List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4990245/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Contribution of phases segregated from the UO2 matrix to the release of radionuclides from spent nuclear fuel and duration of the Instant Release Fraction (IRF). Journal of Nuclear Materials, 2020, 532, 152066.	2.7	5
2	Strategies for Surface Modification with Ag-Shaped Nanoparticles: Electrocatalytic Enhancement of Screen-Printed Electrodes for the Detection of Heavy Metals. Sensors, 2019, 19, 4249.	3.8	35
3	Retention of cesium and strontium by uranophane, Ca(UO2)2(SiO3OH)2·5H2O. Journal of Hazardous Materials, 2018, 353, 431-435.	12.4	12
4	Oxidation by H2O(g) in the presence of H2(g) of UO2 doped with Pd nanoparticles. Journal of Radioanalytical and Nuclear Chemistry, 2018, 318, 1201-1207.	1.5	3
5	Influence of the interpellet space to the Instant Release Fraction determination of a commercial UO2 Boiling Water Reactor Spent Nuclear Fuel. Journal of Nuclear Materials, 2018, 499, 9-17.	2.7	4
6	Study of SIMFUEL corrosion under hyper-alkaline conditions in the presence of silicate and calcium. MRS Advances, 2017, 2, 543-548.	0.9	3
7	Instant release fraction corrosion studies of commercial UO 2 BWR spent nuclear fuel. Journal of Nuclear Materials, 2017, 488, 302-313.	2.7	7
8	Preparation and characterisation of Pd nanoparticles doped UO _{2 samples. International Journal of Nanotechnology, 2016, 13, 627.}	0.2	1
9	UO ₂ as New Filling Material for Cesium Retention in High-Level Nuclear Waste Repositories. Environmental Engineering Science, 2015, 32, 854-857.	1.6	0
10	Dissolution experiments of commercial PWR (52ÂMWd/kgU) and BWR (53ÂMWd/kgU) spent nuclear fuel cladded segments in bicarbonate water underÂoxidizing conditions. Experimental determination of matrix and instantÂrelease fraction. Journal of Nuclear Materials, 2015, 465, 63-70.	2.7	13
11	Incorporation of selenium(IV) and selenium(VI) on uranyl peroxide. Journal of Radioanalytical and Nuclear Chemistry, 2015, 303, 153-159.	1.5	2
12	Interpretation of Knudsen Cell Experiments to determine the Instant Release Fraction in Spent Fuel Corrosion Scenarios by using a Mechanistic Approach: the Caesium Case. Materials Research Society Symposia Proceedings, 2014, 1665, 275-281.	0.1	0
13	Design of a New Reactor to Work at Low Volume Liquid/Surface Solid Ratio and High Pressure and Temperature: Dissolution Rate Studies of UO2 Under Both Anoxic and Reducing Conditions Materials Research Society Symposia Proceedings, 2014, 1665, 303-309.	0.1	0
14	Solubility study and point of zero charge of studtite (UO2O2·4H2O). Applied Geochemistry, 2014, 49, 42-45.	3.0	14
15	Dynamic leaching studies of 48MWd/kgU UO2 commercial spent nuclear fuel under oxic conditions. Journal of Nuclear Materials, 2013, 434, 451-460.	2.7	13
16	Uranium speciation studies at alkaline pH and in the presence of hydrogen peroxide using time-resolved laser-induced fluorescence spectroscopy. Polyhedron, 2013, 55, 92-101.	2.2	12
17	Kinetics of hydrogen peroxide consumption in aqueous phase at different hydrogen partial pressures. Radiochimica Acta, 2012, 100, 445-448.	1.2	4
18	Instant release fraction and matrix release of high burn-up UO2 spent nuclear fuel: Effect of high burn-up structure and leaching solution composition. Journal of Nuclear Materials, 2012, 427, 249-258.	2.7	33

#	Article	IF	CITATIONS
19	Uranium speciation in river sediments contaminated by phosphate ores. Environmental Chemistry Letters, 2012, 10, 49-53.	16.2	7
20	Determination of the equilibrium formation constants of two U(vi)–peroxide complexes at alkaline pH. Dalton Transactions, 2011, 40, 7976.	3.3	22
21	Spent Fuel Waste Disposal: Analyses of Model Uncertainty in the MICADO Project. Energy Procedia, 2011, 7, 487-494.	1.8	7
22	Effects of Ionizing Radiation and Temperature on Uranyl Silicates: Soddyite (UO ₂) ₂ (SiO ₄)(H ₂ O) ₂ and Uranophane Ca(UO ₂) ₂ (SiO ₃ OH) ₂ ·5H ₂ O. Environmental Science & Technology, 2011, 45, 2510-2515.	10.0	6
23	Modelling of the Ni(II) removal from aqueous solutions onto grape stalk wastes in fixed-bed column. Journal of Hazardous Materials, 2010, 174, 144-150.	12.4	32
24	Sorption of strontium on uranyl peroxide: Implications for a high-level nuclear waste repository. Journal of Hazardous Materials, 2010, 181, 881-885.	12.4	32
25	Application of two sites non-equilibrium sorption model for the removal of Cu(II) onto grape stalk wastes in a fixed-bed column. Chemical Engineering Journal, 2010, 156, 298-304.	12.7	57
