List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4990219/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultra-transparent nanostructured coatings via flow-induced one-step coassembly. Nano Materials Science, 2022, 4, 97-103.	8.8	12
2	Scaled-up synthesis of defect-rich layered double hydroxide monolayers without organic species for efficient oxygen evolution reaction. Green Energy and Environment, 2022, 7, 975-982.	8.7	28
3	High N2 uptake by MgFeOx-C nano-hybrid for under high temperature and ambient pressure. Sustainable Materials and Technologies, 2022, 31, e00361.	3.3	0
4	Dual Photo―and Mechanochromisms of Graphitic Carbon Nitride/Polyvinyl Alcohol Film. Advanced Functional Materials, 2022, 32, 2110285.	14.9	20
5	Dynamic multifunctional devices enabled by ultrathin metal nanocoatings with optical/photothermal and morphological versatility. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	13
6	Polyolefin films with outstanding barrier properties based on one-step coassembled nanocoatings. Advanced Composites and Hybrid Materials, 2022, 5, 1067-1077.	21.1	7
7	Tailoring the Growth of Nanosized $\hat{l}\pm$ -Zirconium Phosphate. Inorganic Chemistry, 2022, 61, 2057-2065.	4.0	4
8	Enhancing corona resistance in Kapton with self-assembled two-dimensional montmorillonite nanocoatings. Materials Advances, 2022, 3, 3853-3861.	5.4	2
9	Cellulose based flexible and wearable sensors for health monitoring. Materials Advances, 2022, 3, 3766-3783.	5.4	15
10	Assembly of exfoliated αâ€ e irconium phosphate nanosheets: Mechanisms and versatile applications. Aggregate, 2022, 3, .	9.9	4
11	Polydiacetylene-Na ⁺ Nanoribbons for Naked Eye Detection of Hydrogen Chloride Gas. ACS Applied Nano Materials, 2022, 5, 4146-4156.	5.0	14
12	<scp>Twoâ€dimensional MXenes</scp> : New frontier of wearable and flexible electronics. InformaÄnÃ- Materiály, 2022, 4, .	17.3	102
13	Kinetics-Favorable Ultrathin NiCo-MOF Nanosheets with Boosted Pseudocapacitive Charge Storage for Quasi-Solid-State Hybrid Supercapacitors. Inorganic Chemistry, 2022, 61, 3866-3874.	4.0	26
14	Spin Coating for Forming Thin Composite Coatings of Montmorillonite and Poly(vinyl alcohol). Industrial & Engineering Chemistry Research, 2022, 61, 4168-4177.	3.7	4
15	Doctor-Blade-Assisted Casting for Forming Thin Composite Coatings of Montmorillonite and Poly(vinyl alcohol). Industrial & Engineering Chemistry Research, 2022, 61, 3766-3774.	3.7	8
16	Conductive Chitosan Nonwoven Fabrics by Electroless Plating with Excellent Laundering Durability for Wearable Electronics. Journal of Natural Fibers, 2022, 19, 14855-14865.	3.1	1
17	A Repeatable Dualâ€Encryption Platform from Recyclable Thermosets with Selfâ€Healing Ability and Shape Memory Effect. Advanced Functional Materials, 2022, 32, .	14.9	27
18	Scalable self-assembly interfacial engineering for high-temperature dielectric energy storage. IScience, 2022, 25, 104601.	4.1	7

#	Article	IF	CITATIONS
19	Biodegradable Copolymers from CO ₂ , Epoxides, and Anhydrides Catalyzed by Organoborane/Tertiary Amine Pairs: High Selectivity and Productivity. Macromolecules, 2022, 55, 6120-6130.	4.8	10
20	3D Printing Hydrogel Scaffolds with Nanohydroxyapatite Gradient to Effectively Repair Osteochondral Defects in Rats. Advanced Functional Materials, 2021, 31, .	14.9	68
21	Catalytic materials for direct synthesis of dimethyl carbonate (DMC) from CO2. Journal of Cleaner Production, 2021, 279, 123344.	9.3	81
22	Smart Laserâ€Writable Micropatterns with Multiscale Photo/Moisture Reconstructible Structure. Advanced Functional Materials, 2021, 31, 2009481.	14.9	24
23	An efficient method to prepare aluminosilicate nanoscrolls under mild conditions. Chemical Communications, 2021, 57, 789-792.	4.1	9
24	Antistatic packaging based on <scp>PTT</scp> / <scp>PTTâ€<i>g</i>â€MA</scp> / <scp>ABS</scp> / <scp>MWCNT</scp> nanocomposites: Effect of the chemical functionalization of <scp>MWCNTs</scp> . Journal of Applied Polymer Science, 2021, 138, 50005.	2.6	13
25	Transparency Change Mechanochromism Based on a Robust PDMSâ€Hydrogel Bilayer Structure. Macromolecular Rapid Communications, 2021, 42, e2000446.	3.9	21
26	Lignocellulose aerogel and amorphous silica nanoparticles from rice husks. Journal of Leather Science and Engineering, 2021, 3, .	6.0	6
27	One-step Coassembled Nanocoatings on Paper for Potential Packaging Applications. ES Materials & Manufacturing, 2021, , .	1.9	6
28	Tailoring Multistimuli Responsive Micropatterns Activated by Various Mechanical Modes. Advanced Functional Materials, 2021, 31, 2100612.	14.9	20
29	Poly(acrylamideâ€coâ€acrylic acid)/chitosan semiâ€interpenetrating hydrogel for pressure sensor and controlled drug release. Polymers for Advanced Technologies, 2021, 32, 3050-3058.	3.2	16
30	Intense Mechanoluminescence in Undoped LiGa ₅ O ₈ with Persistent and Recoverable Behaviors. Advanced Optical Materials, 2021, 9, 2100137.	7.3	24
31	High-performance strain sensors based on bilayer carbon black/PDMS hybrids. Advanced Composites and Hybrid Materials, 2021, 4, 514-520.	21.1	70
32	High Performance Composite Polymer Electrolytes for Lithiumâ€lon Batteries. Advanced Functional Materials, 2021, 31, 2101380.	14.9	151
