7	60
66	Synthesis of 2-Quinolinones via a Hypervalent Iodine(III)-Mediated Intramolecular Decarboxylative Heck-Type Reaction at Room Temperature. Organic Letters, 2018, 20, 7929-7932.	4.6	28
67	Functional suppression of macrophages derived from THP-1 cells by environmentally-relevant concentrations of arsenite. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2018, 214, 36-42.	2.6	13
68	Alkenylazaarenes as dipolarophiles in 1,3-dipolar cycloaddition of nitrones: regioselectivity-switchable and highly diastereoselective synthesis of multisubstituted isoxazolidines. Organic Chemistry Frontiers, 2018, 5, 2945-2949.	4.5	11
69	Monomethylarsonous acid: Induction of DNA damage and oxidative stress in mouse natural killer cells at environmentally-relevant concentrations. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2018, 832-833, 1-6.	1.7	3
70	Small Molecules Simultaneously Inhibiting p53-Murine Double Minute 2 (MDM2) Interaction and Histone Deacetylases (HDACs): Discovery of Novel Multitargeting Antitumor Agents. Journal of Medicinal Chemistry, 2018, 61, 7245-7260.	6.4	59
71	A general asymmetric route to enantio-enriched isoflavanes via an organocatalytic annulation of o-quinone methides and aldehydes. Tetrahedron Letters, 2018, 59, 2407-2411.	1.4	7
72	Catalytic Cascade Access to Biarylâ€2â€Methyl Acetates from Pyruvate <i>O</i> â€Arylmethyl Ketoximes <i>via</i> the Palladiumâ€Catalyzed C(<i>sp</i> ²)H Bond Arylation and Câ^'O Bond Solvolysis. Advanced Synthesis and Catalysis, 2018, 360, 2925-2937.	4.3	7

#	Article	IF	CITATIONS
73	Palladium atalyzed Divergent Regioselective Homocoupling and Hydroxylation of 3â€Arylbenzo[<i>d</i>]isoxazoles. Advanced Synthesis and Catalysis, 2017, 359, 410-418.	4.3	16
74	Visibleâ€Lightâ€Promoted Nickel―and Organicâ€Dyeâ€Cocatalyzed Formylation Reaction of Aryl Halides and Triflates and Vinyl Bromides with Diethoxyacetic Acid as a Formyl Equivalent. Angewandte Chemie, 2017, 129, 1522-1527.	2.0	32
75	Visible‣ightâ€Promoted Nickel―and Organicâ€Dyeâ€Cocatalyzed Formylation Reaction of Aryl Halides and Triflates and Vinyl Bromides with Diethoxyacetic Acid as a Formyl Equivalent. Angewandte Chemie - International Edition, 2017, 56, 1500-1505.	13.8	115
76	Engineering Iron Responses in Mammalian Cells by Signal-Induced Protein Proximity. ACS Synthetic Biology, 2017, 6, 921-927.	3.8	12
77	Orchestration of dual cyclization processes and dual quenching mechanisms for enhanced selectivity and drastic fluorescence turn-on detection of cysteine. Chemical Communications, 2017, 53, 3583-3586.	4.1	46
78	A dynamic kinetic asymmetric transfer hydrogenation–cyclization tandem reaction: an easy access to chiral 3,4-dihydro-2H-pyran-carbonitriles. Chemical Communications, 2017, 53, 6113-6116.	4.1	20
79	Synthesis of Aldehydes by Organocatalytic Formylation Reactions of Boronic Acids with Glyoxylic Acid. Angewandte Chemie - International Edition, 2017, 56, 8201-8205.	13.8	53
80	Synthesis of Aldehydes by Organocatalytic Formylation Reactions of Boronic Acids with Glyoxylic Acid. Angewandte Chemie, 2017, 129, 8313-8317.	2.0	8
81	Lewis Acidâ€Catalyzed C(<i>sp</i> ³)–C(<i>sp</i> ³) Bond Forming Cyclization Reactions for the Synthesis of Tetrahydroprotoberberine Derivatives. Advanced Synthesis and Catalysis, 2017, 359, 2191-2195.	4.3	18
82	Iron atalyzed Antiâ€Markovnikov Hydroamination of Vinylpyridines. Asian Journal of Organic Chemistry, 2017, 6, 694-697.	2.7	7
