
Christy L Haynes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4990932/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanosphere Lithography:Â A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics. Journal of Physical Chemistry B, 2001, 105, 5599-5611.	2.6	2,330
2	Present and Future of Surface-Enhanced Raman Scattering. ACS Nano, 2020, 14, 28-117.	14.6	2,153
3	Cytotoxicity of Graphene Oxide and Graphene in Human Erythrocytes and Skin Fibroblasts. ACS Applied Materials & Interfaces, 2011, 3, 2607-2615.	8.0	1,206
4	Nanosphere Lithography:  Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles. Journal of Physical Chemistry B, 2000, 104, 10549-10556.	2.6	1,192
5	Surface-Enhanced Raman Spectroscopy. Analytical Chemistry, 2005, 77, 338 A-346 A.	6.5	995
6	Impacts of Mesoporous Silica Nanoparticle Size, Pore Ordering, and Pore Integrity on Hemolytic Activity. Journal of the American Chemical Society, 2010, 132, 4834-4842.	13.7	720
7	Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopyâ€. Journal of Physical Chemistry B, 2003, 107, 7426-7433.	2.6	669
8	Nanoparticle Optics:Â The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arraysâ€. Journal of Physical Chemistry B, 2003, 107, 7337-7342.	2.6	665
9	Toward a Glucose Biosensor Based on Surface-Enhanced Raman Scattering. Journal of the American Chemical Society, 2003, 125, 588-593.	13.7	623
10	Plasmonic Materials for Surface-Enhanced Sensing and Spectroscopy. MRS Bulletin, 2005, 30, 368-375.	3.5	616
11	Toxicity of Engineered Nanoparticles in the Environment. Analytical Chemistry, 2013, 85, 3036-3049.	6.5	604
12	Recent progress in SERS biosensing. Physical Chemistry Chemical Physics, 2011, 13, 11551.	2.8	598
13	Metal Film over Nanosphere (MFON) Electrodes for Surface-Enhanced Raman Spectroscopy (SERS):Â Improvements in Surface Nanostructure Stability and Suppression of Irreversible Loss. Journal of Physical Chemistry B, 2002, 106, 853-860.	2.6	536
14	Stabilization of Silver and Gold Nanoparticles: Preservation and Improvement of Plasmonic Functionalities. Chemical Reviews, 2019, 119, 664-699.	47.7	380
15	A Glucose Biosensor Based on Surface-Enhanced Raman Scattering:Â Improved Partition Layer, Temporal Stability, Reversibility, and Resistance to Serum Protein Interference. Analytical Chemistry, 2004, 76, 78-85.	6.5	368
16	Surface-enhanced Raman sensors: early history and the development of sensors for quantitative biowarfare agent and glucose detection. Journal of Raman Spectroscopy, 2005, 36, 471-484.	2.5	348
17	Improved tissue cryopreservation using inductive heating of magnetic nanoparticles. Science Translational Medicine, 2017, 9, .	12.4	213
18	Effects of Humic and Fulvic Acids on Silver Nanoparticle Stability, Dissolution, and Toxicity. Environmental Science & Technology, 2015, 49, 8078-8086.	10.0	211

#	Article	IF	CITATIONS
19	Impacts of gold nanoparticle charge and ligand type on surface binding and toxicity to Gram-negative and Gram-positive bacteria. Chemical Science, 2015, 6, 5186-5196.	7.4	203
20	Surface-enhanced Raman spectroscopy. Nature Reviews Methods Primers, 2021, 1, .	21.2	183
21	Critical Considerations in the Biomedical Use of Mesoporous Silica Nanoparticles. Journal of Physical Chemistry Letters, 2012, 3, 364-374.	4.6	177
22	Understanding Nanoparticle Toxicity Mechanisms To Inform Redesign Strategies To Reduce Environmental Impact. Accounts of Chemical Research, 2019, 52, 1632-1642.	15.6	176
