
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4990242/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent advances in alien gene transfer in wheat. Euphytica, 1993, 73, 199-212.	1.2	431
2	Homoeologous recombination, chromosome engineering and crop improvement. Chromosome Research, 2007, 15, 3-19.	2.2	278
3	Sequence composition, organization, and evolution of the core Triticeae genome. Plant Journal, 2004, 40, 500-511.	5.7	204
4	Genome differentiation in <i>Aegilops</i> . 1. Distribution of highly repetitive DNA sequences on chromosomes of diploid species. Genome, 1996, 39, 293-306.	2.0	176
5	Extrachromosomal circular DNA-based amplification and transmission of herbicide resistance in crop weed <i>Amaranthus palmeri</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3332-3337.	7.1	159
6	Genome differentiation in <i>Aegilops</i> . 2. Physical mapping of 5S and 18S–26S ribosomal RNA gene families in diploid species. Genome, 1996, 39, 1150-1158.	2.0	142
7	Molecular characterization of a set of wheat deletion stocks for use in chromosome bin mapping of ESTs. Functional and Integrative Genomics, 2003, 3, 39-55.	3.5	138
8	Molecular cytogenetic characterization of alien introgressions with gene Fhb3 for resistance to Fusarium head blight disease of wheat. Theoretical and Applied Genetics, 2008, 117, 1155-1166.	3.6	132
9	BAC-FISH in wheat identifies chromosome landmarks consisting of different types of transposable elements. Chromosoma, 2004, 112, 288-299.	2.2	126
10	A novel Robertsonian translocation event leads to transfer of a stem rust resistance gene (Sr52) effective against race Ug99 from Dasypyrum villosum into bread wheat. Theoretical and Applied Genetics, 2011, 123, 159-167.	3.6	114
11	The centromere structure in Robertsonian wheat-rye translocation chromosomes indicates that centric breakage-fusion can occur at different positions within the primary constriction. Chromosoma, 2001, 110, 335-344.	2.2	112
12	Discovery and molecular mapping of a new gene conferring resistance to stem rust, Sr53, derived from Aegilops geniculata and characterization of spontaneous translocation stocks with reduced alien chromatin. Chromosome Research, 2011, 19, 669-682.	2.2	111
13	Single-copy gene fluorescence in situ hybridization and genome analysis: Acc-2 loci mark evolutionary chromosomal rearrangements in wheat. Chromosoma, 2012, 121, 597-611.	2.2	104
14	Tandem Amplification of a Chromosomal Segment Harboring 5-Enolpyruvylshikimate-3-Phosphate Synthase Locus Confers Glyphosate Resistance in Kochia scoparia. Plant Physiology, 2014, 166, 1200-1207.	4.8	103
15	Development of a wheat single gene FISH map for analyzing homoeologous relationship and chromosomal rearrangements within the Triticeae. Theoretical and Applied Genetics, 2014, 127, 715-730.	3.6	98
16	Origin of an apparent B chromosome by mutation, chromosome fragmentation and specific DNA sequence amplification. Chromosoma, 2002, 111, 332-340.	2.2	95
17	Standard karyotype of <i>Triticum longissimum</i> and its cytogenetic relationship with <i>T</i> . <i>aestivum</i> . Genome, 1993, 36, 731-742.	2.0	94
18	A new 2DS·2RL Robertsonian translocation transfers stem rust resistance gene Sr59 into wheat. Theoretical and Applied Genetics, 2016, 129, 1383-1392.	3.6	89

#	Article	IF	CITATIONS
19	SNP Discovery for mapping alien introgressions in wheat. BMC Genomics, 2014, 15, 273.	2.8	82
20	Simultaneous painting of three genomes in hexaploid wheat by BAC-FISH. Genome, 2004, 47, 979-987.	2.0	79