83	Direct Cα-heteroarylation of structurally diverse ethers via a mild N-hydroxysuccinimide mediated cross-dehydrogenative coupling reaction. Chemical Science, 2017, 8, 4044-4050.	7.4	87
84	Synthesis of Indolizines via Reaction of 2-Substitued Azaarenes with Enals by an Amine-NHC Relay Catalysis. Organic Letters, 2017, 19, 2010-2013.	4.6	45
85	Asymmetric synthesis of isoquinolinonaphthyridines catalyzed by a chiral BrÃ,nsted acid. Organic and Biomolecular Chemistry, 2017, 15, 6474-6477.	2.8	21
86	Transition-metal-free synthesis of indolizines via [3 + 2]-annulation from α-bromoenals and 2-substituted azaarenes. Organic Chemistry Frontiers, 2017, 4, 2119-2123.	4.5	17
87	An Unconventional Redox Cross Claisen Condensation–Aromatization of 4-Hydroxyprolines with Ketones. Journal of Organic Chemistry, 2017, 82, 8419-8425.	3.2	8
88	Discovery of IDO1 and DNA dual targeting antitumor agents. Organic and Biomolecular Chemistry, 2017, 15, 9992-9995.	2.8	9
89	Synthesis of <i>Z</i> -alkenes <i>via</i> visible light promoted photocatalytic <i>E</i> → <i>Z</i> isomerization under metal-free conditions. Chemical Communications, 2017, 53, 12918-12921.	4.1	60
90	Co(OAc) ₂ -Catalyzed Trifluoromethylation and C(3)-Selective Arylation of 2-(Propargylamino)pyridines via a 6- <i>Endo-Dig</i> Cyclization. Organic Letters, 2017, 19, 6052-6055.	4.6	34

#	Article	IF	CITATIONS
91	Chemo- and Regioselective Organo-Photoredox Catalyzed Hydroformylation of Styrenes via a Radical Pathway. Journal of the American Chemical Society, 2017, 139, 9799-9802.	13.7	121
92	Anilineâ€Promoted Cyclization–Replacement Cascade Reactions of 2â€Hydroxycinnamaldehydes with Various Carbonic Nucleophiles through In Situ Formed <i>N</i> , <i>O</i> â€Acetals. Chemistry - A European Journal, 2016, 22, 9240-9246.	3.3	14
93	Rational Design of an Ultrasensitive and Highly Selective Chemodosimeter by a Dual Quenching Mechanism for Cysteine Based on a Facile Michaelâ€Transcyclization Cascade Reaction. Chemistry - A European Journal, 2016, 22, 9247-9256.	3.3	36
94	Facile construction of pyrrolo[1,2-b]isoquinolin-10(5H)-ones via a redox-amination–aromatization–Friedel–Crafts acylation cascade reaction and discovery of novel topoisomerase inhibitors. Chemical Communications, 2016, 52, 9593-9596.	4.1	8
95	Facile Installation of 2â€Reverse Prenyl Functionality into Indoles by a Tandem Nâ€Alkylation–Azaâ€Cope Rearrangement Reaction and Its Application in Synthesis. Chemistry - A European Journal, 2016, 22, 716-723.	3.3	24
96	Organocatalytic asymmetric addition of alcohols to cyclic trifluoromethyl ketimines: highly enantioselective synthesis of chiral N,O-ketals. Organic and Biomolecular Chemistry, 2016, 14, 6193-6196.	2.8	19
97	A mild and selective protecting and reversed modification of thiols. Tetrahedron Letters, 2016, 57, 2660-2663.	1.4	5
98	Dynamic Kinetic Resolution of Biaryl Lactones via a Chiral Bifunctional Amine Thiourea-Catalyzed Highly Atropo-enantioselective Transesterification. Journal of the American Chemical Society, 2016, 138, 6956-6959.	13.7	144
99	Ligand-free Cu-catalyzed [3 + 2] cyclization for the synthesis of pyrrolo[1,2-a]quinolines with ambient air as a terminal oxidant. Organic and Biomolecular Chemistry, 2016, 14, 7455-7458.	2.8	43
100	Highly Regio- and Stereoselective Synthesis of <i>Z</i> and <i>E</i> Enol Esters by an Amine-Catalyzed Conjugate Addition–Rearrangement Reaction of Ynals with Carboxylic Acids. ACS Catalysis, 2016, 6, 8030-8035.	11.2	18