23	Color My Nanoworld. Journal of Chemical Education, 2004, 81, 544A.	2.3	169
24	Functional Assessment of Metal Oxide Nanoparticle Toxicity in Immune Cells. ACS Nano, 2010, 4, 3363-3373.	14.6	155
25	Stability of small mesoporous silicananoparticles in biological media. Chemical Communications, 2011, 47, 532-534.	4.1	155
26	Dichroic Optical Properties of Extended Nanostructures Fabricated Using Angle-Resolved Nanosphere Lithography. Nano Letters, 2003, 3, 939-943.	9.1	153
27	Ultrastable, Redispersible, Small, and Highly Organomodified Mesoporous Silica Nanotherapeutics. Journal of the American Chemical Society, 2011, 133, 20444-20457.	13.7	135
28	Malic Acid Carbon Dots: From Super-resolution Live-Cell Imaging to Highly Efficient Separation. ACS Nano, 2018, 12, 5741-5752.	14.6	135
29	Copper Based Nanomaterials Suppress Root Fungal Disease in Watermelon (<i>Citrullus lanatus</i>): Role of Particle Morphology, Composition and Dissolution Behavior. ACS Sustainable Chemistry and Engineering, 2018, 6, 14847-14856.	6.7	133
30	Surface-Enhanced Raman Scattering Detected Temperature Programmed Desorption:  Optical Properties, Nanostructure, and Stability of Silver Film over SiO2 Nanosphere Surfaces. Journal of Physical Chemistry B, 2001, 105, 6907-6915.	2.6	129
31	Biological Responses to Engineered Nanomaterials: Needs for the Next Decade. ACS Central Science, 2015, 1, 117-123.	11.3	121
32	Investigation of phosphorous doping effects on polymeric carbon dots: Fluorescence, photostability, and environmental impact. Carbon, 2018, 129, 438-449.	10.3	115
33	Lipopolysaccharide Density and Structure Govern the Extent and Distance of Nanoparticle Interaction with Actual and Model Bacterial Outer Membranes. Environmental Science & Technology, 2015, 49, 10642-10650.	10.0	103
34	Accounting for biological aggregation in heating and imaging of magnetic nanoparticles. Technology, 2014, 02, 214-228.	1.4	102
35	Synthesis, applications and potential photoluminescence mechanism of spectrally tunable carbon dots. Nanoscale, 2019, 11, 20411-20428.	5.6	96
36	Surface-enhanced Raman scattering detection and discrimination of polychlorinated biphenyls. Vibrational Spectroscopy, 2009, 50, 29-35.	2.2	90

#	Article	IF	CITATIONS
37	Partition layer-modified substrates for reversible surface-enhanced Raman scattering detection of polycyclic aromatic hydrocarbons. Analytical and Bioanalytical Chemistry, 2009, 394, 303-311.	3.7	89
38	Aptamer-based surface-enhanced Raman scattering detection of ricin in liquid foods. Chemical Science, 2011, 2, 1579.	7.4	86
39	Molecular Affinity Agents for Intrinsic Surface-Enhanced Raman Scattering (SERS) Sensors. ACS Applied Materials & Interfaces, 2018, 10, 31825-31844.	8.0	85
40	Detection of a Foreign Protein in Milk Using Surface-Enhanced Raman Spectroscopy Coupled with Antibody-Modified Silver Dendrites. Analytical Chemistry, 2011, 83, 1510-1513.	6.5	83
41	Impact of TiO ₂ Nanoparticles on Growth, Biofilm Formation, and Flavin Secretion in <i>Shewanella oneidensis</i> . Analytical Chemistry, 2013, 85, 5810-5818.	6.5	83
42	Multicolor polymeric carbon dots: synthesis, separation and polyamide-supported molecular fluorescence. Chemical Science, 2021, 12, 2441-2455.	7.4	82
43	Chitosan-Coated Mesoporous Silica Nanoparticle Treatment of <i>Citrullus lanatus</i> (Watermelon): Enhanced Fungal Disease Suppression and Modulated Expression of Stress-Related Genes. ACS Sustainable Chemistry and Engineering, 2019, 7, 19649-19659.	6.7	80