33	Exfoliation of Nanosized α-Zirconium Phosphate in Methanol. Inorganic Chemistry, 2021, 60, 8276-8284.	4.0	5
34	Facile synthesis of photoluminescent mesoporous silica. Advanced Composites and Hybrid Materials, 2021, 4, 815-818.	21.1	10
35	Dynamic thermal radiation modulators via mechanically tunable surface emissivity. Materials Today, 2021, 45, 44-53.	14.2	47
36	Stress-induced color manipulation of mechanoluminescent elastomer for visualized mechanics sensing. Nano Energy, 2021, 83, 105860.	16.0	48

#	Article	IF	CITATIONS
37	Super Stretchable and Compressible Hydrogels Inspired by Hook-and-Loop Fasteners. Langmuir, 2021, 37, 7760-7770.	3.5	10
38	Chemical strengthening of Li+-containing phosphosilicate glass via a two-step ion-exchange process. Journal of the Australian Ceramic Society, 2021, 57, 1285-1290.	1.9	2
39	Leatherâ€Based Multiâ€&timuli Responsive Chromisms. Advanced Functional Materials, 2021, 31, 2104427.	14.9	16
40	Tailoring Defects in Photocatalysts by Engineering Solvent Interactions for Highly Active and Responsive Color Switching. Advanced Optical Materials, 2021, 9, 2101115.	7.3	9
41	Reviving the "Schottky―Barrier for Flexible Polymer Dielectrics with a Superior 2D Nanoassembly Coating. Advanced Materials, 2021, 33, e2101374.	21.0	53
42	Highly efficient polyvinyl alcohol/montmorillonite flame retardant nanocoating for corrugated cardboard. Advanced Composites and Hybrid Materials, 2021, 4, 662-669.	21.1	28
43	Near-Infrared Light-Triggered Unfolding Microneedle Patch for Minimally Invasive Treatment of Myocardial Ischemia. ACS Applied Materials & Interfaces, 2021, 13, 40278-40289.	8.0	30
44	Reviving the "Schottky―Barrier for Flexible Polymer Dielectrics with a Superior 2D Nanoassembly Coating (Adv. Mater. 34/2021). Advanced Materials, 2021, 33, 2170264.	21.0	1
45	Gelation Based on Host–Guest Interactions Induced by Multi-Functionalized Nanosheets. Gels, 2021, 7, 106.	4.5	8
46	An environmentally-friendly sandwich-like structured nanocoating system for wash durable, flame retardant, and hydrophobic cotton fabrics. Cellulose, 2021, 28, 10277-10289.	4.9	15
47	Artificial Single-Ion Conducting Polymer Solid Electrolyte Interphase Layer toward Highly Stable Lithium Anode. ACS Applied Energy Materials, 2021, 4, 862-869.	5.1	18
48	A transparent glycerol-hydrogel with stimuli-responsive actuation induced unexpectedly at subzero temperatures. Journal of Materials Chemistry A, 2021, 9, 7935-7945.	10.3	52
49	Self-assembly 2D Montmorillonite Coating to Impede Charge Injection to Polystyrene. , 2021, , .		0
50	Converting Complex Sewage Containing Oil, Silt, and Bacteria into Clean Water by a 3D Printed Multiscale and Multifunctional Filter. ACS Applied Bio Materials, 2021, 4, 8509-8521.	4.6	4
51	Lithium (4-styrenesulfonyl) (trifluoromethanesulfonyl) imide based single-ion polymer electrolyte with superior battery performance. Energy Storage Materials, 2020, 24, 579-587.	18.0	61
52	<i>In situ</i> growth of a CaAl-NO ₃ ^{â^'} -layered double hydroxide film directly on an aluminum alloy for corrosion resistance. Dalton Transactions, 2020, 49, 3956-3964.	3.3	41
53	Multi-stimuli responsive chromism with tailorable mechanochromic sensitivity for versatile interactive sensing under ambient conditions. Materials Horizons, 2020, 7, 164-172.	12.2	44
54	Dry hydrated potassium carbonate for effective CO ₂ capture. Dalton Transactions, 2020, 49, 3965-3969.	3.3	5

#	Article	IF	CITATIONS
55	Complexing Agent Directed Growth of α-Zirconium Phosphate-Based Hexagonal Prisms. Inorganic Chemistry, 2020, 59, 1204-1210.	4.0	10
56	Functionalized layered double hydroxides for innovative applications. Materials Horizons, 2020, 7, 715-745.	12.2	171
57	Layered intercalation compounds: Mechanisms, new methodologies, and advanced applications. Progress in Materials Science, 2020, 109, 100631.	32.8	66
58	Sulfonated poly(fluorenyl ether ketone)/Sulfonated α-zirconium phosphate Nanocomposite membranes for proton exchange membrane fuel cells. Advanced Composites and Hybrid Materials, 2020, 3, 498-507.	21.1	37
59	Fabrication of layered double hydroxide/carbon nanomaterial for heavy metals removal. Applied Clay Science, 2020, 199, 105867.	5.2	18
60	Biomimetic Boroxine-Based Multifunctional Thermosets via One-Pot Synthesis. ACS Applied Materials & Interfaces, 2020, 12, 56445-56453.	8.0	17
61	A Highly Immobilized Organic Anode Material for High Performance Rechargeable Lithium Batteries. ACS Applied Materials & Interfaces, 2020, 12, 36237-36246.	8.0	19
62	Sulfonated poly(fluorene ether ketone) (SPFEK)/α-zirconium phosphate (ZrP) nanocomposite membranes for fuel cell applications. Advanced Composites and Hybrid Materials, 2020, 3, 546-550.	21.1	26
63	Ultralong lifetime and efficient room temperature phosphorescent carbon dots through multi-confinement structure design. Nature Communications, 2020, 11, 5591.	12.8	202
64	Dynamic Mechanochromic Optics with Tunable Strain Sensitivity for Strainâ€Responsive Digit Display. Advanced Optical Materials, 2020, 8, 2001472.	7.3	22
65	Exfoliation of α-Zirconium Phosphate Using Tetraalkylammonium Hydroxides. Inorganic Chemistry, 2020, 59, 7822-7829.	4.0	24
66	Chlorides Entrapment Capability of Various In-Situ Grown NiAl-LDHs: Structural and Corrosion Resistance Properties. Coatings, 2020, 10, 384.	2.6	15