101	Enantioselective synthesis of diarylcyclopropanecarboaldehydes by organocatalysis. Tetrahedron Letters, 2016, 57, 5742-5745.	1.4	3
102	Enzymatic Cleavage and Subsequent Facile Intramolecular Transcyclization for in Situ Fluorescence Detection of Î ³ -Glutamyltranspetidase Activities. Analytical Chemistry, 2016, 88, 10816-10820.	6.5	75
103	Organocatalytic annulation of aldehydes and o-quinone methides: A facile access to dihydrocoumarins. Tetrahedron Letters, 2016, 57, 5649-5652.	1.4	16
104	A Metalâ€free Approach to 3â€Arylâ€3â€hydroxyâ€2â€oxindoles by Treatment of 3â€Acyloxyâ€2â€oxindoles wit Diaryliodonium Salts. Chemistry - an Asian Journal, 2016, 11, 226-230.	հ _{3.3}	10
105	Stereoselective organocatalytic oxidation of alcohols to enals: a homologation method to prepare polyenes. Chemical Communications, 2016, 52, 3532-3535.	4.1	20
106	Enantioselective organocatalytic Michael addition of isorhodanines to α,β-unsaturated aldehydes. Organic and Biomolecular Chemistry, 2016, 14, 3926-3933.	2.8	7
107	Reaction-Based "Off–On―Fluorescent Probe Enabling Detection of Endogenous Labile Fe ²⁺ and Imaging of Zn ²⁺ -induced Fe ²⁺ Flux in Living Cells and Elevated Fe ²⁺ in Ischemic Stroke. Bioconjugate Chemistry, 2016, 27, 302-308.	3.6	59
108	Amineâ€Catalyzed Highly Regioselective and Stereoselective C(sp ²)–C(sp ²) Crossâ€Coupling of Naphthols with <i>trans</i> â€i±,î²â€Unsaturated Aldehydes. Chemistry - an Asian Journal, 2015, 10, 1859-1863.	3.3	7

#	Article	IF	CITATIONS
109	Construction of an all-carbon quaternary stereocenter by organocatalytic enantioselective α-functionalization of α-substituted β-ketocarbonyls with electron deficient vinylarenes. Chemical Communications, 2015, 51, 11221-11224.	4.1	10
110	Divergent Cascade Construction of Skeletally Diverse "Privileged―Pyrazoleâ€Đerived Molecular Architectures. European Journal of Organic Chemistry, 2015, 2015, 2030-2037.	2.4	67
111	Organocatalytic Enantioselective Direct Additions of Aldehydes to 4-Vinylpyridines and Electron-Deficient Vinylarenes and Their Synthetic Applications. Journal of the American Chemical Society, 2015, 137, 2303-2310.	13.7	89
112	Divergent Synthesis of Imidazoles and Quinazolines via Pd(OAc)2-Catalyzed Annulation of N-Allylamidines. Organic Letters, 2015, 17, 3434-3437.	4.6	53
113	Cascade reaction and FRET-based fluorescent probe for the colorimetric and ratiometric signaling of hydrogen sulfide. Tetrahedron Letters, 2015, 56, 3769-3773.	1.4	15
114	Phosphine-Catalyzed Aza-MBH Reactions of Vinylpyridines: Efficient and Rapid Access to 2,3,5-Triarylsubstituted 3-Pyrrolines. Organic Letters, 2015, 17, 2214-2217.	4.6	42
115	Photo-triggered fluorescent theranostic prodrugs as DNA alkylating agents for mechlorethamine release and spatiotemporal monitoring. Organic and Biomolecular Chemistry, 2015, 13, 6742-6748.	2.8	17
116	Organocatalytic enantioselective Michael addition of cyclic hemiacetals to nitroolefins: a facile access to chiral substituted 5- and 6-membered cyclic ethers. Organic and Biomolecular Chemistry, 2015, 13, 4769-4775.	2.8	14
117	FeCl 3 -catalyzed selective acylation of amines with 1,3-diketones via C–C bond cleavage. Tetrahedron Letters, 2015, 56, 3093-3096.	1.4	30
118	A Quinine-Squaramide Catalyzed Enantioselective Aza-Friedel–Crafts Reaction of Cyclic Trifluoromethyl Ketimines with Naphthols and Electron-Rich Phenols. Organic Letters, 2015, 17, 5554-5557.	4.6	71