26	Cesium sorption on studtite (UO ₂ O ₂ ·4H ₂ O). Radiochimica Acta, 2010, 98, 479-483.	1.2	13
27	Cadmium and Lead Removal from Aqueous Solution by Grape Stalk Wastes: Modeling of a Fixed-Bed Column. Journal of Chemical & Engineering Data, 2010, 55, 3548-3554.	1.9	51
28	Stability of uranium (VI) peroxide hydrates under ionizing radiation. American Mineralogist, 2009, 94, 229-235.	1.9	14
29	Effect of HBS Structure in Fast Release Fraction of 48 GWd/tU PWR Fuel. Materials Research Society Symposia Proceedings, 2009, 1193, 119.	0.1	8
30	Combined effect of H2O2 and HCO3- on UO2(s) dissolution rates under anoxic conditions. Radiochimica Acta, 2009, 97, .	1.2	19
31	Leaching of 53 MW/d kg U spent nuclear fuel in a flow-through reactor. Radiochimica Acta, 2009, 97, .	1.2	8
32	The role of uranium peroxide studtite on the retention of Cs, Sr and Se(VI). Materials Research Society Symposia Proceedings, 2009, 1193, .	0.1	3
33	Interaction of Hydrogen Peroxide With Carbon Steel and Magnetite. Materials Research Society Symposia Proceedings, 2009, 1193, 265.	0.1	0
34	Effect of temperature on studtite stability: Thermogravimetry and differential scanning calorimetry investigations. Journal of Nuclear Materials, 2009, 385, 467-473.	2.7	22
35	Determination of UO2(s) dissolution rates in a hydrogen peroxide medium as a function of pressure and temperature. Journal of Nuclear Materials, 2008, 375, 151-156.	2.7	5
36	Secondary phase formation on UO2 in phosphate media. Applied Geochemistry, 2008, 23, 2249-2255.	3.0	8

#	Article	IF	CITATIONS
37	Grape Stalks Waste as Low Cost Biosorbents: An Alternative for Metal Removal from Aqueous Solutions. Solvent Extraction and Ion Exchange, 2008, 26, 261-270.	2.0	23
38	Magnetite Sorption Capacity for Strontium as a Function of pH. Materials Research Society Symposia Proceedings, 2008, 1107, 1.	0.1	5
39	RN Fractional Release of High Burn-Up Fuel: Effect of HBS and Estimation of Accessible Grain Boundary. Materials Research Society Symposia Proceedings, 2008, 1107, 1.	0.1	5
40	UO ₂ dissolution in the presence of hydrogen peroxide at pH>11. Radiochimica Acta, 2008, 96, 535-539.	1.2	8
41	Kinetics of UO2 (s) Dissolution in the Presence of Hypochlorite, Chlorite, and Chlorate Solutions. Materials Research Society Symposia Proceedings, 2008, 1107, 1.	0.1	0
42	The use of a high-FeO olivine rock as a redox buffer in a nuclear waste repository. Journal of Contaminant Hydrology, 2006, 83, 42-52.	3.3	4
43	Modelling of the spent fuel dissolution rate evolution for repository conditions. Matrix Alteration Model results and sensitivity analysis. Materials Research Society Symposia Proceedings, 2006, 932, 1.	0.1	3
44	Radiolytic modelling of spent fuel oxidative dissolution mechanism. Calibration against UO2 dynamic leaching experiments. Journal of Nuclear Materials, 2005, 346, 40-47.	2.7	26
45	The oxidative dissolution of unirradiated UO2 by hydrogen peroxide as a function of pH. Journal of Nuclear Materials, 2005, 345, 225-231.	2.7	55
46	Oxidation and dissolution of UO2 in bicarbonate media: Implications for the spent nuclear fuel oxidative dissolution mechanism. Journal of Nuclear Materials, 2005, 345, 232-238.	2.7	30
47	Influence of β radiation on UO2 dissolution at different pH values. Radiochimica Acta, 2005, 93, 533-538.	1.2	13
48	The dissolution of high-FeO olivine rock from the Lovasjävi intrusion (SE-Finland) at 25°C as a function of pH. Applied Geochemistry, 2005, 20, 1284-1291.	3.0	12
49	Evidence of Uranium and Associated Trace Element Mobilization and Retention Processes at Oklo (Gabon), a Naturally Radioactive Site. Environmental Science & Technology, 2004, 38, 3310-3315.	10.0	6
50	Formation of Studtite during the Oxidative Dissolution of UO2by Hydrogen Peroxide:Â A SFM Study. Environmental Science & Technology, 2004, 38, 6656-6661.	10.0	71
51	Surface Site Densities of Uranium Oxides: UO2, U3O8. Materials Research Society Symposia Proceedings, 2003, 807, 730.	0.1	10
52	The Oxidative Dissolution Mechanism of Uranium Dioxide. The Effect of pH and Oxygen Partial Pressure. Materials Research Society Symposia Proceedings, 2003, 807, 618.	0.1	13
53	Sorption of Caesium on Commercial Magnetite with low Silica Content: Experimental and Modelling. Materials Research Society Symposia Proceedings, 2003, 807, 754.	0.1	6
54	Cesium and Niobium transport through poorly cemented sandstone from Krasnoyarsk-26 (Russian) Tj ETQq0 0 () rgBT /Ove 0.1	erlock 10 Tf 5 0

2002, 757, 113.6.1.