67	Spontaneous formation of wrinkle-driven tubular structure as a versatile platform for adaptive 3D stretchable electronics. Materials Horizons, 2020, 7, 2368-2377.	12.2	16
68	A life in crystallography. Dalton Transactions, 2020, 49, 3914-3916.	3.3	3
69	Multi-color Reversible Photochromisms via Tunable Light-Dependent Responses. Matter, 2020, 2, 680-696.	10.0	44
70	Practical SERS method for assessment of the washing durability of textiles containing silver nanoparticles. Analytical Methods, 2020, 12, 1186-1196.	2.7	2
71	Superhydrophobic Methylated Silica Sol for Effective Oil–Water Separation. Materials, 2020, 13, 842.	2.9	13
72	Bioinspired Superhydrophobic Thermochromic Films with Robust Healability. ACS Applied Materials & Interfaces, 2020, 12, 14578-14587.	8.0	40

#	Article	IF	CITATIONS
73	Hierarchically porous carbon microfibers for solid-state supercapacitors. Journal of Materials Science, 2020, 55, 5510-5521.	3.7	7
74	Synergetic Covalent and Spatial Confinement of Sulfur Species by Phthalazinone-Containing Covalent Triazine Frameworks for Ultrahigh Performance of Li–S Batteries. ACS Applied Materials & Interfaces, 2020, 12, 8296-8305.	8.0	42
75	In situ construction of bamboo charcoal derived SiOx embedded in hierarchical porous carbon framework as stable anode material for superior lithium storage. Applied Surface Science, 2020, 521, 146497.	6.1	30
76	Layered Double Hydroxide Protective Films Developed on Aluminum and Aluminum Alloys: Synthetic Methods and Anti-Corrosion Mechanisms. Coatings, 2020, 10, 428.	2.6	34
77	Perovskite oxides as transparent semiconductors: a review. Nano Convergence, 2020, 7, 32.	12.1	44
78	Self-assembled Intumescent Flame Retardant Coatings: Influence of pH on the Flammability of Cotton Fabrics. Engineered Science, 2020, , .	2.3	13
79	Gold nanoparticles immobilized on single-layer α-zirconium phosphate nanosheets as a highly effective heterogeneous catalyst. Advanced Composites and Hybrid Materials, 2019, 2, 520-529.	21.1	17
80	Influence of compatibilizer and carbon nanotubes on mechanical, electrical, and barrier properties of PTT/ABS blends. Advanced Industrial and Engineering Polymer Research, 2019, 2, 121-125.	4.7	23
81	Mechanics-induced triple-mode anticounterfeiting and moving tactile sensing by simultaneously utilizing instantaneous and persistent mechanoluminescence. Materials Horizons, 2019, 6, 2003-2008.	12.2	99
82	Porous polyaniline arrays oriented on functionalized carbon cloth as binder-free electrode for flexible supercapacitors. Journal of Electroanalytical Chemistry, 2019, 848, 113348.	3.8	27
83	Synthesis of novel cone-shaped CaAl-LDH directly on aluminum alloy by a facile urea hydrolysis method. SN Applied Sciences, 2019, 1, 1.	2.9	10
84	A facile strategy for the preparation of end-capped and cross-linkable poly(propylene carbonate) with high performance. Advanced Industrial and Engineering Polymer Research, 2019, 2, 161-166.	4.7	0
85	A Biomimetic Interface with High Adhesion, Tailorable Modulus for On-Skin Sensors, and Low-Power Actuators. Chemistry of Materials, 2019, 31, 8708-8716.	6.7	33
86	Rheological, Thermal, and Degradation Properties of PLA/PPG Blends. Materials, 2019, 12, 3519.	2.9	14
87	CO ₂ Nanoenrichment and Nanoconfinement in Cage of Imine Covalent Organic Frameworks for Highâ€Performance CO ₂ Cathodes in Liâ€CO ₂ Batteries. Small, 2019, 15, e1904830.	10.0	45
88	Strategic Design of Clayâ€Based Multifunctional Materials: From Natural Minerals to Nanostructured Membranes. Advanced Functional Materials, 2019, 29, 1807611.	14.9	65
89	Dynamic Optics with Transparency and Color Changes under Ambient Conditions. Polymers, 2019, 11, 103.	4.5	22
90	Tunable upconversion emission in Er3+/Yb3+ co-doped oxyfluoride glass ceramics containing NaYF4 nanocrystals by the incorporation of Li+ ions, Journal of Luminescence, 2019, 214, 116524	3.1	11

#	Article	IF	CITATIONS
91	Highly efficient self-template synthesis of porous silica nanorods from natural palygorskite. Powder Technology, 2019, 354, 1-10.	4.2	47
92	Nanofluidic energy conversion and molecular separation through highly stable clay-based membranes. Journal of Materials Chemistry A, 2019, 7, 14089-14096.	10.3	45
93	Hierarchical double-shelled frameworks of polyaniline@N-doped porous carbon for supercapacitors. Applied Surface Science, 2019, 486, 490-498.	6.1	17
94	Synthesis of Polylactide Nanocomposites Using an α-Zirconium Phosphate Nanosheet-Supported Zinc Catalyst via in Situ Polymerization. ACS Applied Polymer Materials, 2019, 1, 1382-1389.	4.4	20
95	Ultrastrong and Heat-Resistant Poly(ether ether ketone) Separator for Dendrite-Proof and Heat-Resistant Lithium-Ion Batteries. ACS Applied Energy Materials, 2019, 2, 3886-3895.	5.1	60
96	ls superparelectric 2-dimensional Sn2P2S6 having a "higher dielectric constant―desirable for more real Na+ pseudocapacitance?. Nano Energy, 2019, 61, 462-470.	16.0	8
97	Heteropolyacid Salt Catalysts for Methanol Conversion to Hydrocarbons and Dimethyl Ether: Effect of Reaction Temperature. Catalysts, 2019, 9, 320.	3.5	16
98	Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Materials Science, 2019, 1, 31-47.	8.8	941