119	New small-molecule drug design strategies for fighting resistant influenza A. Acta Pharmaceutica Sinica B, 2015, 5, 419-430.	12.0	70
120	Catalytic Asymmetric αâ€Hydroxyamination of Carbonyls with <i>N</i> â€Hydroxycarbamates Becomes Greener. ChemCatChem, 2014, 6, 1863-1865.	3.7	14
121	Enantioselective Construction of Functionalized Cyclopentanes by a Relay Ring-Closing Metathesis and Chiral Amine (Thio)urea-Promoted Michael Addition. Synthesis, 2014, 46, 2601-2607.	2.3	6
122	Construction of Chiral Bridged Tricyclic Benzopyrans: Enantioselective Catalytic Diels–Alder Reaction and a Oneâ€Pot Reduction/Acid atalyzed Stereoselective Cyclization. Angewandte Chemie - International Edition, 2014, 53, 4940-4944.	13.8	47
123	Synthesis of γâ€Oxoâ€Î±,βâ€dehydroâ€Î±â€amino Acids from <i>N</i> – <i>tert</i> â€Butyloxycarbonylâ€Î±â€ Carbonylmethyl 2â€Pyridinylsulfones via an Mannichâ€Elimination Cascade. Asian Journal of Organic Chemistry, 2014, 3, 766-768.	imino Este 2.7	ers and 2
124	Organocatalytic Enantioselective Friedel–Crafts Reaction of 1â€Naphthols with Isatins and an Unexpected Spontaneous Dehydration Process. Asian Journal of Organic Chemistry, 2014, 3, 480-486.	2.7	20
125	Iron/iron oxide core/shell nanoparticles for magnetic targeting MRI and near-infrared photothermal therapy. Biomaterials, 2014, 35, 7470-7478.	11.4	264
126	Imidazoliumâ€Based Organic–Inorganic Hybrid Silica as a Functional Platform Dramatically Boosts Chiral Organometallics Performance in Asymmetric Catalysis. ChemCatChem, 2013, 5, 1784-1789.	3.7	23

#	Article	IF	CITATIONS
127	A Strategy Enabling Enantioselective Direct Conjugate Addition of Inert Aryl Methane Nucleophiles to Enals with a Chiral Amine Catalyst under Mild Conditions. Chemistry - A European Journal, 2013, 19, 9147-9150.	3.3	78
128	A FRET-based ratiometric fluorescent and colorimetric probe for the facile detection of organophosphonate nerve agent mimic DCP. Chemical Communications, 2013, 49, 10474.	4.1	114
129	Highly enantioselective conjugate addition of nitroalkanes to enones catalyzed by cinchona alkaloid derived primary amine. Tetrahedron Letters, 2013, 54, 3791-3793.	1.4	20
130	Efficient synthesis of highly substituted pyrroles through a Pd(OCOCF3)2-catalyzed cascade reaction of 2-alkenal-1,3-dicarbonyl compounds with primary amines. Chemical Communications, 2013, 49, 4667.	4.1	23
131	Formation of Dihydronaphthalenes via Organocatalytic Enatioselective Michael–Aldol Cascade Reactions with Arylalkanes. Organic Letters, 2013, 15, 5634-5637.	4.6	38
132	Expeditious diastereoselective construction of a thiochroman skeleton via a cinchona alkaloid-derived catalyst. Organic and Biomolecular Chemistry, 2012, 10, 36-39.	2.8	26
133	A fluorescent probe capable of detecting H2S at submicromolar concentrations in cells. Chemical Communications, 2012, 48, 10669.	4.1	110
134	Synthesis of 3-substituted 1,5-aldehyde estersvia an organocatalytic highly enantioselective conjugate addition of new carbonylmethyl 2-pyridinylsulfone to enals. Chemical Communications, 2012, 48, 148-150.	4.1	12
135	Synthesis of Highly Functionalized Chiral 3,3′-Disubstituted Oxindoles via an Organocatalytic Enantioselective Michael Addition of Nitroalkanes to Indolylidenecyanoacetates. Organic Letters, 2012, 14, 134-137.	4.6	29
136	Organocatalytic enantioselective conjugate addition of ketones to isatylidine malononitriles. Chemical Communications, 2012, 48, 1692-1694.	4.1	59