44	On-Chip Evaluation of Shear Stress Effect on Cytotoxicity of Mesoporous Silica Nanoparticles. Analytical Chemistry, 2011, 83, 8377-8382.	6.5	75
45	Characterization of silver ion dissolution from silver nanoparticles using fluorous-phase ion-selective electrodes and assessment of resultant toxicity to Shewanella oneidensis. Chemical Science, 2013, 4, 2564.	7.4	75
46	Predictable Heating and Positive MRI Contrast from a Mesoporous Silica-Coated Iron Oxide Nanoparticle. Molecular Pharmaceutics, 2016, 13, 2172-2183.	4.6	75
47	Impact of Nanoscale Lithium Nickel Manganese Cobalt Oxide (NMC) on the Bacterium <i>Shewanella oneidensis</i> MR-1. Chemistry of Materials, 2016, 28, 1092-1100.	6.7	70
48	Neutrophil Chemotaxis within a Competing Gradient of Chemoattractants. Analytical Chemistry, 2012, 84, 6070-6078.	6.5	63
49	Preparation of Scalable Silicaâ€Coated Iron Oxide Nanoparticles for Nanowarming. Advanced Science, 2020, 7, 1901624.	11.2	61
50	Quantifying intra- and extracellular aggregation of iron oxide nanoparticles and its influence on specific absorption rate. Nanoscale, 2016, 8, 16053-16064.	5.6	58
51	Analytical Aspects of Nanotoxicology. Analytical Chemistry, 2016, 88, 451-479.	6.5	56
52	Ultraporous Mesostructured Silica Nanoparticles. Chemistry of Materials, 2015, 27, 3193-3196.	6.7	52
53	Silica Nanoparticle Dissolution Rate Controls the Suppression of <i>Fusarium Wilt</i> of Watermelon (<i>Citrullus lanatus</i>). Environmental Science & Technology, 2021, 55, 13513-13522.	10.0	52
54	In solution SERS sensing using mesoporous silica-coated gold nanorods. Analyst, The, 2016, 141, 5088-5095.	3.5	49

#	Article	IF	CITATIONS
55	Surface-Enhanced Raman Spectroscopy Detection of Ricin B Chain in Human Blood. Journal of Physical Chemistry C, 2016, 120, 20961-20969.	3.1	47
56	Sensing Food Contaminants: Advances in Analytical Methods and Techniques. Analytical Chemistry, 2021, 93, 23-40.	6.5	47
57	Lipid Corona Formation from Nanoparticle Interactions with Bilayers. CheM, 2018, 4, 2709-2723.	11.7	46
58	A Fresh Look at the Crystal Violet Lab with Handheld Camera Colorimetry. Journal of Chemical Education, 2015, 92, 1692-1695.	2.3	45
59	Growth-Based Bacterial Viability Assay for Interference-Free and High-Throughput Toxicity Screening of Nanomaterials. Analytical Chemistry, 2017, 89, 2057-2064.	6.5	45
60	Influence of the Spatial Distribution of Cationic Functional Groups at Nanoparticle Surfaces on Bacterial Viability and Membrane Interactions. Journal of the American Chemical Society, 2020, 142, 10814-10823.	13.7	45
61	Electrochemical Measurement of Endogenous Serotonin Release from Human Blood Platelets. Analytical Chemistry, 2011, 83, 2598-2604.	6.5	42
62	Rapid and Sensitive in Situ SERS Detection Using Dielectrophoresis. Chemistry of Materials, 2014, 26, 2445-2452.	6.7	42
63	Dynamic silver speciation as studied with fluorous-phase ion-selective electrodes: Effect of natural organic matter on the toxicity and speciation of silver. Science of the Total Environment, 2015, 537, 453-461.	8.0	42
64	Wall teichoic acids govern cationic gold nanoparticle interaction with Gram-positive bacterial cell walls. Chemical Science, 2020, 11, 4106-4118.	7.4	41
65	Rapid detection of a foreign protein in milk using IMS–SERS. Journal of Raman Spectroscopy, 2011, 42, 1428-1434.	2.5	40