99	A reinforced thermal barrier coat of a Na–tannic acid complex from the view of thermal kinetics. RSC Advances, 2019, 9, 10914-10926.	3.6	24
100	Fully alternating sustainable polyesters from epoxides and cyclic anhydrides: economical and metal-free dual catalysis. Green Chemistry, 2019, 21, 2469-2477.	9.0	61
101	Design and Fabrication of Highly Photoluminescent Carbon-Incorporated Silica from Rice Husk Biomass. Industrial & Engineering Chemistry Research, 2019, 58, 4688-4694.	3.7	7
102	Stable and ultrafast lithium storage for LiFePO4/C nanocomposites enabled by instantaneously carbonized acetylenic carbon-rich polymer. Carbon, 2019, 147, 19-26.	10.3	31
103	Recent advances in lithium containing ceramic based sorbents for high-temperature CO ₂ capture. Journal of Materials Chemistry A, 2019, 7, 7962-8005.	10.3	106
104	Sustainable biowaste strategy to fabricate dual-doped carbon frameworks with remarkable performance for flexible solid-state supercapacitors. Journal of Power Sources, 2019, 418, 112-121.	7.8	54
105	Preparation of Polyacrylate Hollow Microspheres via Facile Spray Drying. Applied Sciences (Switzerland), 2019, 9, 228.	2.5	3
106	Polybenzoxazine Resins with Polyphosphazene Microspheres: Synthesis, Flame Retardancy, Mechanisms, and Applications. ACS Omega, 2019, 4, 20275-20284.	3.5	24
107	Ultrahigh Li-ion conductive single-ion polymer electrolyte containing fluorinated polysulfonamide for quasi-solid-state Li-ion batteries. Journal of Materials Chemistry A, 2019, 7, 24251-24261.	10.3	41
108	A highly stretchable, ultra-tough, remarkably tolerant, and robust self-healing glycerol-hydrogel for a dual-responsive soft actuator. Journal of Materials Chemistry A, 2019, 7, 25969-25977.	10.3	111

#	Article	IF	CITATIONS
109	A star-shaped POSS-containing polymer for cleaner leather processing. Journal of Hazardous Materials, 2019, 361, 305-311.	12.4	43
110	Polymers for high performance Li-S batteries: Material selection and structure design. Progress in Polymer Science, 2019, 89, 19-60.	24.7	103
111	Facile One-pot Synthesis of Silver Nanoparticles Supported on α-Zirconium Phosphate Single-Layer Nanosheets. ES Materials & Manufacturing, 2019, , .	1.9	5
112	Gd 3+ doping induced enhanced upconversion luminescence in Er 3+ /Yb 3+ co-doped transparent oxyfluoride glass ceramics containing NaYF 4 nanocrystals. Ceramics International, 2018, 44, 10055-10060.	4.8	21
113	Improving thermal, electrical and mechanical properties of fluoroelastomer/amino-functionalized multi-walled carbon nanotube composites by constructing dual crosslinking networks. Composites Science and Technology, 2018, 162, 49-57.	7.8	39
114	Synthesis and properties of CO2-based plastics: Environmentally-friendly, energy-saving and biomedical polymeric materials. Progress in Polymer Science, 2018, 80, 163-182.	24.7	162
115	Engineering the Exciton Dissociation in Quantum onfined 2D CsPbBr ₃ Nanosheet Films. Advanced Functional Materials, 2018, 28, 1705908.	14.9	98
116	Transparent and Waterproof Ionic Liquid-Based Fibers for Highly Durable Multifunctional Sensors and Strain-Insensitive Stretchable Conductors. ACS Applied Materials & Interfaces, 2018, 10, 4305-4314.	8.0	85
117	Simple and low price of monodispersed rice-like Fe2O3 supported by modified bamboo charcoal with enhanced lithium storage. Journal of Electroanalytical Chemistry, 2018, 816, 114-122.	3.8	16
118	Synthesis of green phosphors from highly active amorphous silica derived from rice husks. Journal of Materials Science, 2018, 53, 1824-1832.	3.7	23
119	Self-assembled ZnAl-LDH/PMo12 nano-hybrids as effective catalysts on the degradation of methyl orange under room temperature and ambient pressure. Applied Catalysis A: General, 2018, 550, 206-213.	4.3	18
120	Calcined Mg/Al-LDH for acidic wastewater treatment: Simultaneous neutralization and contaminant removal. Applied Clay Science, 2018, 153, 46-53.	5.2	39
121	Flame retardant and hydrophobic cotton fabrics from intumescent coatings. Advanced Composites and Hybrid Materials, 2018, 1, 177-184.	21.1	44
122	Nonstrained Î ³ -Butyrolactone to High-Molecular-Weight Poly(Î ³ -butyrolactone): Facile Bulk Polymerization Using Economical Ureas/Alkoxides. Macromolecules, 2018, 51, 9317-9322.	4.8	66
123	Study on Thermal Decomposition Behaviors of Terpolymers of Carbon Dioxide, Propylene Oxide, and Cyclohexene Oxide. International Journal of Molecular Sciences, 2018, 19, 3723.	4.1	12
124	Acid-Assisted Strategy Combined with KOH Activation to Efficiently Optimize Carbon Architectures from Green Copolymer Adhesive for Solid-State Supercapacitors. ACS Sustainable Chemistry and Engineering, 2018, 6, 14838-14846.	6.7	16
125	Versatile Nanostructures from Rice Husk Biomass for Energy Applications. Angewandte Chemie - International Edition, 2018, 57, 13722-13734.	13.8	81
126	Efficient Mechanoluminescent Elastomers for Dualâ€Responsive Anticounterfeiting Device and Stretching/Strain Sensor with Multimode Sensibility. Advanced Functional Materials, 2018, 28, 1803168.	14.9	149

#	Article	IF	CITATIONS
127	Vielfäige Nanostrukturen aus Reishülsenâ€Biomasse für Energieanwendungen. Angewandte Chemie, 2018, 130, 13914-13927.	2.0	8
128	Solid Acid Catalyst Based on Single-Layer α-Zirconium Phosphate Nanosheets for Biodiesel Production via Esterification. Catalysts, 2018, 8, 17.	3.5	47