137	An Organocatalytic Cascade Approach toward Polysubstituted Quinolines and Chiral 1,4â€Đihydroquinolines–Unanticipated Effect of Nâ€Protecting Groups. Angewandte Chemie - International Edition, 2012, 51, 7282-7286.	13.8	84
138	Direct Transformation of Simple Enals to 3,4â€Disubstituted Benzaldehydes under Mild Reaction Conditions via an Organocatalytic Regio―and Chemoselective Dimerization Cascade. Chemistry - A European Journal, 2012, 18, 9770-9774.	3.3	11
139	FeCl3 promoted highly regioselective [3 + 2] cycloaddition of dimethyl 2-vinyl and aryl cyclopropane-1,1-dicarboxylates with aryl isothiocyanates. Organic and Biomolecular Chemistry, 2012, 10, 5032.	2.8	37
140	Direct oxidative conversion of 3-aryl propionaldehydes to 3-aryl acroleins promoted by SOMO catalysis. Tetrahedron Letters, 2012, 53, 1207-1209.	1.4	13
141	Total Synthesis of Polyene Natural Product Dihydroxerulin by Mild Organocatalyzed Dehydrogenation of Alcohols. Chemistry - A European Journal, 2012, 18, 2230-2234.	3.3	29
142	Fluorescent Probes for the Detection of Hydrogen Sulfide in Biological Systems. Angewandte Chemie - International Edition, 2012, 51, 2282-2284.	13.8	273
143	A new facile approach to N-alkylpyrroles from direct redox reaction of 4-hydroxy-l-proline with aldehydes. Science China Chemistry, 2012, 55, 43-49.	8.2	13
144	Cu(<scp>ii</scp>) catalyzed oxidation-[3+2] cycloaddition-aromatization cascade: Efficient synthesis of pyrrolo [2, 1-a] isoquinolines. Chemical Communications, 2011, 47, 1036-1038.	4.1	86

#	Article	IF	CITATIONS
145	Organocatalytic asymmetric Henry reaction of isatins: Highly enantioselective synthesis of 3-hydroxy-2-oxindoles. RSC Advances, 2011, 1, 389.	3.6	50
146	Organocatalytic Enantioselective Friedelâ^'Crafts Reactions of 1-Naphthols with Aldimines. Organic Letters, 2011, 13, 828-831.	4.6	72
147	Organocatalytic enantioselective β-functionalization of aldehydes by oxidation of enamines and their application in cascade reactions. Nature Communications, 2011, 2, 211.	12.8	136
148	Direct stereoselective α-arylation of unmodified enals using an organocatalytic cross-coupling-like reaction. Nature Communications, 2011, 2, 524.	12.8	24
149	Efficient preparation of trans-α,β-unsaturated aldehydes from saturated aldehydes by oxidative enamine catalysis. Science China Chemistry, 2011, 54, 1932-1936.	8.2	8
150	Bifunctional Cinchona Alkaloid Thiourea Catalyzed Highly Efficient, Enantioselective Azaâ€Henry Reaction of Cyclic Trifluoromethyl Ketimines: Synthesis of Antiâ€HIV Drug DPCâ€083. Angewandte Chemie - International Edition, 2011, 50, 11773-11776.	13.8	120
151	Catalytic Enantioselective Henry Reactions of Isatins: Application in the Concise Synthesis of (<i>S</i>)â€(â^)â€Spirobrassinin. Chemistry - A European Journal, 2011, 17, 7791-7795.	3.3	99
152	Chiral Pyrrolidine Sulfonamide Catalyzed Enantioselective Michael Addition of Cyclohexanones to Maleimides. Synlett, 2011, 2011, 473-476.	1.8	3
153	Diastereo―and Enantioselective Organocatalytic Direct Conjugate Addition of γâ€Butenolide to Chalcones. Chemistry - an Asian Journal, 2010, 5, 1303-1306.	3.3	33
154	Facile Creation of 3â€Indolylâ€3â€hydroxyâ€2â€oxindoles by an Organocatalytic Enantioselective Friedel–Cra Reaction of Indoles with Isatins. Advanced Synthesis and Catalysis, 2010, 352, 833-838.	fts _{4.3}	92