66	Dark Field Transmission Electron Microscopy as a Tool for Identifying Inorganic Nanoparticles in Biological Matrices. Analytical Chemistry, 2015, 87, 4356-4362.	6.5	40
67	Oxygen Sensing with Perfluorocarbon-Loaded Ultraporous Mesostructured Silica Nanoparticles. ACS Nano, 2017, 11, 5623-5632.	14.6	40
68	Toxicity of Nanoparticles to Brine Shrimp: An Introduction to Nanotoxicity and Interdisciplinary Science. Journal of Chemical Education, 2013, 90, 475-478.	2.3	38
69	â€~Death and Axes': Unexpected Ca2+ Entry Phenologs Predict New Anti-schistosomal Agents. PLoS Pathogens, 2014, 10, e1003942.	4.7	38
70	Quantifying Gold Nanoparticle Concentration in a Dietary Supplement Using Smartphone Colorimetry and Google Applications. Journal of Chemical Education, 2016, 93, 318-321.	2.3	38
71	Quantal Release of Serotonin from Platelets. Analytical Chemistry, 2009, 81, 2935-2943.	6.5	37
72	Critical Role of Membrane Cholesterol in Exocytosis Revealed by Single Platelet Study. ACS Chemical Biology, 2010, 5, 819-828.	3.4	37

5

#	Article	IF	CITATIONS
73	Microfluidic-SERS devices for one shot limit-of-detection. Analyst, The, 2014, 139, 3227-3234.	3.5	37
74	Comparative toxicity assessment of novel Si quantum dots and their traditional Cd-based counterparts using bacteria models <i>Shewanella oneidensis</i> and <i>Bacillus subtilis</i> . Environmental Science: Nano, 2018, 5, 1890-1901.	4.3	37
75	Dynamic Measurement of Altered Chemical Messenger Secretion after Cellular Uptake of Nanoparticles Using Carbon-Fiber Microelectrode Amperometry. Analytical Chemistry, 2008, 80, 3431-3437.	6.5	36
76	Effects of Mesoporous Silica Coating and Postsynthetic Treatment on the Transverse Relaxivity of Iron Oxide Nanoparticles. Chemistry of Materials, 2013, 25, 1968-1978.	6.7	35
77	Quantification and biodistribution of iron oxide nanoparticles in the primary clearance organs of mice using T ₁ contrast for heating. Magnetic Resonance in Medicine, 2017, 78, 702-712.	3.0	34
78	A molecular fluorophore in citric acid/ethylenediamine carbon dots identified and quantified by multinuclear solidâ€state nuclear magnetic resonance. Magnetic Resonance in Chemistry, 2020, 58, 1130-1138.	1.9	34
79	Nanosphere Lithography: Self-Assembled Photonic and Magnetic Materials. Materials Research Society Symposia Proceedings, 2000, 636, 481.	0.1	33
80	Linking nanomaterial properties to biological outcomes: analytical chemistry challenges in nanotoxicology for the next decade. Chemical Communications, 2018, 54, 12787-12803.	4.1	33
81	Amperometric assessment of functional changes in nanoparticle-exposed immune cells: varying Au nanoparticle exposure time and concentration. Analyst, The, 2009, 134, 2293.	3.5	32
82	SERS Detection of Ricin B-Chain via <i>N</i> -Acetyl-Galactosamine Glycopolymers. ACS Sensors, 2016, 1, 842-846.	7.8	32
83	Using an environmentally-relevant panel of Gram-negative bacteria to assess the toxicity of polyallylamine hydrochloride-wrapped gold nanoparticles. Environmental Science: Nano, 2018, 5, 279-288.	4.3	32
84	Molecular Surface Functionalization of Carbon Materials via Radical-Induced Grafting of Terminal Alkenes. Journal of the American Chemical Society, 2019, 141, 8277-8288.	13.7	31
85	Assessment of functional changes in nanoparticle-exposed neuroendocrine cells with amperometry: exploring the generalizability of nanoparticle-vesicle matrix interactions. Analytical and Bioanalytical Chemistry, 2010, 398, 677-688.	3.7	30