129	Effective Capture of Carbon Dioxide Using Hydrated Sodium Carbonate Powders. Materials, 2018, 11, 183.	2.9	19
130	In Situ Laminated Separator Using Nitrogen–Sulfur Codoped Two-Dimensional Carbon Material to Anchor Polysulfides for High-Performance Li–S Batteries. ACS Applied Nano Materials, 2018, 1, 3807-3816.	5.0	23
131	One-Pot Facile Synthesis of Graphene Quantum Dots from Rice Husks for Fe ³⁺ Sensing. Industrial & Engineering Chemistry Research, 2018, 57, 9144-9150.	3.7	73
132	Can Material Found In Nature Provide Effective Treatments For Acid Drainage?. , 2018, , .		0
133	In situ synthesis of polyelectrolyte/layered double hydroxide intercalation compounds. Journal of Materials Science, 2017, 52, 6647-6655.	3.7	6
134	Elucidating the role of AlO ₆ â€octahedra in aluminum silicophosphate glasses through topological constraint theory. Journal of the American Ceramic Society, 2017, 100, 1395-1401.	3.8	9
135	Hierarchical NiO mesocrystals with tuneable high-energy facets for pseudocapacitive charge storage. Journal of Materials Chemistry A, 2017, 5, 6921-6927.	10.3	38
136	Single-step One-pot Synthesis of Graphene Foam/TiO2 Nanosheet Hybrids for Effective Water Treatment. Scientific Reports, 2017, 7, 43755.	3.3	30
137	Moistureâ€Responsive Wrinkling Surfaces with Tunable Dynamics. Advanced Materials, 2017, 29, 1700828.	21.0	133
138	Photoluminescent carbon quantum dot grafted silica nanoparticles directly synthesized from rice husk biomass. Journal of Materials Chemistry B, 2017, 5, 4679-4689.	5.8	71
139	Luminescence Mechanism of Carbon-Incorporated Silica Nanoparticles Derived from Rice Husk Biomass. Industrial & Engineering Chemistry Research, 2017, 56, 5906-5912.	3.7	26
140	Single-step One-pot Synthesis of TiO2 Nanosheets Doped with Sulfur on Reduced Graphene Oxide with Enhanced Photocatalytic Activity. Scientific Reports, 2017, 7, 46610.	3.3	36
141	Advances in technologies for pharmaceuticals and personal care products removal. Journal of Materials Chemistry A, 2017, 5, 12001-12014.	10.3	142
142	Coassembled ionic liquid/laponite hybrids as effective CO2 adsorbents. Journal of Energy Chemistry, 2017, 26, 1026-1029.	12.9	15
143	Covalently immobilized ionic liquids on single layer nanosheets for heterogeneous catalysis applications. Dalton Transactions, 2017, 46, 13126-13134.	3.3	25
144	Preparation, morphology, and structure of kaolinites with various aspect ratios. Applied Clay Science, 2017, 147, 117-122.	5.2	30

#	Article	IF	CITATIONS
145	Preparation of two dimensional layered double hydroxide nanosheets and their applications. Chemical Society Reviews, 2017, 46, 5950-5974.	38.1	676
146	Room-Temperature Synthesis of Mn-Doped Cesium Lead Halide Quantum Dots with High Mn Substitution Ratio. Journal of Physical Chemistry Letters, 2017, 8, 4167-4171.	4.6	139
147	Biomimetic nanocoatings with exceptional mechanical, barrier, and flame-retardant properties from large-scale one-step coassembly. Science Advances, 2017, 3, e1701212.	10.3	195
148	Converting Spent Cu/Fe Layered Double Hydroxide into Cr(VI) Reductant and Porous Carbon Material. Scientific Reports, 2017, 7, 7277.	3.3	28
149	Wrinkling Devices: Moistureâ€Responsive Wrinkling Surfaces with Tunable Dynamics (Adv. Mater.) Tj ETQq1 1 (0.784314 21.0	rgBJ /Overloo
150	Flame retardant and hydrophobic coatings on cotton fabrics via sol-gel and self-assembly techniques. Journal of Colloid and Interface Science, 2017, 505, 892-899.	9.4	138
151	Preparation of conductive composite hydrogels from carboxymethyl cellulose and polyaniline with a nontoxic crosslinking agent. RSC Advances, 2017, 7, 54823-54828.	3.6	37
152	A superior nanolaminate dielectric barrier coating for high breakdown strength. , 2017, , .		1
153	Structure-Dependent Spectroscopic Properties of Yb3+-Doped Phosphosilicate Glasses Modified by SiO2. Materials, 2017, 10, 241.	2.9	9
154	Preparation and Characterization of Silica Aerogel Microspheres. Materials, 2017, 10, 435.	2.9	17
155	Mechanical–Structural Investigation of Chemical Strengthening Aluminosilicate Glass through Introducing Phosphorus Pentoxide. Frontiers in Materials, 2016, 3, .	2.4	15
156	The Microwave-Assisted Green Synthesis of TiC Powders. Materials, 2016, 9, 904.	2.9	13
157	Facile one-step and high-yield synthesis of few-layered and hierarchically porous boron nitride nanosheets. RSC Advances, 2016, 6, 45402-45409.	3.6	7
158	Lowly loaded carbon nanotubes induced high electrical conductivity and giant magnetoresistance in ethylene/1-octene copolymers. Polymer, 2016, 103, 315-327.	3.8	69
159	Modifier constraint in alkali borophosphate glasses using topological constraint theory. Physica B: Condensed Matter, 2016, 502, 88-92.	2.7	0
160	Plasma-induced highly efficient synthesis of boron doped reduced graphene oxide for supercapacitors. Chemical Communications, 2016, 52, 10988-10991.	4.1	101
161	Three-dimensional Nitrogen-doped graphene as binder-free electrode materials for supercapacitors with high volumetric capacitance and the synergistic effect between nitrogen configuration and supercapacitive performance. Electrochimica Acta, 2016, 218, 32-40.	5.2	54