155	A Simple Primary Amine Thiourea Catalyzed Highly Enantioselective Conjugate Addition of α,αâ€Đisubstituted Aldehydes to Maleimides. Chemistry - A European Journal, 2010, 16, 7979-7982.	3.3	58
156	Iminium–Allenamine Cascade Catalysis: Oneâ€Pot Access to Chiral 4 <i>H</i> â€Chromenes by a Highly Enantioselective Michael–Michael Sequence. Angewandte Chemie - International Edition, 2010, 49, 1481-1484.	13.8	127
157	Highly enantioselective Michael-cyclization cascade promoted by synergistic asymmetric aminocatalysis and Lewis acid catalysis. Tetrahedron Letters, 2010, 51, 1742-1744.	1.4	45
158	1,3-Benzodithiole-1,1,3,3-tetraoxide (BDT) as a versatile methylation reagent in catalytic enantioselective Michael addition reaction with enals. Tetrahedron Letters, 2010, 51, 1766-1769.	1.4	22
159	"One-Pot―Access to 4 <i>H</i> -Chromenes with Formation of a Chiral Quaternary Stereogenic Center by a Highly Enantioselective Iminium-allenamine Involved Oxa-Michaelâ^'Aldol Cascade. Organic Letters, 2010, 12, 4948-4951.	4.6	78
160	Pd-catalyzed cascade Heck–Saegusa: direct synthesis of enals from aryl iodides and allyl alcohol. Chemical Communications, 2010, 46, 415-417.	4.1	37
161	Rational design of a highly selective and sensitive fluorescent PET probe for discrimination of thiophenols and aliphatic thiols. Chemical Communications, 2010, 46, 1944-1946.	4.1	129
162	A Direct Amineâ€Palladium Acetate Cocatalyzed Saegusa Oxidation Reaction of Unmodified Aldehydes to α,βâ€Unsaturated Aldehydes. Advanced Synthesis and Catalysis, 2009, 351, 1229-1232.	4.3	88

#	Article	IF	CITATIONS
163	An enantioselective synthesis of (+)-(S)-[n]-gingerols via the l-proline-catalyzed aldol reaction. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3909-3911.	2.2	16
164	Direct Oxidation of βâ€Aryl Substituted Aldehydes to α,βâ€Unsaturated Aldehydes Promoted by an <i>o</i> â€Anisidine–Pd(OAc) ₂ Coâ€catalyst. Chemistry - an Asian Journal, 2009, 4, 1712-1716.	3.3	69
165	Organocatalytic Enantioselective Crossâ€Aldol Reactions of Aldehydes with Isatins: Formation of Two Contiguous Quaternary Centered 3â€6ubstituted 3â€Hydroxyindolâ€2â€ones. Chemistry - an Asian Journal, 2009, 4, 1664-1667.	3.3	81
166	Simple Cyclohexanediamine-Derived Primary Amine Thiourea Catalyzed Highly Enantioselective Conjugate Addition of Nitroalkanes to Enones. Organic Letters, 2009, 11, 2864-2867.	4.6	105
167	Catalytic enantioselective conjugate addition of fluorobis(phenylsulfonyl)methane to enals: synthesis of chiral monofluoromethyl compounds. Chemical Communications, 2009, , 4886.	4.1	79
168	Catalytic Asymmetric oxa-Michaelâ^'Michael Cascade for Facile Construction of Chiral Chromans via an Aminal Intermediate. Organic Letters, 2009, 11, 1627-1630.	4.6	147
169	(S)-Pyrrolidine sulfonamide catalyzed asymmetric direct aldol reactions of aryl methyl ketones with aryl aldehydes. Tetrahedron Letters, 2008, 49, 2681-2684.	1.4	68
170	Chiral Amineâ€Catalyzed Enantioselective Cascade Aza–Eneâ€Type Cyclization Reactions. Chemistry - A European Journal, 2008, 14, 6333-6335.	3.3	85
171	A Highly Stereoselective Hydrogenâ€Bondâ€Mediated Michael–Michael Cascade Process through Dynamic Kinetic Resolution. Angewandte Chemie - International Edition, 2008, 47, 4177-4179.	13.8	178
172	Total Synthesis of (+)â€Rutamarin. Advanced Synthesis and Catalysis, 2008, 350, 2373-2379.	4.3	13