86	Investigation of noble metal nanoparticleζ-potential effects on single-cell exocytosis function in vitro with carbon-fiber microelectrode amperometry. Analyst, The, 2011, 136, 3478-3486.	3.5	30
87	Electroanalytical Eavesdropping on Single Cell Communication. Analytical Chemistry, 2011, 83, 7242-7249.	6.5	30
88	Characterization of Magnetic Nanoparticles in Biological Matrices. Analytical Chemistry, 2015, 87, 11611-11619.	6.5	30
89	Quantification of Free Polyelectrolytes Present in Colloidal Suspension, Revealing a Source of Toxic Responses for Polyelectrolyte-Wrapped Gold Nanoparticles. Analytical Chemistry, 2017, 89, 1823-1830.	6.5	29
90	Quantitative and Real-Time Detection of Secretion of Chemical Messengers from Individual Platelets. Biochemistry, 2008, 47, 7020-7024.	2.5	28

#	Article	IF	CITATIONS
91	Carbon Dots: A Modular Activity To Teach Fluorescence and Nanotechnology at Multiple Levels. Journal of Chemical Education, 2017, 94, 1143-1149.	2.3	28
92	Influence of nickel manganese cobalt oxide nanoparticle composition on toxicity toward Shewanella oneidensis MR-1: redesigning for reduced biological impact. Environmental Science: Nano, 2017, 4, 636-646.	4.3	27
93	Neuropeptide-Induced Mast Cell Degranulation and Characterization of Signaling Modulation in Response to IgE Conditioning. ACS Chemical Biology, 2016, 11, 3077-3083.	3.4	25
94	A versatile microfluidic platform for the study of cellular interactions between endothelial cells and neutrophils. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 1122-1130.	2.4	25
95	Influence of Nanoparticle Morphology on Ion Release and Biological Impact of Nickel Manganese Cobalt Oxide (NMC) Complex Oxide Nanomaterials. ACS Applied Nano Materials, 2018, 1, 1721-1730.	5.0	25
96	Microstructures and pharmaceutical properties of ferulic acid agglomerates prepared by different spherical crystallization methods. International Journal of Pharmaceutics, 2020, 574, 118914.	5.2	25
97	Photochemical Transformations of Carbon Dots in Aqueous Environments. Environmental Science & Technology, 2020, 54, 4160-4170.	10.0	24
98	Size dependent oxidative stress response of the gut of Daphnia magna to functionalized nanodiamond particles. Environmental Research, 2018, 167, 267-275.	7.5	23
99	Novel Quasi-Emulsion Solvent Diffusion-Based Spherical Cocrystallization Strategy for Simultaneously Improving the Manufacturability and Dissolution of Indomethacin. Crystal Growth and Design, 2020, 20, 6752-6762.	3.0	23
100	Plasmon-Enabled Study of Self-Assembled Alkanethiol Ordering on Roughened Ag Substrates. Journal of Physical Chemistry C, 2012, 116, 3585-3593.	3.1	22
101	Chronic exposure to complex metal oxide nanoparticles elicits rapid resistance in <i>Shewanella oneidensis</i> MR-1. Chemical Science, 2019, 10, 9768-9781.	7.4	22
102	Enhancing Graduate Student Communication to General Audiences through Blogging about Nanotechnology and Sustainability. Journal of Chemical Education, 2014, 91, 1600-1605.	2.3	21
103	Facile method to stain the bacterial cell surface for super-resolution fluorescence microscopy. Analyst, The, 2014, 139, 3174-3178.	3.5	20
104	Adverse Interactions of Luminescent Semiconductor Quantum Dots with Liposomes and <i>Shewanella oneidensis</i> . ACS Applied Nano Materials, 2018, 1, 4788-4800.	5.0	20
105	The effects of co-culture of fibroblasts on mast cell exocytotic release characteristics as evaluated by carbon-fiber microelectrode amperometry. Biophysical Chemistry, 2008, 137, 63-69.	2.8	19