162	Synthesis of Layered Double Hydroxide Single-Layer Nanosheets in Formamide. Inorganic Chemistry, 2016, 55, 12036-12041.	4.0	87

#	Article	IF	CITATIONS
163	Bio-inspired sensitive and reversible mechanochromisms via strain-dependent cracks and folds. Nature Communications, 2016, 7, 11802.	12.8	211
164	Facile Synthesis of Three-Dimensional Heteroatom-Doped and Hierarchical Egg-Box-Like Carbons Derived from <i>Moringa oleifera</i> Branches for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2016, 8, 33060-33071.	8.0	137
165	Titanium incorporated with UiO-66(Zr)-type Metal–Organic Framework (MOF) for photocatalytic application. RSC Advances, 2016, 6, 3671-3679.	3.6	161
166	Designing Supported Ionic Liquids (ILs) within Inorganic Nanosheets for CO ₂ Capture Applications. ACS Applied Materials & Interfaces, 2016, 8, 5547-5555.	8.0	63
167	Manipulating the dimensional assembly pattern and crystalline structures of iron oxide nanostructures with a functional polyolefin. Nanoscale, 2016, 8, 1915-1920.	5.6	4
168	Large-Scale and Controllable Synthesis of Graphene Quantum Dots from Rice Husk Biomass: A Comprehensive Utilization Strategy. ACS Applied Materials & Interfaces, 2016, 8, 1434-1439.	8.0	236
169	Bi-axially oriented polystyrene/montmorillonite nanocomposite films. RSC Advances, 2015, 5, 58191-58198.	3.6	26
170	High-Performance Electrospun Poly(vinylidene fluoride)/Poly(propylene carbonate) Gel Polymer Electrolyte for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2015, 119, 27882-27891.	3.1	88
171	Graphene quantum dots: versatile photoluminescence for energy, biomedical, and environmental applications. Journal of Materials Chemistry C, 2015, 3, 1157-1165.	5.5	172
172	Synthesis of VTMS(X)-HMS-3 mesoporous ordered silica for hydrogen storage. International Journal of Hydrogen Energy, 2015, 40, 2736-2741.	7.1	10
173	Photoluminescent mesoporous carbon-doped silica from rice husks. Materials Letters, 2015, 142, 280-282.	2.6	28
174	Derivatization of diamondoids for functional applications. Journal of Materials Chemistry C, 2015, 3, 6947-6961.	5.5	39
175	Direct growth of layered intercalation compounds via single step one-pot in situ synthesis. Chemical Communications, 2015, 51, 11398-11400.	4.1	10
176	Synthesis of Gold Nanoparticles on Rice Husk Silica for Catalysis Applications. Industrial & Engineering Chemistry Research, 2015, 54, 5656-5663.	3.7	47
177	Size/morphology induced tunable luminescence in upconversion crystals: ultra-strong single-band emission and underlying mechanisms. Nanoscale, 2015, 7, 9552-9557.	5.6	15
178	One-step direct synthesis of layered double hydroxide single-layer nanosheets. Nanoscale, 2015, 7, 9448-9451.	5.6	162
179	Preparation and enhanced properties of Fe3O4 nanoparticles reinforced polyimide nanocomposites. Superlattices and Microstructures, 2015, 85, 305-320.	3.1	39
180	Electrically Conductive Polypropylene Nanocomposites with Negative Permittivity at Low Carbon Nanotube Loading Levels. ACS Applied Materials & Interfaces, 2015, 7, 6125-6138.	8.0	153

#	Article	IF	CITATIONS
181	Hierarchal mesoporous SnO2@C@TiO2 nanochains for anode material of lithium-ion batteries with excellent cycling stability. Electrochimica Acta, 2015, 184, 219-225.	5.2	29
182	Titanium functionalized α-zirconium phosphate single layer nanosheets for photocatalyst applications. RSC Advances, 2015, 5, 93969-93978.	3.6	27
183	Synthesis of rGO-Fe3O4-SnO2-C Quaternary Hybrid Mesoporous Nanosheets as a High-performance Anode Material for Lithium Ion Batteries. Electrochimica Acta, 2015, 182, 715-722.	5.2	24
184	Synthesis and colour prediction of stable pigments from rice husk biomass. Green Materials, 2015, 3, 10-14.	2.1	16
185	Heavy duty piezoresistivity induced strain sensing natural rubber/carbon black nanocomposites reinforced with different carbon nanofillers. Materials Research Express, 2014, 1, 035029.	1.6	16
186	Magnetic Polystyrene Nanocomposites Reinforced with Magnetite Nanoparticles. Macromolecular Materials and Engineering, 2014, 299, 485-494.	3.6	28
187	Novel Sb3+/Eu3+ Co-doped phosphate luminescent glasses with adjustable emission. Journal of Alloys and Compounds, 2014, 590, 92-95.	5.5	14
188	Tungsten Trioxide/Zinc Tungstate Bilayers: Electrochromic Behaviors, Energy Storage and Electron Transfer. Electrochimica Acta, 2014, 132, 58-66.	5.2	80
189	Preparation and luminescent properties of Mn2+ doped glass and glass-ceramics containing LiZnPO4 nanocrystals. Journal of Non-Crystalline Solids, 2014, 383, 165-168.	3.1	6
190	Methane storage in tea clathrates. Chemical Communications, 2014, 50, 1244-1246.	4.1	21
191	Facile hydroxylation of halloysite nanotubes for epoxy nanocomposite applications. Polymer, 2014, 55, 6519-6528.	3.8	115
192	Significant enhancement of visible up-conversion emissions of Y2O2S:Er3+ phosphors by Mn2+ sensitizing under 1550 nm excitation. RSC Advances, 2014, 4, 16710-16715.	3.6	11
193	Intercalated polyfluorinated Pd complexes in α-zirconium phosphate for Sonogashira and Heck reactions. RSC Advances, 2014, 4, 27329-27336.	3.6	17
194	Magnetic graphene oxide nanocomposites: nanoparticles growth mechanism and property analysis. Journal of Materials Chemistry C, 2014, 2, 9478-9488.	5.5	92