173	A Novel Bifunctional Sulfonamide Primary Amineâ€Catalyzed Enantioselective Conjugate Addition of Ketones to Nitroolefins. Advanced Synthesis and Catalysis, 2008, 350, 2194-2198.	4.3	68
174	An efficient method for demethylation of aryl methyl ethers. Tetrahedron Letters, 2008, 49, 4054-4056.	1.4	60
175	Microwave-assisted three-component Knoevenagel-nucleophilic aromatic substitution reactions. Tetrahedron Letters, 2008, 49, 4687-4689.	1.4	13
176	Hydrogenâ€Bondâ€Mediated Asymmetric Catalysis. Chemistry - an Asian Journal, 2008, 3, 516-532.	3.3	590
177	An Organocatalytic Approach to the Construction of Chiral Oxazolidinone Rings and Application in the Synthesis of Antibiotic Linezolid and Its Analogues. Organic Letters, 2008, 10, 5489-5492.	4.6	34
178	Determination of Physiological Thiols by Electrochemical Detection with Piazselenole and Its Application in Rat Breast Cancer Cells 4T-1. Journal of the American Chemical Society, 2008, 130, 10846-10847.	13.7	134
179	Proline-Catalyzed Direct Inverse Electron Demand Diels–Alder Reactions of Ketones with 1,2,4,5-Tetrazines. Organic Letters, 2008, 10, 1923-1926.	4.6	92
180	Organocatalysis: asymmetric cascade reactions catalysed by chiral secondary amines. Organic and Biomolecular Chemistry, 2008, 6, 2037.	2.8	476

#	Article	IF	CITATIONS
181	Cascade Michaelâ°'Aldol Reactions Promoted by Hydrogen Bonding Mediated Catalysis. Journal of the American Chemical Society, 2007, 129, 1036-1037.	13.7	264
182	Organocatalytic Enantioselective Cascade Michael-Alkylation Reactions:  Synthesis of Chiral Cyclopropanes and Investigation of Unexpected Organocatalyzed Stereoselective Ring Opening of Cyclopropanes. Journal of the American Chemical Society, 2007, 129, 10886-10894.	13.7	335
183	One-pot approach to chiral chromenesvia enantioselective organocatalytic domino oxa-Michael–aldol reaction. Chemical Communications, 2007, , 507-509.	4.1	145
184	Synthesis of Highly Functionalized Chiral Cyclopentanes by Catalytic Enantio- and Diastereoselective Double Michael Addition Reactions. Angewandte Chemie - International Edition, 2007, 46, 3732-3734.	13.8	141
185	Organocatalytic Enantioselective Cascade Michael–Aldol Condensation Reactions: Efficient Assembly of Densely Functionalized Chiral Cyclopentenes. Angewandte Chemie - International Edition, 2007, 46, 9050-9053.	13.8	100
186	Quinine-Catalyzed Enantioselective Michael Addition of Diphenyl Phosphite to Nitroolefins: Synthesis of Chiral Precursors of α-Substituted β-Aminophosphonates. Advanced Synthesis and Catalysis, 2007, 349, 1052-1056.	4.3	78
187	Chiral Amine Thioureaâ€Promoted Enantioselective Domino Michaelâ€Aldol Reactions between 2â€Mercaptobenzaldehydes and Maleimides. Advanced Synthesis and Catalysis, 2007, 349, 1882-1886.	4.3	111
188	Highly Enantioselective Organocatalytic Conjugate Addition of Nitromethane to α,βâ€Unsaturated Aldehydes: Threeâ€Step Synthesis of Optically Active Baclofen. Advanced Synthesis and Catalysis, 2007, 349, 2660-2664.	4.3	129
189	A Highly Selective Fluorescent Probe for Thiophenols. Angewandte Chemie - International Edition, 2007, 46, 8445-8448.	13.8	257
190	Enantioselective Organocatalytic Tandem Michaelâ^'Aldol Reactions:Â One-Pot Synthesis of Chiral Thiochromenes. Journal of the American Chemical Society, 2006, 128, 10354-10355.	13.7	375
191	A Recyclable Fluorous (S)-Pyrrolidine Sulfonamide Promoted Direct, Highly Enantioselective Michael Addition of Ketones and Aldehydes to Nitroolefins in Water. Organic Letters, 2006, 8, 3077-3079.	4.6	243