21	Chromosome engineering, mapping, and transferring of resistance to Fusarium head blight disease from Elymus tsukushiensis into wheat. Theoretical and Applied Genetics, 2015, 128, 1019-1027.	3.6	79
22	Genomeâ€size Variation in Switchgrass (Panicum virgatum): Flow Cytometry and Cytology Reveal Rampant Aneuploidy. Plant Genome, 2010, 3, .	2.8	77
23	Development and characterization of wheat-Ae. searsii Robertsonian translocations and a recombinant chromosome conferring resistance to stem rust. Theoretical and Applied Genetics, 2011, 122, 1537-1545.	3.6	77
24	Molecular cytogenetic analysis of <i>Agropyron</i> chromatin specifying resistance to barley yellow dwarf virus in wheat. Genome, 1996, 39, 336-347.	2.0	75
25	Major structural genomic alterations can be associated with hybrid speciation in <i>Aegilops markgrafii</i> (Triticeae). Plant Journal, 2017, 92, 317-330.	5.7	71
26	Comparison of C-banding patterns and in situ hybridization sites using highly repetitive and total genomic rye DNA probes of 'Imperial' rye chromosomes added to 'Chinese Spring' wheat Japanese Journal of Genetics, 1992, 67, 71-83.	1.0	69
27	Plant cytogenetics at the dawn of the 21st century. Current Opinion in Plant Biology, 1998, 1, 109-115.	7.1	69
28	Development and characterization of wheat- Leymus racemosus translocation lines with resistance to Fusarium Head Blight. Theoretical and Applied Genetics, 2005, 111, 941-948.	3.6	69
29	Gene evolution at the ends of wheat chromosomes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4162-4167.	7.1	67
30	Homoeologous recombination-based transfer and molecular cytogenetic mapping of powdery mildew-resistant gene Pm57 from Aegilops searsii into wheat. Theoretical and Applied Genetics, 2017, 130, 841-848.	3.6	65
31	The Agropyron cristatum karyotype, chromosome structure and cross-genome homoeology as revealed by fluorescence in situ hybridization with tandem repeats and wheat single-gene probes. Theoretical and Applied Genetics, 2018, 131, 2213-2227.	3.6	64
32	Gametocidal Genes Induce Chromosome Breakage in the Interphase Prior to the First Mitotic Cell Division of the Male Gametophyte in Wheat. Genetics, 1998, 149, 1115-1124.	2.9	62
33	Wheat Genetics Resource Center: The First 25 Years. Advances in Agronomy, 2006, 89, 73-136.	5.2	56
34	A spontaneous wheat-Aegilops longissima translocation carrying Pm66 confers resistance to powdery mildew. Theoretical and Applied Genetics, 2020, 133, 1149-1159.	3.6	56
35	Development and characterization of a compensating wheat-Thinopyrum intermedium Robertsonian translocation with Sr44 resistance to stem rust (Ug99). Theoretical and Applied Genetics, 2013, 126, 1167-1177.	3.6	54
36	Physical Mapping of Amplified Copies of the 5-Enolpyruvylshikimate-3-Phosphate Synthase Gene in Glyphosate-Resistant <i>Amaranthus tuberculatus</i> . Plant Physiology, 2017, 173, 1226-1234.	4.8	54

#	Article	IF	CITATIONS
37	Development of a set of compensating <i>Triticum aestivum – Dasypyrum villosum</i> Robertsonian translocation lines. Genome, 2011, 54, 836-844.	2.0	50
38	Exploring the tertiary gene pool of bread wheat: sequence assembly and analysis of chromosome 5M ^g of <i>Aegilops geniculata</i> . Plant Journal, 2015, 84, 733-746.	5.7	48
39	The Aegilops ventricosa 2NvS segment in bread wheat: cytology, genomics and breeding. Theoretical and Applied Genetics, 2021, 134, 529-542.	3.6	48
40	Homoeologous recombination in the presence of Ph1 gene in wheat. Chromosoma, 2017, 126, 531-540.	2.2	46
41	Characterization of a knock-out mutation at the Gc2 locus in wheat. Chromosoma, 2003, 111, 509-517.	2.2	44