195	Reinforced magnetic epoxy nanocomposites with conductive polypyrrole nanocoating on nanomagnetite as a coupling agent. RSC Advances, 2014, 4, 36560.	3.6	57
196	Pure near-infrared to near-infrared upconversion of multifunctional Tm3+ and Yb3+ co-doped NaGd(WO4)2 nanoparticles. Journal of Materials Chemistry C, 2014, 2, 4495-4501.	5.5	38
197	Sulfonic Acid-Functionalized α-Zirconium Phosphate Single-Layer Nanosheets as a Strong Solid Acid for Heterogeneous Catalysis Applications. ACS Applied Materials & Interfaces, 2014, 6, 7417-7425. –	8.0	107
198	Investigation of oxygen vacancy and photoluminescence in calcium tungstate nanophosphors with different particle sizes. Materials Research Bulletin, 2014, 50, 36-41.	5.2	35

#	Article	IF	CITATIONS
199	Tunable Multicolor Emission and Energy Transfer of <scp><scp>Sb</scp></scp> ³⁺ / <scp>Mn</scp> ²⁺ Codoped Phosphate Glasses by Design. Journal of the American Ceramic Society, 2013, 96, 2476-2480.	3.8	19
200	A Critical Review on the Heterogeneous Catalytic Oxidation of Elemental Mercury in Flue Gases. Environmental Science & Technology, 2013, 47, 10813-10823.	10.0	222
201	Glass transition temperature and topological constraints of sodium borophosphate glass-forming liquids. Journal of Chemical Physics, 2013, 139, 124502.	3.0	27
202	Aqueous phase preparation of graphene with low defect density and adjustable layers. Chemical Communications, 2013, 49, 10835.	4.1	41
203	Extraction of Lignocellulose and Synthesis of Porous Silica Nanoparticles from Rice Husks: A Comprehensive Utilization of Rice Husk Biomass. ACS Sustainable Chemistry and Engineering, 2013, 1, 254-259.	6.7	135
204	Fluorescent electrospun polyvinyl alcohol/CdSe@ZnS nanocomposite fibers. Journal of Composite Materials, 2013, 47, 3175-3185.	2.4	39
205	Electrospun poly(vinyl alcohol)/α-zirconium phosphate nanocomposite fibers. High Performance Polymers, 2013, 25, 25-32.	1.8	33
206	Gas storage in renewable bioclathrates. Energy and Environmental Science, 2013, 6, 105-107.	30.8	36
207	Sulfur@graphene oxide core–shell particles as a rechargeable lithium–sulfur battery cathode material with high cycling stability and capacity. RSC Advances, 2013, 3, 4914.	3.6	88
208	Magnetically Soft and Hard Polypropylene/Cobalt Nanocomposites: Role of Maleic Anhydride Grafted Polypropylene. Macromolecules, 2013, 46, 2357-2368.	4.8	51
209	Electrochemical Properties and Electrochromic Behaviors of the Sol–Gel Derived Tungsten Trioxide Thin Films. Energy and Environment Focus, 2013, 2, 112-120.	0.3	29
210	Na ⁺ and K ⁺ -Exchanged Zirconium Phosphate (ZrP) as High-Temperature CO ₂ Adsorbents. Science of Advanced Materials, 2013, 5, 469-474.	0.7	26
211	Synthesis of silicon complexes from rice husk derived silica nanoparticles. RSC Advances, 2012, 2, 9036.	3.6	26
212	Property manipulated polypropylene–iron nanocomposites with maleic anhydride polypropylene. Journal of Materials Chemistry, 2012, 22, 15928.	6.7	27
213	Magnetic high density polyethylene nanocomposites reinforced with in-situ synthesized Fe@FeO core-shell nanoparticles. Polymer, 2012, 53, 3642-3652.	3.8	83
214	Controlled growth and up-conversion luminescence of Y2O2S : Er3+ phosphor with the addition of Bi2O3. RSC Advances, 2012, 2, 9660.	3.6	8
215	Immobilization of ionic liquids in Î,-zirconium phosphate for catalyzing the coupling of CO2 and epoxides. RSC Advances, 2012, 2, 3810.	3.6	34
216	Silica Nanoparticles and Frameworks from Rice Husk Biomass. ACS Applied Materials & Interfaces, 2012, 4, 977-981.	8.0	186

#	Article	IF	CITATIONS
217	Synthesis, limitations, and thermal properties of energetically-substituted, protonated imidazolium picrate and nitrate salts and further comparison with their methylated analogs. New Journal of Chemistry, 2012, 36, 702-722.	2.8	37
218	Synthesis and Fabrication of Multifunctional Nanocomposites: Stable Dispersions of Nanoparticles Tethered with Short, Dense and Polydisperse Polymer Brushes in Poly(methyl methacrylate). Advanced Functional Materials, 2012, 22, 3614-3624.	14.9	29
219	Tunable Blue Emission from <scp><scp>Ta</scp></scp> ⁵⁺ Doped Sulfophosphate Glassâ€Ceramics. Journal of the American Ceramic Society, 2012, 95, 2206-2210.	3.8	6
220	Immobilization of Ionic Liquids in Layered Compounds via Mechanochemical Intercalation. Journal of Physical Chemistry C, 2011, 115, 5509-5514.	3.1	47
221	Surfactant-Free Synthesized Magnetic Polypropylene Nanocomposites: Rheological, Electrical, Magnetic, and Thermal Properties. Macromolecules, 2011, 44, 4382-4391.	4.8	104
222	The effect of B2O3 on the luminescent properties of Eu ion-doped aluminoborosilicate glasses. Journal of Non-Crystalline Solids, 2011, 357, 2328-2331.	3.1	33
223	Multifunctional composite core–shell nanoparticles. Nanoscale, 2011, 3, 4474.	5.6	416
224	Nylon toughened epoxy/SWCNT composites. Journal of Materials Science, 2011, 46, 207-214.	3.7	24
225	Harvesting silica nanoparticles from rice husks. Journal of Nanoparticle Research, 2011, 13, 6981-6990.	1.9	110
226	Poly(propylene)/Graphene Nanoplatelet Nanocomposites: Melt Rheological Behavior and Thermal, Electrical, and Electronic Properties. Macromolecular Chemistry and Physics, 2011, 212, 1951-1959.	2.2	185
227	Poly(propylene) Nanocomposites Containing Various Carbon Nanostructures. Macromolecular Chemistry and Physics, 2011, 212, 2429-2438.	2.2	81