106	Analytical Characterization of the Role of Phospholipids in Platelet Adhesion and Secretion. Analytical Chemistry, 2015, 87, 413-421.	6.5	19
107	Release, detection and toxicity of fragments generated during artificial accelerated weathering of CdSe/ZnS and CdSe quantum dot polymer composites. Environmental Science: Nano, 2018, 5, 1694-1710.	4.3	19
108	Carbon-Fiber Microelectrode Amperometry Reveals Sickle-Cell-Induced Inflammation and Chronic Morphine Effects on Single Mast Cells. ACS Chemical Biology, 2012, 7, 543-551.	3.4	18

#	Article	IF	CITATIONS
109	Isothermal Titration Calorimetry for the Screening of Aflatoxin B1 Surface-Enhanced Raman Scattering Sensor Affinity Agents. Analytical Chemistry, 2018, 90, 13409-13418.	6.5	18
110	Quaternary Amine-Terminated Quantum Dots Induce Structural Changes to Supported Lipid Bilayers. Langmuir, 2018, 34, 12369-12378.	3.5	18
111	Nickel enrichment of next-generation NMC nanomaterials alters material stability, causing unexpected dissolution behavior and observed toxicity to <i>S. oneidensis</i> MR-1 and <i>D. magna</i> . Environmental Science: Nano, 2020, 7, 571-587.	4.3	18
112	Optimizing linear polymer affinity agent properties for surface-enhanced Raman scattering detection of aflatoxin B1. Molecular Systems Design and Engineering, 2019, 4, 1019-1031.	3.4	17
113	Plasmon Scanned Surface-Enhanced Raman Scattering Excitation Profiles. Materials Research Society Symposia Proceedings, 2002, 728, 1071.	0.1	16
114	Expanding the Educational Toolset for Chemistry Outreach: Providing a Chemical View of Climate Change through Hands-On Activities and Demonstrations Supplemented with TED-Ed Videos. Journal of Chemical Education, 2018, 95, 985-990.	2.3	16
115	Multidimensional Nanoparticle Characterization through Ion Mobility-Mass Spectrometry. Analytical Chemistry, 2020, 92, 2503-2510.	6.5	16
116	Nanosphere Lithography: Synthesis and Application of Nanoparticles with Inherently Anisotropic Structures and Surface Chemistry. Materials Research Society Symposia Proceedings, 2001, 635, C6.3.1.	0.1	15
117	Quantal Regulation and Exocytosis of Platelet Dense-Body Granules. Biophysical Journal, 2011, 101, 2351-2359.	0.5	15
118	Ion-Mobility-Based Quantification of Surface-Coating-Dependent Binding of Serum Albumin to Superparamagnetic Iron Oxide Nanoparticles. ACS Applied Materials & Interfaces, 2016, 8, 24482-24490.	8.0	15
119	Research highlights: unveiling the mechanisms underlying nanoparticle-induced ROS generation and oxidative stress. Environmental Science: Nano, 2016, 3, 940-945.	4.3	15
120	TiO2 nanoparticle-induced ROS correlates with modulated immune cell function. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	14
121	A mechanistic study of TiO2 nanoparticle toxicity on Shewanella oneidensis MR-1 with UV-containing simulated solar irradiation: Bacterial growth, riboflavin secretion, and gene expression. Chemosphere, 2017, 168, 1158-1168.	8.2	14
122	Optically Detected Magnetic Resonance for Selective Imaging of Diamond Nanoparticles. Analytical Chemistry, 2018, 90, 769-776.	6.5	14
123	Toxicity Evaluation of Boron- and Phosphorus-Doped Silicon Nanocrystals toward Shewanella oneidensis MR-1. ACS Applied Nano Materials, 2018, 1, 4884-4893.	5.0	14
124	Optimization of film over nanosphere substrate fabrication for SERS sensing of the allergen soybean agglutinin. Journal of Raman Spectroscopy, 2021, 52, 482-490.	2.5	14