42	Chromosome healing by addition of telomeric repeats in wheat occurs during the first mitotic divisions of the sporophyte and is a gradual process. Chromosome Research, 2001, 9, 137-146.	2.2	40
43	Homoeologous recombination-based transfer and molecular cytogenetic mapping of a wheat streak mosaic virus and Triticum mosaic virus resistance gene Wsm3 from Thinopyrum intermedium to wheat. Theoretical and Applied Genetics, 2017, 130, 549-556.	3.6	33
44	The Origin of a "Zebra―Chromosome in Wheat Suggests Nonhomologous Recombination as a Novel Mechanism for New Chromosome Evolution and Step Changes in Chromosome Number. Genetics, 2008, 179, 1169-1177.	2.9	27
45	Development and characterization of two new Triticum aestivum–Dasypyrum villosum Robertsonian translocation lines T1DS·1V#3L and T1DL·1V#3S and their effect on grain quality. Euphytica, 2010, 175, 343-350.	1.2	26
46	Cytogenetics in the age of molecular genetics. Australian Journal of Agricultural Research, 2007, 58, 498.	1.5	24
47	A wholeâ€genome, radiation hybrid mapping resource of hexaploid wheat. Plant Journal, 2016, 86, 195-207.	5.7	23
48	The compact Brachypodium genome conserves centromeric regions of a common ancestor with wheat and rice. Functional and Integrative Genomics, 2010, 10, 477-492.	3.5	22
49	Gene Duplication and Aneuploidy Trigger Rapid Evolution of Herbicide Resistance in Common Waterhemp. Plant Physiology, 2018, 176, 1932-1938.	4.8	21
50	Development of DNA Markers From Physically Mapped Loci in Aegilops comosa and Aegilops umbellulata Using Single-Gene FISH and Chromosome Sequences. Frontiers in Plant Science, 2021, 12, 689031.	3.6	21
51	Production of Autopolyploid Lowland Switchgrass Lines Through In Vitro Chromosome Doubling. Bioenergy Research, 2014, 7, 232-242.	3.9	20
52	Characterization and Physical Mapping of Ribosomal RNA Gene Families in Plantago. Annals of Botany, 2006, 97, 541-548.	2.9	19
53	Development of a complete set of wheat–barley group-7 Robertsonian translocation chromosomes conferring an increased content of β-glucan. Theoretical and Applied Genetics, 2018, 131, 377-388.	3.6	19
54	A set of Triticum aestivum-Aegilops speltoides Robertsonian translocation lines. Theoretical and Applied Genetics, 2016, 129, 2359-2368.	3.6	18

#	Article	IF	CITATIONS
55	Production of a complete set of wheat–barley group-7 chromosome recombinants with increased grain β-glucan content. Theoretical and Applied Genetics, 2019, 132, 3129-3141.	3.6	18
56	FISH on Plant Chromosomes. , 2009, , 365-394.		17
57	Genome relationships in the genus Dasypyrum: evidence from molecular phylogenetic analysis and in situ hybridization. Plant Systematics and Evolution, 2010, 288, 149-156.	0.9	17
58	Molecular and Cytogenetic Characterization of Six Wheat-Aegilops markgrafii Disomic Addition Lines and Their Resistance to Rusts and Powdery Mildew. Frontiers in Plant Science, 2018, 9, 1616.	3.6	17
59	Structure and Stability of Telocentric Chromosomes in Wheat. PLoS ONE, 2015, 10, e0137747.	2.5	16
60	Transfer of Amigo wheat powdery mildew resistance gene Pm17 from T1AL·1RS to the T1BL·1RS wheat-rye translocated chromosome. Heredity, 1995, 74, 497-501.	2.6	15
61	Physical Mapping of Stem Rust Resistance Gene Sr52 from Dasypyrum villosum Based on ph1b-Induced Homoeologous Recombination. International Journal of Molecular Sciences, 2019, 20, 4887.	4.1	15
62	A Molecular-Cytogenetic Method for Locating Genes to Pericentromeric Regions Facilitates a Genomewide Comparison of Synteny Between the Centromeric Regions of Wheat and Rice. Genetics, 2009, 183, 1235-1247.	2.9	14