228	Poly(propylene)/Carbon Nanofiber Nanocomposites: Ex Situ Solventâ€Assisted Preparation and Analysis of Electrical and Electronic Properties. Macromolecular Materials and Engineering, 2011, 296, 434-443.	3.6	74
229	Ex Situ Solventâ€Assisted Preparation of Magnetic Poly(propylene) 8nocomposites Filled with Fe@FeO Nanoparticles. Macromolecular Materials and Engineering, 2011, 296, 850-857.	3.6	17
230	Electrospun Magnetic Fibrillar Polystyrene Nanocomposites Reinforced with Nickel Nanoparticles. Macromolecular Chemistry and Physics, 2010, 211, 1775-1783.	2.2	66
231	Raman microscopy of residual strains in carbon nanotube/epoxy composites. Carbon, 2010, 48, 1750-1756.	10.3	42
232	Partially cured epoxy/SWCNT thin films for the reinforcement of vacuum-assisted resin-transfer-molded composites. Carbon, 2010, 48, 2364-2367.	10.3	27
233	The Effect of Fluorine Anions on the Luminescent Properties of Euâ€Doped Oxyfluoride Aluminosilicate Glasses. Journal of the American Ceramic Society, 2010, 93, 3095-3098.	3.8	35
234	Magnetic Epoxy Resin Nanocomposites Reinforced with Coreâ^'Shell Structured Fe@FeO Nanoparticles: Fabrication and Property Analysis. ACS Applied Materials & Interfaces, 2010, 2, 2100-2107.	8.0	130

#	Article	IF	CITATIONS
235	Effect of Nanoplatelets on the Rheological Behavior of Epoxy Monomers. Macromolecular Materials and Engineering, 2009, 294, 103-113.	3.6	67
236	Bâ€staged epoxy/singleâ€walled carbon nanotube nanocomposite thin films for composite reinforcement. Journal of Applied Polymer Science, 2009, 112, 290-298.	2.6	34
237	Scratch behavior of epoxy nanocomposites containing αâ€zirconium phosphate and coreâ€shell rubber particles. Polymer Engineering and Science, 2009, 49, 483-490.	3.1	50
238	The effect of guest molecular architecture and host crystallinity upon the mechanism of the intercalation reaction. Journal of Colloid and Interface Science, 2009, 333, 503-509.	9.4	46
239	Polypropylene Nanocomposites Based on Designed Synthetic Nanoplatelets. Chemistry of Materials, 2009, 21, 1154-1161.	6.7	40
240	Mechanical properties of surface-functionalized SWCNT/epoxy composites. Carbon, 2008, 46, 320-328.	10.3	250
241	Barrier properties of model epoxy nanocomposites. Journal of Membrane Science, 2008, 318, 129-136.	8.2	139
242	Preparation of Electrically Conductive Polystyrene/Carbon Nanofiber Nanocomposite Films. Journal of Chemical Education, 2008, 85, 1105.	2.3	13
243	Preparation of Exfoliated Epoxy/α-Zirconium Phosphate Nanocomposites Containing High Aspect Ratio Nanoplatelets. Chemistry of Materials, 2007, 19, 1749-1754.	6.7	148
244	Preparation of \hat{I}_{\pm} -zirconium phosphate nanoplatelets with wide variations in aspect ratios. New Journal of Chemistry, 2007, 31, 39-43.	2.8	267
245	Effective Intercalation and Exfoliation of Nanoplatelets in Epoxy via Creation of Porous Pathways. Journal of Physical Chemistry C, 2007, 111, 10377-10381.	3.1	67
246	Preparation of intercalating agentâ€free epoxy/clay nanocomposites. Polymer Engineering and Science, 2007, 47, 1708-1714.	3.1	27
247	Effect of nanoplatelet dispersion on mechanical behavior of polymer nanocomposites. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 1459-1469.	2.1	101
248	Purification and stabilization of colloidal ZnO nanoparticles in methanol. Journal of Sol-Gel Science and Technology, 2007, 43, 237-243.	2.4	108
249	Combustible ionic liquids by design: is laboratory safety another ionic liquid myth?. Chemical Communications, 2006, , 2554.	4.1	301
250	Effects of slip agent and talc surface-treatment on the scratch behavior of thermoplastic olefins. Polymer Engineering and Science, 2006, 46, 601-608.	3.1	60
251	A study of the polymerization of styrene initiated by K–THF–GIC system. European Polymer Journal, 2006, 42, 259-264.	5.4	17
252	A modified accelerating rate calorimeter (ARC®) with capabilities for handling gaseous samples under vacuum or an inert atmosphere. Journal of Fluorine Chemistry, 2006, 127, 1436-1439.	1.7	5

#	Article	IF	CITATIONS
253	Studies of the thermal behavior of Nafion® membranes treated with aluminum(III). Polymer Degradation and Stability, 2005, 89, 43-49.	5.8	38
254	Effect of Crystallinity on the Intercalation of Monoamine in α-Zirconium Phosphate Layer Structure. Chemistry of Materials, 2005, 17, 5606-5609.	6.7	133
255	Synthesis and properties of polystyrene/graphite nanocomposites. Polymer, 2002, 43, 2245-2248.	3.8	193
256	Silicon-Based Materials from Rice Husks and Their Applications. Industrial & Engineering Chemistry Research, 2001, 40, 5861-5877.	3.7	332
257	A Preliminary Study on Rice Husk Filled Polypropylene Composite. Materials Research Society Symposia Proceedings, 2000, 661, KK5.14.1.	0.1	3
258	Preparation and Properties of Exfoliated Graphite/Polystyrene Composite. Materials Research Society Symposia Proceedings, 2000, 661, KK5.3.1.	0.1	3
259	High Thermal Conductivity Shape-Stabilized Phase Change Materials. Materials Research Society Symposia Proceedings, 2000, 661, KK8.12.1.	0.1	0
260	The Synthesis of Silicon-containing Polyester Directly from SiO2 and Characterization of Its Structure. Materials Research Society Symposia Proceedings, 2000, 661, KK8.16.1.	0.1	1