125	Structure–Property Relationships of Amine-rich and Membrane-Disruptive Poly(oxonorbornene)-Coated Gold Nanoparticles. Langmuir, 2018, 34, 4614-4625.	3.5	13
126	Interactions between Silica-Coated Gold Nanorod Substrates and Hydrophobic Analytes in Colloidal Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry C, 2019, 123, 24685-24697.	3.1	13

#	Article	IF	CITATIONS
127	Platelet membrane variations and their effects on l´-granule secretion kinetics and aggregation spreading among different species. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 1609-1618.	2.6	12
128	HDL-AuNPs-BMS Nanoparticle Conjugates as Molecularly Targeted Therapy for Leukemia. ACS Applied Materials & Interfaces, 2018, 10, 14454-14462.	8.0	12
129	Unconventional aliphatic fluorophores discovered as the luminescence origin in citric acid–urea carbon dots. Nanoscale, 2022, 14, 9516-9525.	5.6	12
130	Coffee Cup Atomic Force Microscopy. Journal of Chemical Education, 2010, 87, 306-307.	2.3	11
131	Activities for Middle School Students To Sleuth a Chemistry "Whodunit―and Investigate the Scientific Method. Journal of Chemical Education, 2014, 91, 410-413.	2.3	11
132	Single-cell analysis of mast cell degranulation induced by airway smooth muscle-secreted chemokines. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 1862-1868.	2.4	11
133	Preparation of Colloidally Stable Positively Charged Hollow Silica Nanoparticles: Effect of Minimizing Hydrolysis on ζ Potentials. Langmuir, 2019, 35, 7985-7994.	3.5	11
134	Variations in Fusion Pore Formation in Cholesterol-Treated Platelets. Biophysical Journal, 2016, 110, 922-929.	0.5	10
135	Establishing the overlap of IONP quantification with echo and echoless MR relaxation mapping. Magnetic Resonance in Medicine, 2018, 79, 1420-1428.	3.0	10
136	Effect of Silica Supports on Plasmonic Heating of Molecular Adsorbates as Measured by Ultrafast Surface-Enhanced Raman Thermometry. ACS Applied Materials & Interfaces, 2018, 10, 40577-40584.	8.0	10
137	Multiplex surface-enhanced Raman scattering detection of deoxynivalenol and ochratoxin A with a linear polymer affinity agent. Materials Advances, 2020, 1, 3256-3266.	5.4	10
138	Time- and Concentration-Dependent Effects of Exogenous Serotonin and Inflammatory Cytokines on Mast Cell Function. ACS Chemical Biology, 2014, 9, 503-509.	3.4	9
139	Research highlights: speciation and transformations of silver released from Ag NPs in three species. Environmental Science: Nano, 2016, 3, 1236-1240.	4.3	9
140	Coating iron oxide nanoparticles with mesoporous silica reduces their interaction and impact on S.Âoneidensis MR-1. Chemosphere, 2019, 237, 124511.	8.2	9
141	Cobalt Release from a Nanoscale Multiphase Lithiated Cobalt Phosphate Dominates Interaction with Shewanella oneidensis MR-1 and Bacillus subtilis SB491. Chemical Research in Toxicology, 2020, 33, 806-816.	3.3	9
142	Exploring inflammatory disease drug effects on neutrophil function. Analyst, The, 2014, 139, 4056-4063.	3.5	8
143	Nanoscale battery cathode materials induce DNA damage in bacteria. Chemical Science, 2020, 11, 11244-11258.	7.4	8
144	Bacterial Toxicity of Germanium Nanocrystals Induced by Doping with Boron and Phosphorus. ACS Applied Nano Materials, 2019, 2, 4744-4755.	5.0	7

#	Article	IF	CITATIONS
145	The bench scientist's perspective on the unique considerations in nanoparticle regulation. Journal of Nanoparticle Research, 2011, 13, 1389-1400.	1.9	6
