
Peter Salamon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4990413/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Global projections of river flood risk in a warmer world. Earth's Future, 2017, 5, 171-182.	6.3	470
2	A review and numerical assessment of the random walk particle tracking method. Journal of Contaminant Hydrology, 2006, 87, 277-305.	3.3	261
3	Development and evaluation of a framework for global flood hazard mapping. Advances in Water Resources, 2016, 94, 87-102.	3.8	242
4	Usefulness and limitations of global flood risk models. Nature Climate Change, 2015, 5, 712-715.	18.8	210
5	Operational early warning systems for water-related hazards in Europe. Environmental Science and Policy, 2012, 21, 35-49.	4.9	206
6	Advances in panâ€European flood hazard mapping. Hydrological Processes, 2014, 28, 4067-4077.	2.6	187
7	Continental and global scale flood forecasting systems. Wiley Interdisciplinary Reviews: Water, 2016, 3, 391-418.	6.5	185
8	Assessing parameter, precipitation, and predictive uncertainty in a distributed hydrological model using sequential data assimilation with the particle filter. Journal of Hydrology, 2009, 376, 428-442.	5.4	184
9	Fluvial flood risk in Europe in present and future climates. Climatic Change, 2012, 112, 47-62.	3.6	181
10	A software framework for construction of process-based stochastic spatio-temporal models and data assimilation. Environmental Modelling and Software, 2010, 25, 489-502.	4.5	146
11	Developments in large-scale coastal flood hazard mapping. Natural Hazards and Earth System Sciences, 2016, 16, 1841-1853.	3.6	144
12	Evaluation of ensemble streamflow predictions in Europe. Journal of Hydrology, 2014, 517, 913-922.	5.4	124
13	CloFAS-ERA5 operational global river discharge reanalysis 1979–present. Earth System Science Data, 2020, 12, 2043-2060.	9.9	124
14	Visualizing probabilistic flood forecast information: expert preferences and perceptions of best practice in uncertainty communication. Hydrological Processes, 2013, 27, 132-146.	2.6	100
15	Multi-Model Projections of River Flood Risk in Europe under Global Warming. Climate, 2018, 6, 6.	2.8	94
16	Calibration of the Global Flood Awareness System (GloFAS) using daily streamflow data. Journal of Hydrology, 2018, 566, 595-606.	5.4	90
17	A global network for operational flood risk reduction. Environmental Science and Policy, 2018, 84, 149-158.	4.9	89
18	Assimilation of MODIS Snow Cover Area Data in a Distributed Hydrological Model Using the Particle Filter. Remote Sensing, 2013, 5, 5825-5850.	4.0	85

Peter Salamon

#	Article	IF	CITATIONS
19	The impact of lake and reservoir parameterization on global streamflow simulation. Journal of Hydrology, 2017, 548, 552-568.	5.4	82
20	On the Use of Global Flood Forecasts and Satellite-Derived Inundation Maps for Flood Monitoring in Data-Sparse Regions. Remote Sensing, 2015, 7, 15702-15728.	4.0	77
21	Developing a global operational seasonal hydro-meteorological forecasting system: GloFAS-Seasonal v1.0. Geoscientific Model Development, 2018, 11, 3327-3346.	3.6	69
22	A first collective validation of global fluvial flood models for major floods in Nigeria and Mozambique. Environmental Research Letters, 2018, 13, 104007.	5.2	66
23	Modelling the socio-economic impact of river floods in Europe. Natural Hazards and Earth System Sciences, 2016, 16, 1401-1411.	3.6	64
24	A global streamflow reanalysis for 1980–2018. Journal of Hydrology X, 2020, 6, 100049.	1.6	61
25	Disentangling uncertainties in distributed hydrological modeling using multiplicative error models and sequential data assimilation. Water Resources Research, 2010, 46, .	4.2	59
26	An operational procedure for rapid flood risk assessment in Europe. Natural Hazards and Earth System Sciences, 2017, 17, 1111-1126.	3.6	57
27	HESS Opinions "Forecaster priorities for improving probabilistic flood forecasts". Hydrology and Earth System Sciences, 2013, 17, 4389-4399.	4.9	53
28	Integrating remotely sensed surface water extent into continental scale hydrology. Journal of Hydrology, 2016, 543, 659-670.	5.4	53
29	Filling the gaps: Calibrating a rainfall-runoff model using satellite-derived surface water extent. Remote Sensing of Environment, 2015, 171, 118-131.	11.0	51
30	Evaluation of the satellite-based Global Flood Detection System for measuring river discharge: influence of local factors. Hydrology and Earth System Sciences, 2014, 18, 4467-4484.	4.9	50
31	The Effect of Reference Climatology on Global Flood Forecasting. Journal of Hydrometeorology, 2016, 17, 1131-1145.	1.9	36
32	Surface Freshwater Limitation Explains Worst Rice Production Anomaly in India in 2002. Remote Sensing, 2018, 10, 244.	4.0	26
33	Predictability of the European heat and cold waves. Climate Dynamics, 2019, 52, 2481-2495.	3.8	25
34	Quality control, validation and user feedback of the European Flood Alert System (EFAS). International Journal of Digital Earth, 2011, 4, 77-90.	3.9	23
35	A new dataset of river flood hazard maps for Europe and the Mediterranean Basin. Earth System Science Data, 2022, 14, 1549-1569.	9.9	21
36	Development of an operational low-flow index for hydrological drought monitoring over Europe. Hydrological Sciences Journal, 0, , 1-13.	2.6	16

PETER SALAMON

#	Article	IF	CITATIONS
37	Range-dependent thresholds for global flood early warning. Journal of Hydrology X, 2019, 4, 100034.	1.6	14
38	Global Modeling of Seasonal Mortality Rates From River Floods. Earth's Future, 2020, 8, e2020EF001541.	6.3	14
39	Hydrological performance of the ERA5 reanalysis for flood modeling in Tunisia with the LISFLOOD and GR4J models. Journal of Hydrology: Regional Studies, 2022, 42, 101169.	2.4	12
40	European Copernicus Services to Inform on Sea-Level Rise Adaptation: Current Status and Perspectives. Frontiers in Marine Science, 2021, 8, .	2.5	11
41	DATA PROCESSING ARCHITECTURES FOR MONITORING FLOODS USING SENTINEL-1. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, V-3-2020, 641-648.	0.0	11
42	Increasing Timeliness of Satellite-Based Flood Mapping Using Early Warning Systems in the Copernicus Emergency Management Service. Remote Sensing, 2021, 13, 2114.	4.0	8
43	Regionalization of post-processed ensemble runoff forecasts. Proceedings of the International Association of Hydrological Sciences, 0, 373, 109-114.	1.0	5
44	EMO-5: a high-resolution multi-variable gridded meteorological dataset for Europe. Earth System Science Data, 2022, 14, 3249-3272.	9.9	3
45	Hydrological Ensemble Prediction Systems Around the Globe. , 2019, , 1187-1221.		2
46	On the implementation of post-processing of runoff forecast ensembles. Journal of Hydrometeorology, 2021, , .	1.9	1
47	Saving Lives: Ensemble-Based Early Warnings in Developing Nations. , 2019, , 1109-1130.		1
48	State of the Art of Flood Forecasting. , 2011, , 9-24.		0
49	Saving Lives: Ensemble-Based Early Warnings in Developing Nations. , 2015, , 1-22.		0
50	Medium Range Flood Forecasting Example EFAS. , 2015, , 1-17.		0
51	Medium Range Flood Forecasting Example EFAS. , 2019, , 1261-1277.		Ο