#	Article	IF	CITATIONS
55	Effect of β-Radiation on the Non Irradiated UO2(s) Dissolution. Materials Research Society Symposia Proceedings, 2002, 757, II9.9.1.	0.1	0
56	Effect of Zinc Chloro Complexes to Photoluminescent Bacteria: Dependence of Toxicity on Metal Speciation. Bulletin of Environmental Contamination and Toxicology, 2000, 64, 729-734.	2.7	10
57	The Effect of Hydrogen Peroxide Concentration on the Oxidative Dissolution of Unirradiated Uranium Dioxide. Materials Research Society Symposia Proceedings, 2000, 663, 1.	0.1	30
58	Experimental study and modeling of uranium (VI) transport through ferrous olivine rock columns. Radiochimica Acta, 2000, 88, 665-674.	1.2	21
59	The thermodynamics and kinetics of uranophane dissolution in bicarbonate test solutions. Geochimica Et Cosmochimica Acta, 2000, 64, 603-608.	3.9	34
60	Uranyl-Selective Electrode Based on a New Bifunctional Derivative Combining the Synergistic Properties of Phosphine Oxide and Ester of Phosphoric Acid. Analytical Chemistry, 2000, 72, 1604-1610.	6.5	39
61	Modeling Spent Nuclear UO2-Fuel Dissolution Under Repository Conditions. , 2000, , 93-102.		0
62	The oxidative dissolution mechanism of uranium dioxide. I. The effect of temperature in hydrogen carbonate medium. Geochimica Et Cosmochimica Acta, 1999, 63, 3097-3103.	3.9	126
63	The role of pe, pH, and carbonate on the solubility of UO2 and uraninite under nominally reducing conditions. Geochimica Et Cosmochimica Acta, 1998, 62, 2223-2231.	3.9	110
64	Estimation of the concentrations of trace metals in natural systems. Chemical Geology, 1998, 151, 277-291.	3.3	19
65	Conceptual and Mathematical Model for the UO ₂ (s) Dissolution in Brines Under Different Redox Conditions. Radiochimica Acta, 1997, 78, 21-26.	1.2	4
66	Kinetics of Reduction and Precipitation of U(VI) in the Dissolution of UO2(s) Under Anoxic Conditions in NaCl 5 mol kgâ^1. Influence of Metallic Iron. Materials Research Society Symposia Proceedings, 1997, 506, 115.	0.1	2
67	Surface Characterization of Olivine-Rock by X-ray Photoelectron Spectroscopy (XPS). Leaching and U(VI) Sorption Experiments. Materials Research Society Symposia Proceedings, 1997, 506, 321.	0.1	7
68	Characterization and dissolution behavior of a becquerelite from Shinkolobwe, Zaire. Geochimica Et Cosmochimica Acta, 1997, 61, 3879-3884.	3.9	24
69	Development and application of a model for the long-term alteration of UO2 spent nuclear fuel Test of equilibrium and kinetic mass transfer models in the Cigar Lake ore deposit. Journal of Contaminant Hydrology, 1997, 26, 19-26.	3.3	10
70	Kinetics of corrosion and dissolution of uranium dioxide as a function of pH. International Journal of Chemical Kinetics, 1997, 29, 261-267.	1.6	61
71	Effect of Temperature and Bicarbonate Concentration on the Kinetics of UO ₂ (s) Dissolution Under Oxidizing Conditions. Materials Research Society Symposia Proceedings, 1996, 465, 535.	0.1	13
72	Dissolution Studies of Soddyite as a Long-Term Analogue of the Oxidative Alteration of the Spent Nuclear Fuel Matrix. Materials Research Society Symposia Proceedings, 1996, 465, 565.	0.1	13

#	Article	IF	CITATIONS
73	A natural analogue of high-pH cement pore waters from the Maqarin area of northern Jordan: Comparison of predicted and observed trace-element chemistry of uranium and selenium. Journal of Contaminant Hydrology, 1996, 21, 59-69.	3.3	29