192	Organocatalytic Enantioselective Conjugate Additions to Enones. Journal of the American Chemical Society, 2006, 128, 12652-12653.	13.7	246
193	Organocatalytic asymmetric conjugate addition of thioacetic acid to β-nitrostyrenes. Tetrahedron Letters, 2006, 47, 2585-2589.	1.4	74
194	Organocatalytic enantioselective Michael addition of thioacetic acid to enones. Tetrahedron Letters, 2006, 47, 3145-3148.	1.4	70
195	Highly enantioselective aldehyde–nitroolefin Michael addition reactions catalyzed by recyclable fluorous (S) diphenylpyrrolinol silyl ether. Tetrahedron Letters, 2006, 47, 5131-5134.	1.4	99
196	Enantio- and Diastereoselective Michael Addition Reactions of Unmodified Aldehydes and Ketones with Nitroolefins Catalyzed by a Pyrrolidine Sulfonamide. Chemistry - A European Journal, 2006, 12, 4321-4332.	3.3	212
197	Highly Enantioselective Organocatalytic Michael Addition Reactions of Ketones with Chalcones. Advanced Synthesis and Catalysis, 2006, 348, 425-428.	4.3	86
198	Organocatalytic, Enantioselective Conjugate Addition of Nitroalkanes to Nitroolefins. Advanced Synthesis and Catalysis, 2006, 348, 2047-2050.	4.3	62

#	Article	IF	CITATIONS
199	Efficient, Enantioselective Organocatalytic Synthesis of Trichostatin A. Advanced Synthesis and Catalysis, 2006, 348, 1228-1234.	4.3	36
200	Direct, pyrrolidine sulfonamide promoted enantioselective aldol reactions of α,α-dialkyl aldehydes: synthesis of quaternary carbon-containing β-hydroxy carbonyl compounds. Tetrahedron Letters, 2005, 46, 5077-5079.	1.4	78
201	Direct, Highly Enantioselective Pyrrolidine Sulfonamide Catalyzed Michael Addition of Aldehydes to Nitrostyrenes. Angewandte Chemie - International Edition, 2005, 44, 1369-1371.	13.8	341
202	Enantioselective Organocatalytic Mukaiyamaâ^'Michael Addition of Silyl Enol Ethers to α,β-Unsaturated Aldehydes. Organic Letters, 2005, 7, 1637-1639.	4.6	90
203	Chiral Binaphthyl-Derived Amine-Thiourea Organocatalyst-Promoted Asymmetric Moritaâ^'Baylisâ ''Hillman Reaction. Organic Letters, 2005, 7, 4293-4296.	4.6	242
204	Organocatalytic Asymmetric Michael Addition of 2,4-Pentandione to Nitroolefins. Organic Letters, 2005, 7, 4713-4716.	4.6	225
205	A Novel Pyrrolidine Imide Catalyzed Direct Formation of α,β-Unsaturated Ketones from Unmodified Ketones and Aldehydes. Organic Letters, 2005, 7, 601-604.	4.6	52
206	Direct, Facile Aldehyde and Ketone α-Selenenylation Reactions Promoted byl-Prolinamide and Pyrrolidine Sulfonamide Organocatalysts. Journal of Organic Chemistry, 2005, 70, 5678-5687.	3.2	87
207	An amine sulfonamide organocatalyst for promoting direct, highly enantioselective α-aminoxylation reactions of aldehydes and ketones. Tetrahedron Letters, 2004, 45, 7235-7238.	1.4	98
208	Catalysis of highly stereoselective Mannich-type reactions of ketones with α-imino esters by a pyrrolidine-sulfonamide. Synthesis of unnatural α-amino acids. Tetrahedron Letters, 2004, 45, 7243-7246.	1.4	76
209	Direct, organocatalytic α-sulfenylation of aldehydes and ketones. Tetrahedron Letters, 2004, 45, 8229-8231.	1.4	67
210	A Simple and Efficient l-Prolinamide-Catalyzed α-Selenenylation Reaction of Aldehydes. Organic Letters, 2004, 6, 2817-2820.	4.6	49
211	Chemical constituents from Dendrobium densiflorum. Phytochemistry, 2001, 57, 1255-1258.	2.9	135
212	Synthesis of 2-oxoquinoline derivatives as dual pim and mTORC protein kinase inhibitors. Medicinal Chemistry Research, 0, , .	2.4	0