146	NGenE 2021: Electrochemistry Is Everywhere. ACS Energy Letters, 2022, 7, 368-374.	17.4	6
147	A Macroscale Model for Hands-On Activities Demonstrating Transmission Electron Microscopy. Journal of Chemical Education, 2019, 96, 1377-1382.	2.3	5
148	Characterization of the Presence and Function of Platelet Opioid Receptors. ACS Measurement Science Au, 2022, 2, 4-13.	4.4	5
149	Isotope-dilution UPLC-MS/MS determination of cell-secreted bioactive lipids. Analyst, The, 2013, 138, 5697.	3.5	4
150	A finite-element model of granular serotonin exocytosis. Integrative Biology (United Kingdom), 2017, 9, 248-256.	1.3	4
151	Development of a Highly Responsive Organofluorine Temperature Sensor for ¹⁹ F Magnetic Resonance Applications. Analytical Chemistry, 2022, 94, 3782-3790.	6.5	4
152	Effect of (3-aminopropyl)triethoxysilane on dissolution of silica nanoparticles synthesized <i>via</i> reverse micro emulsion. Nanoscale, 2022, 14, 9021-9030.	5.6	4
153	Self-Assembled Plasmonic Nanoring Cavity Arrays for SERS and LSPR Biosensing (Adv. Mater. 19/2013). Advanced Materials, 2013, 25, 2677-2677.	21.0	3
154	Investigation of the Post-Synthetic Confinement of Fluorous Liquids Inside Mesoporous Silica Nanoparticles. Langmuir, 2021, 37, 5222-5231.	3.5	3
155	Insight into the Effects ofPlasmodium chabaudion Platelets Using Carbon-Fiber Microelectrode Amperometry. ACS Infectious Diseases, 2019, 5, 592-597.	3.8	2
156	Introducing <i>Analytical Chemistry</i> 's Diversity and Inclusion Cover Art Series. Analytical Chemistry, 2021, 93, 1211-1212.	6.5	2
157	Preface to the special issue dedicated to Professor Richard P. Van Duyne (1945–2019). Journal of Raman Spectroscopy, 2021, 52, 263-267.	2.5	2
158	Stereochemistry- and concentration-dependent effects of phosphatidylserine enrichment on platelet function. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1381-1387.	2.6	1
159	Are Women Scientists Getting the Credit They Deserve?. Analytical Chemistry, 2017, 89, 7817-7817.	6.5	1
160	Checkpoints for preliminary identification of small molecules found enriched in autophagosomes and activated mast cell secretions analyzed by comparative UPLC/MSe. Analytical Methods, 2017, 9, 46-54.	2.7	1
161	Facile benchtop reactor design using dendrimer-templating technology for the fabrication of polyethyleneimine-coated CuO nanoparticles on the gram scale. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, 041402.	2.1	1
162	Richard P. Van Duyne, plasmonics pioneer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22891-22893.	7.1	1

#	Article	IF	CITATIONS
163	Antimalarial drugs impact chemical messenger secretion by blood platelets. Biochemistry and Biophysics Reports, 2020, 22, 100758.	1.3	1
164	Dynamin-Related Protein-1 Controls Fusion Pore Dynamics During Platelet Granule Secretion and Thrombus Formation In Vivo. Blood, 2011, 118, 361-361.	1.4	1
165	Surface-Enhanced Raman Scattering (SERS) Detection of a Bioactive Mediator. , 2010, , .		Ο
166	Virtual Issue Highlighting Selected Women Analytical Chemists. Analytical Chemistry, 2018, 90, 1433-1433.	6.5	0
167	Virtual Issue in Honor of Prof. Richard Van Duyne (1945–2019). Analytical Chemistry, 2020, 92, 4165-4166.	6.5	Ο
168	Plasmodium chabaudi Affects Mast Cell Degranulation as Measured by Carbon-Fiber Microelectrode Amperometry. ACS Infectious Diseases, 2021, 7, 1650-1656.	3.8	0