74	Effect of H2O2, NaClO and Fe on the dissolution of unirradiated UO2 in NaCl 5 mol kgâ^'1. Comparison with spent fuel dissolution experiments. Journal of Nuclear Materials, 1996, 238, 64-69.	2.7	40
75	Solid surface evolution model to predict uranium release from unirradiated UO2 and nuclear spent fuel dissolution under oxidizing conditions. Journal of Nuclear Materials, 1996, 232, 138-145.	2.7	49
76	Kinetic Studies of Unirradiated UO ₂ Dissolution under Oxidizing Conditions in Batch and Flow Experiments. Radiochimica Acta, 1994, 66-67, 23-28.	1.2	16
77	The influence of hematite on the sorption of uranium(VI) onto granite filling fractures. Chemical Geology, 1994, 113, 319-326.	3.3	24
78	Mechanism of Unirradiated UO2 (S) Dissolution in Nacl and Mgcl2 Brines at 25°C. Materials Research Society Symposia Proceedings, 1994, 353, 609.	0.1	3
79	Uranium (iv) Dioxide and Simfuel as Chemical Analogues of Nuclear Spent Fuel Matrix Dissolution. A Comparison of Dissolution Results in a Standard Naci/NaHCO ₃ Solution. Materials Research Society Symposia Proceedings, 1994, 353, 601.	0.1	17
80	The Assessment of the Long-Term Evolution of the Spent Nuclear Fuel Matrix by Kinetic, Thermodynamic and Spectroscopic Studies of Uranium Minerals Materials Research Society Symposia Proceedings, 1994, 353, 633.	0.1	16
81	Kinetic Studies of Unirradiated UO2 Dissolution under Oxidizing Conditions in Batch and Flow Experiments. Radiochimica Acta, 1994, 66-67, 23-28.	1.2	34
82	Kinetically Controlled Dissolution of UO2(s) Under Oxidizing Conditions. A Combined Dissolution-Okidation Model Materials Research Society Symposia Proceedings, 1992, 294, 61.	0.1	13
83	Dissolution of UO2(s) in MgCl2-Brines Under Different Redox Conditions Materials Research Society Symposia Proceedings, 1992, 294, 67.	0.1	8
84	Modification to flow chart to determine point groups. Journal of Chemical Education, 1992, 69, 83.	2.3	1
85	Static and dynamic SIMFUEL dissolution studies under oxic conditions. Journal of Nuclear Materials, 1992, 190, 61-69.	2.7	16
86	Fluorimetric determination of traces of uranium(VI) in brines and iron(III) oxides using separation on an activated silica gel column. Analytica Chimica Acta, 1992, 264, 115-119.	5.4	12
87	The kinetics of dissolution of UO2 under reducing conditions and the influence of an oxidized surface layer (UO2+x): Application of a continuous flow-through reactor. Geochimica Et Cosmochimica Acta, 1991, 55, 647-658.	3.9	116
88	Effect of Chloride Concentration on the Solubility of Amorphous Uranium Dioxide at 25 °C Under Reducing Conditions. Radiochimica Acta, 1991, 52-53, 13-16.	1.2	2
89	Simfuel Dissolution Studies in Granitic Groundwater at 25°C. Materials Research Society Symposia Proceedings, 1990, 212, 221.	0.1	4
90	The Solubility of Unirradiated UO ₂ 1n Both Perchlorate And Chloride Test Solutions. Influence of the Ionic Medium. Materials Research Society Symposia Proceedings, 1990, 212, 229.	0.1	5

#	Article	IF	CITATIONS
91	Extraction of cadmium(II) by mixtures of organophosphorus compounds. Polyhedron, 1989, 8, 2535-2541.	2.2	9
92	The Kinetics of Dissolution of UO ₂ (s) under Reducing Conditions. Radiochimica Acta, 1988, 44-45, 11-16.	1.2	22
93	Studies on metal carbonate complexes. 19. Complex formation in the Th(IV)î—,H2Oî—,CO2(g) system. Inorganica Chimica Acta, 1987, 140, 299-301.	2.4	6