63	Wheat–Aegilops Introgressions. , 2015, , 221-243.		14
64	Chromosome Engineering Techniques for Targeted Introgression of Rust Resistance from Wild Wheat Relatives. Methods in Molecular Biology, 2017, 1659, 163-172.	0.9	14
65	Physical Mapping of Pm57, a Powdery Mildew Resistance Gene Derived from Aegilops searsii. International Journal of Molecular Sciences, 2020, 21, 322.	4.1	13
66	Genome-wide impacts of alien chromatin introgression on wheat gene transcriptions. Scientific Reports, 2020, 10, 4801.	3.3	13
67	Genetic characterization and curation of diploid A-genome wheat species. Plant Physiology, 2022, 188, 2101-2114.	4.8	13
68	Complex Ploidy Level Variation in Guayule Breeding Programs. Crop Science, 2011, 51, 210-216.	1.8	12
69	Resistance to the Ug99 Race Group of <i>Puccinia graminis</i> f. sp. <i>tritici</i> in Wheat–Intra/intergeneric Hybrid Derivatives. Plant Disease, 2015, 99, 1317-1325.	1.4	10
70	Single molecule mtDNA fiber FISH for analyzing numtogenesis. Analytical Biochemistry, 2018, 552, 45-49.	2.4	10
71	Homoeologous Recombination: A Novel and Efficient System for Broadening the Genetic Variability in Wheat. Agronomy, 2020, 10, 1059.	3.0	10
72	Molecular Cytogenetic Mapping of Satellite DNA Sequences in <i>Aegilops geniculata</i> and Wheat. Cytogenetic and Genome Research, 2016, 148, 314-321.	1.1	7

#	Article	IF	CITATIONS
73	Introgression of a Novel Ug99-Effective Stem Rust Resistance Gene into Wheat and Development of <i>Dasypyrum villosum</i> Chromosome-Specific Markers via Genotyping-by-Sequencing (GBS). Plant Disease, 2019, 103, 1068-1074.	1.4	7
74	Deciphering the Mechanism of Glyphosate Resistance in <i>Amaranthus palmeri</i> by Cytogenomics. Cytogenetic and Genome Research, 2021, 161, 578-584.	1.1	7
75	Chromosome Rearrangements Caused by Double Monosomy in Wheat-Barley Group-7 Substitution Lines. Cytogenetic and Genome Research, 2018, 154, 45-55.	1.1	6
76	Cytogenetic Analysis of Wheat and Rye Genomes. , 2009, , 121-135.		6
77	Registration of a Hard Red Winter Wheat Genetic Stock Homozygous for ph1b for Facilitating Alien Introgression for Crop Improvement. Journal of Plant Registrations, 2012, 6, 121-123.	0.5	5
78	Development and Molecular Cytogenetic Characterization of Cold-Hardy Perennial Wheatgrass Adapted to Northeastern China. Frontiers in Plant Science, 2020, 11, 582.	3.6	4
79	Origin, structure, and behavior of a highly rearranged deletion chromosome 1BS-4 in wheat. Genome, 2005, 48, 591-597.	2.0	3
80	Development of Novel Wheat– <i>Aegilops longissima</i> 3S ¹ Translocations Conferring Powdery Mildew Resistance and Specific Molecular Markers for Chromosome 3S ¹ . Plant Disease, 2021, 105, 2938-2945.	1.4	3
81	Molecular cytogenetic characterization and fusarium head blight resistance of five wheat-Thinopyrum intermedium partial amphiploids. Molecular Cytogenetics, 2021, 14, 15.	0.9	3
82	Meiotic metaphase I pairing behavior of a 5BL recombinant isochromosome in wheat. Chromosome Research, 2000, 8, 671-676.	2.2	2
83	In-silico detection of aneuploidy and chromosomal deletions in wheat using genotyping-by-sequencing. Plant Methods, 2020, 16, 45.	4.3	2
84	Physical localization of rRNA genes by fluorescence in situ hybridization (FISH) and analysis of spacer length variants of 45S rRNA (slvs) genes in some species of genus Sesbania. Plant Systematics and Evolution, 2014, 300, 1793-1802.	0.9	1
85	Origin and genetic analysis of stem rust resistance in wheat line Tr129. Scientific Reports, 2022, 12, 4585.	3.3	0